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Abstract

In this paper, we enumerate the number of combina-
torial changes of the the Euclidean minimum span-
ning tree (EMST) of a set of n moving points in 2-
dimensional space. We assume that the motion of the
points in the plane, is defined by algebraic functions of
maximum degree s of time. We prove an upper bound
of O(n3β2s(n

2)) for the number of the combinatorial
changes of the EMST, where βs(n)=λs(n)/n and λs(n)
is the maximum length of Davenport-Schinzel sequences
of order s on n symbols which is nearly linear in n. This
result is an O(n) improvement over the previously triv-
ial bound of O(n4).

1 Introduction

The minimum spanning tree for a weighted graph
G(V,E) is a connected sub-graph G′(V,E′) of G where
sum of the weights of its edges is the minimum pos-
sible. For a set P = {p1, p2, . . . , pn} of n points, we
can construct a complete weighted graph with these
points as its nodes and the weight of an edge is the
Euclidean distance between its end points. Finding the
minimum spanning tree for this graph is known as the
Euclidean minimum spanning tree problem (EMST for
short). This problem has many applications in geome-
try and graph theory and has been studied extensively
before [2, 3].

We consider the kinetic version of the EMST prob-
lem in which the points are moving in the plane and
we want to enumerate the total number of the combina-
torial changes of the EMST during the motion. In this
setting, the points are moving independently and we as-
sume that the position of a point pi at time t, denoted
by pi(t), is defined by an algebraic function of maximum
degree s. We are supposed to find an upper bound for
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the number of these changes from time t = 0 to time
t = ∞.
For a restricted version of this problem in which the

trajectory of each point is defined by a linear function
of time, Katoh et al. [4] proved that the maximum num-
ber of the minimum spanning tree changes for L1 and
L∞ metrics is O(n5/2α(n)) where α(n) is the inverse
Ackerman’s function. They obtained an upper bound of
O(n32α(n)) for the number of the combinatorial changes
of the minimum spanning tree in the L2 metric for the
special case of linearly moving points (in terms of time).
Basch et al. [1] presented an approximate method for
(1+ϵ)-EMST which considers O(ϵ−(d−1)n3) combinato-
rial changes in d-dimensional space when the points fol-
low algebraic trajectories of fixed degree. However, for
the case of our problem in which the points are moving
according to algebraic functions in the plane and the
distances are measured by the L2 metric, the known
upper and lower bounds of the number of combinatorial
changes of the EMST is the trivial O(n4) and Ω(n2)
bounds.
In this paper, we show that the number of the

combinatorial changes of the EMST for our setting is
O(n3β2s(n

2)). Here, βs(n) is an extremely slowly grow-

ing function of n. Precisely, βs(n)=
λs(n)

n where λs(n) is
the maximum length of Davenport-Schinzel sequences
of order s on n symbols which is nearly linear in n. To
be exact, λs(n) = nα(n)O(α(n)s−3), for s > 3 where α(n)
is the inverse Ackerman’s function[5].

2 Preliminaries

We first consider the problem of enumerating the num-
ber of changes on the lower envelope of a set of functions
in the plane. Let F={f1(x), f2(x), . . . , fn(x)} be a col-
lection of continuous polynomial functions. The lower
envelope of F is defined as: LEF (x)=min1≤i≤n fi(x). A
breakpoint arises on the lower envelope whenever two
functions fi and fj intersect on LEF (See Figure 1). In
other words, the lower envelope is a sequence of par-
tially defined functions connected at the breakpoints.
The length of a lower envelope is the length of its se-
quence. We have the following theorem about the length
of the lower envelope:

Theorem 1 (Corollary 2.2 [5]) For any collection
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Figure 1: The lower envelope and its breakpoints

F={f1, f2, ..., fn} of n continuous, totally-defined, uni-
variable functions, each pair of whose graphs intersect
in at most s points, the length of the lower envelope se-
quence is at most λs(n) where λs(n) = nβs(n) is the
maximum length of a Davenport-Schinzel sequence of
order s on n symbols.

In our usage, we need a slightly different version of the
Theorem 1 to be applied on partial functions. Assume
that a function fi ∈ F is partial and it is undefined in
range Ij = (xj , x

′
j) and fi(xj) > LEF (xj) and fi(x

′
j) >

LEF (x′
j). This means that the discontinuity part of fi

occurs above the lower envelop. Figure 2 depicts this
condition. While fi is no longer continuous, we can
not directly use the result of Theorem 1 to obtain an
upper bound for the length of the lower envelope. It
is fortunately easy to overcome this difficulty. While
the start and the end of the discontinuity part of fi
lies above the lower envelope we can convert fi to a
continuous function f ′

i in such a way that ∀x/∈Ijf
′
i(x) =

fi(x) and ∀x∈Ijf
′
i(x) > LEF (x).

Figure 2: Ij = (xj , x
′
j) of fi(x)

If we use f ′
i instead of fi the lower envelope does

not change and therefore its length is the same as be-
fore. Therefore, we can extend Theorem 1 to cover such
functions. A function fi ∈ F is defined to be LEF -
total if either it is total or for all ranges Ij = (xj , x

′
j)

where fi is undefined we have fi(xj) > LEF (xj) and
fi(x

′
j) > LEF (x′

j). Similarly, fi is defined to be LEF -
continuous if it is continuous in its domain. For partial
functions continuity is not defined at the end points of
its undefined ranges.
Now, we can rewrite Theorem 1 as follows:

Theorem 2 For any collection F={f1, f2, ..., fn} of n
LEF -continuous, LEF -total, univariable functions, each
pair of whose graphs intersect in at most s points, the
length of the lower envelope sequence is at most λs(n)
where λs(n) = nβs(n) is the maximum length of a
Davenport-Schinzel sequence of order s on n symbols.

3 Combinatorial Changes of the EMST

Let E(CG) and E(EMST) be respectively the set of
edges of the complete graph and the edges of the EMST
of a set of moving points P in the plane and path(pi, pj)
be the simple path between pi and pj in the EMST .

After the initial computation of E(EMST) and during
the motion, we must replace some edge ei ∈ E(EMST)
by another edge ej ∈ E(CG) − E(EMST). To enu-
merate the number of these changes we have to know
such replacement candidate pairs. For each edge pipj ∈
E(CG) − E(EMST) there is a simple path path(pi, pj)
in the EMST that connects pi and pj . Assume that
pspt has the maximum Euclidean length among edges of
path(pi, pj). Trivially, |pipj | > |pspt| and if |pipj | gets to
decrease while the points are moving it will be added to
the EMST just after the moment that its length reaches
|pspt| (we assume that pspt has still the maximum Eu-
clidean length among the edges of path(pi, pj)). For
such situations we say that pipj is a potential candidate
for pspt. The set of all potential candidates of each edge
pspt ∈ E(EMST) is defined by PK(pspt).

According to the definition of PK(pspt), when the
edge pspt is removed from the EMST, PK(pspt) is no
longer valid and we must build another PK(pipj) for
the edge pipj that has been inserted into the EMST
instead of pspt. On the other hands, we always have
n− 1 edges in the EMST and it is enough to have only
n − 1 set of PK’s. We do this by labeling the edge of
the EMST by 1 to n − 1 labels and for each label i we
have PKi which is the set of potential candidate edges
ej ∈ E(CG) − E(EMST) that can take the position of
the edge with label i in the EMST. The edge of label i
in the EMST is referred by e(PKi).

It is easy to see that |e(PKi)| ≤ |eij | for all edges
eij ∈ PKi and whenever |eij | decrease to |e(PKi)| the
edge e(PKi) is removed from the EMST and eij takes
its place and receives the label i just after the moment
that |eij | is smaller than |e(PKi)|. We can describe this
by the notion of the lower envelope as follows: assume
that gi(t) = |e(PKi)|2 and fij = |eij |2 for all edges eij ∈
PKi. Then, the lower envelope of Fi = {fi1, ..., fik} ∪
{gi} defines the edges with the minimum length during
the motion. It must be noted that LEFi always lies on
gi and whenever another function fij intersects gi its
corresponding edge will be added to the EMST and will
be the edge e(PKi) and PKi will be subject to some
changes (insertion and deletion).
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Therefore, an important notice about the PKi and
Fi sets is that these sets are not fixed and are subject
to changes during the motion from time t = 0 to time
t = ∞.
Using the above discussion we have the following The-

orem about the number of the combinatorial changes of
the EMST :

Theorem 3 The total number of the combinatorial
changes of the EMST of a set of n moving points in
the plane is equal to the number of the breakpoints of
the lower envelope of the functions Fi.

It is simple to show that the sets PKi’s are disjoint
and therefore the Fi’s sets of functions are disjoint.
Moreover,

∪
i(PKi ∪ e(PKi)) = E(CG) and therefore

|
∪

i Fi| = O(n2) which means that |Fi| = O(n2).

Lemma 4 Whenever an edge e is added or removed
from a set PKi∪e(PKi) at time t, its corresponds func-
tion f(t) = |e|2 lies above the lower envelop of Fi at this
time.

Proof. Assume that at time t an edge e is removed from
PKi∪e(PKi) and it is inserted into PKj∪e(PKj). We
know that for each PKk the lower envelope LEFk lies
on the function gk = |e(PKk)|2. Therefore to prove the
Lemma it is enough to show that at time t− ϵ we have
e ̸= e(PKi) and e ̸= e(PKj) at time t + ϵ. The cor-
rectness of these are directly derived from the definition
of PK sets. An edge pkps at time t belongs to PKi if
and only if e(PKi) ∈ path(pkps) at time t and has the
maximum length. Therefore, if at time t we must re-
move e from PKi∪e(PKi) and add it to PKj ∪e(PKj)
we must have e(PKi) ∈ path(e), e(PKj) ∈ path(e) and
|e(PKi)| < |e(PKj)| at time t + ϵ. While e(PKi) and
e(PKj) belong to the EMST, e can not be equal to any
one of these edges at time t. �

Using the results of the above Theorems, Lemma and
discussions we have the following result:

Theorem 5 For a set of n points moving in the plane
according to some algebraic functions of maximum de-
gree s, the number of the combinatorial changes of the
EMST is O(n3β2s(n

2)).

Proof. As the points are moving according to func-
tion of maximum degree s, the functions gi and fij are
defined by algebraic functions of maximum degree 2s.
Combining the results of Theorem 2 and Lemma 4 and
the fact that |Fi| = O(n2), the number of the break-
points of the lower envelope of each Fi is λ2s(n

2). We
have n− 1 sets of Fi corresponding to the n− 1 labels
and therefore the total number of the breakpoints of the
lower envelopes is O(nλ2s(n

2)) = O(n3β2s(n
2)) which

according to Theorem 3 is equal to the number of the
combinatorial changes of the EMST. �

4 Conclusion

In this paper, we investigated the combinatorial changes
of the minimum spanning tree of a set of moving
points in L2 metric. We proved an upper bound of
O(n3β2s(n

2)) which is an improvement of O(n) over the
previously known bound.
Proving the tight bounds for the number of the

changes of the EMST and extending it to higher di-
mensions are further directions of this research.
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