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On Polygons Excluding Point Sets

Radoslav Fulek∗ Balázs Keszegh† Filip Morić ‡ Igor Uljarević §

Abstract

By a polygonization of a finite point set S in the plane
we understand a simple polygon having S as the set
of its vertices. Let B and R be sets of blue and red
points, respectively, in the plane such that B ∪ R is in
general position, and the convex hull of B contains k
interior blue points and l interior red points. Hurtado
et al. found sufficient conditions for the existence of
a blue polygonization that encloses all red points. We
consider the dual question of the existence of a blue
polygonization that excludes all red points R. We show
that there is a minimal number K = K(l), which is a
polynomial in l, such that one can always find a blue
polygonization excluding all red points, whenever k ≥
K. Some other related problems are also considered.

1 Introduction

Let S be a set of points in the plane in general position,
i.e., such that no three points in S are collinear. A
polygonization of S is a simple (i.e., closed and non-
self-intersecting) polygon P such that its vertex set is
S. Polygonizations of point sets have been studied a lot
recently (e.g. [6, 3, 1]).

We say that a polygon P encloses a point set V if
all the points of V belong to the interior of P . If all
the points of V belong to the exterior of P , then we say
that P excludes V . Let B and R be disjoint point sets
in the plane such that B ∪R is in general position. The
elements of B and R will be called blue and red points,
respectively. Also, a polygon whose vertices are blue is
a blue polygon. A polygonization of B is called a blue
polygonization. Throughout the paper in the figures we
depict a blue point by a black disc, and a red point by
a black circle.

Let conv(X) denote the convex hull of a subset
X ⊆ R2. By a vertex of conv(X) we understand a
0-dimensional face on its boundary. We assume that all
the red points belong to the interior of conv(B), since
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†Alfréd Rényi Institute of Mathematics, Ecole Polytechnique

Fédérale de Lausanne. Partially supported by grant OTKA NK
78439. Email: keszegh@renyi.hu
‡Ecole Polytechnique Fédérale de Lausanne.

Email: filip.moric@epfl.ch
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we can disregard red points lying outside conv(B) for
the problems we consider. Let n ≥ 3 denote the number
of vertices of conv(B), k ≥ 1 the number of blue points
in the interior of conv(B), and l ≥ 1 the number of red
points (which all lie in the interior of conv(B) by our
assumption).

In [2, 5] the problem of finding a blue polygonization
that encloses the set R was studied, and in [5] Hurtado
et al. showed that if the number of vertices of conv(B)
is bigger than the number of red points, then there is a
blue polygonization enclosing the set R. Moreover, they
showed by a simple construction that this result cannot
be improved in general.

We propose to study a dual problem, where the goal
is to find conditions under which there is a blue polygo-
nization excluding the red points (Figure 1).

Our main result is the following theorem.

Theorem 1 Let B and R be blue and red point sets
in the plane such that B ∪ R is in general position and
R is contained in the interior of conv(B). Suppose l
is the number of red points and k the number of blue
points in the interior of conv(B). Then there exists k0 =
k0(l) = O(l4), so that whenever k ≥ k0, there exists a
blue polygonization excluding the set R.

Note that it is not a priori evident that such k0 exists.
We denote by K(l) the minimum possible value k0(l) for
which the above theorem holds. We also show that k0

in Theorem 1 must be at least 2l − 1.

Theorem 2 For arbitrary n ≥ 3, l ≥ 1 and k ≤ 2l − 2
there is a set of points B ∪ R (as before |B| = n + k,
|R| = l and the set of vertices of the convex hull of
B ∪ R consists of n blue points) for which there is no
polygonization of the blue points that excludes all the red
points.

We consider also a version of the problem where the
goal is to use as few inner blue points as possible so as
to form a blue polygon excluding the red set (Figure 2).
We obtain the following result.

Theorem 3 If |B| = n + k, |R| = l, k ≥ n3l2 and the
convex hull of B contains k blue vertices in its interior,
then there exists a simple blue polygonization of a subset
of B of size at most 2n that contains all the vertices of
the convex hull of B, and excludes all the red points.
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Finally, we treat the following closely related problem.
Given n red and n blue points in general position, we
want to draw a polygon separating the two sets, with
minimal number of sides. Our result is:

Theorem 4 Let B and R be sets of n blue and n red
points in the plane in general position. Then there exists
a simple polygon with at most 3dn/2e sides that sepa-
rates blue and red points.

Also, for every n there are sets B and R that cannot
be separated by a polygon with less than n sides.

Figure 1: A blue polygonization excluding all the red
points

2 Preliminary results

In this section we present several lemmas that we will
use throughout the paper. Let us recall that B and R
denote sets of blue and red points in the plane. We will
assume that they are in general position, i.e., the set
B ∪ R does not contain three collinear points. We will
need the following useful lemma by Garćıa and Tejel [4].

Lemma 5 (Partition lemma) Let P be a set of points
in general position in the plane and assume that
p1, p2, . . . , pn are the vertices of the conv(P ) and that
there are m interior points. Let m = m1 + · · · + mn,
where the mi are nonnegative integers. Then the con-
vex hull of P can be partitioned into n convex polygons
Q1, . . . , Qn such that Qi contains exactly mi interior
points (w.r.t. conv(P )) and pipi+1 is an edge of Qi.
(Some interior points can occur on sides of the poly-
gons Q1, . . . , Qn and for those points we decide which
region they are assigned to.)

The next corollary will be used as the main ingredient
in the proof of Theorem 3.

Corollary 6 If |B| = |R| = n and the blue points are
vertices of a convex n-gon, while all the red points are
in the interior of that n-gon, then there exists a sim-
ple alternating 2n-gon, i.e., a 2n-gon in which any two
consecutive vertices have different colors.

b4
b3

b2

b1

b6

b5

p6 p1

P

Figure 2: Alternating polygon using few inner blue ver-
tices

In the proof of Theorem 1 we will be making a poly-
gon by concatenating several polygonal paths obtained
by the following proposition, which is rather easy (and
whose proof we skip).

Proposition 7 Let S be a set of n points in the plane in
general position and p and q two points from S. Then
one can find a simple polygonal path whose endpoints
are p and q and whose vertices are the n given points.

In order to obtain by our method a bound on K(l)
(|R| = l) we need to take care of the situation, when the
convex hull conv(B) contains too many vertices. For
that sake we have the following proposition, which can
be established quite easily.

Proposition 8 There exists a subset B′ of B of size at
most 2l + 1, containing only the vertices of conv(B), so
that all the red points are contained in conv(B′).

3 Proof of the main result

The aim of this section is to prove the main result, which
is stated in Theorem 1, about sufficient conditions for
the existence of a blue polygonization that excludes all
the red points.

By a wedge with z as its apex point we mean a convex
hull of two non-collinear rays emanating from z. We
define an (l-)zoo Z = (B, R, x, y, z) (Figure 3(a)) as a
set B = B(Z) of blue and R = R(Z), |R| = l, red points
with two special blue points x = x(Z) ∈ B, y = y(Z) ∈
B and a special point z = z(Z) (not necessarily in B or
R) such that:

1. every red point is inside conv(B)

2. x, y are on the boundary of conv(B)

3. every red point is contained in the wedge W =
W (Z) with apex z and boundary rays zx and zy.
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We denote by B∗ = B∗(Z) the blue points inside
W ′ = W ′(Z), the wedge opposite to W (Z) (i.e., W ′ is
the wedge centrally symmetric to W with respect to its
apex). We refer to the points in B∗ as to special blue
points. We imagine x and y being on the x-axis (with x
having smaller x-coordinate than y) and z being above
it (see Figure 3(a)), and we are assuming that when we
talk about objects being below each other in a zoo.

A nice partition of an l-zoo is a partition of conv(B)
into closed convex parts P0, P1, . . . , Pm, for which there
exist pairwise distinct special blue points b1, . . . , bm ∈
B∗ (we call b0 = x and bm+1 = y) such that for every
Pi we have that (see Figure 3(b)):

1. no red point is inside Pi, i.e., red points are on the
boundaries of the parts

2. Pi has bi and bi+1 on its boundary

z

W ′

W

x y

B∗

(a)

b0 = x
b4 = y

b1

b2

b3

P0

P1
P2

P3

(b)

Figure 3: (a) 3-zoo, (b) Nice partition of 3-zoo into 4
parts

A short proof of the next proposition is omitted.

Proposition 9 Given a zoo Z with a nice partition, we
can draw a polygonal path using all points of B = B(Z)
with endpoints x(Z) and y(Z) s.t. all the red points are
below the polygonal path.

The following two lemmas constitute the main part
of the proof.

Lemma 10 Given an l-zoo Z, if B∗ = B∗(Z) contains
a blue y-monotone convex chain of size 2l − 1, then it
has a nice partition.

Proof. Let C = {c1, c2, . . . , c2l−1} denote a y-
monotone blue convex chain of size 2l − 1, so that
y(c1) < y(c2) < . . . < y(c2l−1). If l > 1, without loss
of generality, by the y-monotonicity we can assume that
the interior of conv({ci, ci+1, . . . , cj}) is on the same side
of the line cicj , for all 1 ≤ i < j ≤ 2l − 1, as an un-
bounded portion of a positive part of the x-axis.

The special points of the nice partition will be
always points of this chain. We start by taking
Q−1 = conv(B). Then, we recursively define the parti-
tion P0, P1, . . . , Pi, Qi and points b1, b2, . . . , bi+1 ∈ B∗

such that for each Pi the two properties needed for a
nice partition hold and the remainder Qi of the zoo is
a convex part with bi+1 and y on its boundary. We
define Ri = R ∩ int(Qi), Ci = C ∩ int(Qi) and either
Ri is empty or |Ci| ≥ 2|Ri| − 1 and then ti denotes the
common tangent of conv(Ci) and conv(Ri), which has
the point y and the interior of conv(Ci) and conv(Ri)
on the same side (see Figure 4(a) for an illustration).
We maintain the following:

(?) If Ri is nonempty, then ti intersects the boundary
of Qi in a point with higher y-coordinate than bi.

In the beginning when i = −1, |Ci| ≥ 2|Ri| − 1 and
(?) holds trivially.

In a general step, P0, P1, . . . , Pi, Qi being already de-
fined we do the following.

If Qi does not contain red points inside it, taking
Pi+1 = Qi and m = i + 1 finishes the partitioning. The
convex set Pm = Qi has bm+1 = y and bm = bi+1 on its
boundary. Hence, the two necessary properties hold for
Pm.

Otherwise, let Pi+1 be the intersection of Qi with
the closed half-plane defined by ti, which contains x.
Trivially, there is no red point inside it. As ti intersects
the boundary of Qi in a point with higher y-coordinate
than bi+1, we have that Pi+1 has bi+1 on its boundary.
Let bi+2 denote the blue point lying on ti, trivially bi+2

is on the boundary of Pi+1 too. It is easy to see that
the point bi+1 has either the lowest or the highest y-
coordinate among the points in Ci. We define Q′i as
the closure of Qi \ Pi+1, R′i = R ∩ int(Q′i), C ′i = C ∩
int(Q′i), and t′i denotes the common tangent of conv(C ′i)
and conv(R′i), which has the point y and the interior of
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conv(C ′i) and conv(R′i) on the same side. If t′i cannot
be defined then R′i is empty and the next step will be
the final step, we just take Qi+1 = Q′i.

bi+1

P0 ∪ P1 ∪ . . . ∪ Pi

x y
ti

Qi

(a)

bi+1
bi+2

P0 ∪ P1 ∪ . . . ∪ Pi

Pi+1x y

Qi+1ti

t′i

(b)

bi+1

P0 ∪ P1 ∪ . . . ∪ Pi

Pi+1
x y

ti

Pi+2

Qi+2

bi+2

bi+3

t′
i

Q′
i = Qi+2 ∪ Pi+2

ti+2

(c)

Figure 4: (a) a general step of the recursion continuing
with (b) case (i) or (c) case (ii)

(i) If t′i intersects the boundary of Q′i in a point with
higher y-coordinate than bi+2 then (?) will hold in
the next step so we can finish this step by taking
Qi+1 = Q′i (see Figure 4(b)).

(ii) If t′i does not intersect the boundary of Q′i in a
point with higher y-coordinate than bi+2 then we
do the following (see Figure 4(c)). Denote by bi+3

the blue point on t′i. Now Pi+2 is defined as the
intersection of Q′i and the half-plane defined by the
line bi+2bi+3 and containing x. It is easy to see that
Pi+2 does not contain red points in its interior, and
it has both bi+2 and bi+3 on its boundary. We finish
this step by taking Qi+2 as the closure of Q′i \Pi+2.

It remains to prove that in the next step property
(?) holds.

First, observe that bi+3 has either the lowest or
the highest y-coordinate among the points in Ci+2.
Moreover, it is easy to see that it has to be the
lowest one otherwise we would end up in Case (3).
Thus, the blue point on the new tangent ti+2 is a
point of the chain C that is higher than bi+3. Then
the intersection of ti+2 with the boundary of Qi+2

must be a point with higher y-coordinate than bi+3

as needed.

The condition |Ci| ≥ 2|Ri|−1 holds by induction. In-
deed, in each step the number of remaining red points
decreases by 1, while the number of remaining blue
points decreases at most by 2 except the last step when
we never have Case (3), and thus, the number of re-
maining blue points decreases also just by 1. �

Remark: It is tempting to prove the lemma by
divide-and-conquer strategy using the simultaneous
partition of the red points and blue points in B∗ by
a line l into two parts so that the parts on the same
side of l have the same size. However, this certainly
does not work in a straightforward way, since we need
that l passes through a red point and a blue point in B∗.

The next lemma is a variant of the previous one, and
it is the key ingredient in the proof of the main theorem
in this section.

Lemma 11 Given an l-zoo Z, if B∗ = B∗(Z) contains
at least Ω(l2) blue points, then it has a nice partition.

yx

bi+1

bi+4

bi+5

tPi+1

Pi+2

Pi+3

bi+2
bi+3

t′

Q′ = Pi+4 ∪ Qi+4

P0 ∪ . . . ∪ Pi

Pi+4

Qi+4

Figure 5: A general step of the recursion in Lemma 11,
s = 4

Proof. We can suppose that in B∗ there is no y-
monotone convex chain of size 2l−1, because otherwise
we can apply Lemma 10 in order to get a desired nice
partition.
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We start by taking Q−1 = conv(B) and C = C−1 =
B∗. As in Lemma 10 we recursively define the partition
P0, P1, . . . , Pi, Qi and points b1, b2, . . . , bi+1 such that
for each Pi the two properties needed for a nice partition
hold and the remainder Qi of the zoo Z is a convex
part with bi+1 and y on its boundary. We define Ri =
R ∩ int(Qi), Ci = C ∩ int(Qi).

In a general step, P0, P1, . . . , Pi, Qi being already de-
fined we do the following.

If Qi does not contain red points inside it, taking
Pi+1 = Qi and m = i + 1 finishes the partitioning. The
convex set Pm = Qi has bm+1 = y and bm = bi+1 on
its boundary. Hence, the two necessary properties of a
nice partition hold for Pm.

Otherwise, we again define t, the common tangent of
conv(Ci) and conv(Ri) which has the point y and the
interior of conv(Ci) and conv(Ri) on the same side of t.
If t intersects the boundary of Qi in a point with higher
y-coordinate than bi+1 then we can finish this step as in
Lemma 10 by taking bi+2 as the blue point on t, Pi+1 as
the intersection of Qi with the closed half-plane defined
by t and Qi+1 as the closure of Qi \ Pi+1.

If t does not intersect the boundary of Qi in a point
with higher y-coordinate than bi+1, then we define
bi+1, bi+2, . . . , bi+s, bi+s ∈ t, to be the consecutive ver-
tices of conv(Ci), for which the segments with one end-
point x and the other being any of these points, do not
cross conv(Ci). As this is a y-monotone convex chain
with s vertices, we have that s < 2l − 1.

We obtain the regions Pi+1, Pi+2, . . . , Pi+s−1 (see Fig-
ure 5), by cutting Qi successively with the lines through
the pairs bi+1bi+2, bi+2bi+3, . . . , bi+s−1bi+s (in this or-
der). Evidently, these regions satisfy the property
needed for a nice partition. Let Q′ stand for the remain-
ing part of Qi (the gray region in Figure 5). Further-
more, R′ = R∩int(Q′) and C ′ = C∩int(Q′). We define
t′ to be the common tangent of conv(C ′) and conv(R′)
which has the point y and the interior of conv(C ′) and
conv(R′) on the same side. We define bi+s+1 to be the
blue point on t′ and Pi+s to be the intersection of Q′

with the closed half-plane defined by t′ and containing
x. Again Pi+s satisfies the property needed for a nice
partition, as it has bi+s+1 and bi+s on its boundary.
Indeed, otherwise t′ would not intersect the boundary
of Q′ in a point with higher y-coordinate than bi+s, in
which case t′ could not be the tangent to conv(C ′) and
conv(R′), a contradiction.

Observe that Ci+s contains all points of Ci except
bi+2, bi+3, . . . , bi+s+1. Because of that, if we proceed
in this way recursively, in each step the number of re-
maining red points decreases by 1, while the number of
remaining blue points decreases by s < 2l − 1. Thus, if
originally, we had (2l−2)l+1 blue points in B∗, we can
proceed until the end thereby finding a nice partition of
Z. �

Having the previous lemma, we are in the position to
prove Theorem 1.

Proof. [Proof of Theorem 1.] First, by Proposition
8 we obtain a subset B′, |B′| = m, of the vertices of
conv(B) of size at most 2l + 1, so that R ⊆ conv(B′).
Let b′0, b

′
1, . . . , b

′
m−1 denote the blue points in B′ listed

according to their cyclic order on the boundary of
conv(B′). We distinguish two cases.

b′i

b′i+1

z

P ′b′i−1

(a)

b′
3

b′
0

b′
2

b′
1

b′
4

P ′

(b)

Figure 6: Partition of conv(B)

1◦ conv(B′) does not contain Ω(l4) points in its in-
terior. It follows, that there is a convex region P ′ con-
taining Ω(l3) blue points, which is an intersection of
conv(B) with a closed half-plane T defined by a line
through two consecutive vertices b′i and b′i+1, for some
0 ≤ i < m (indices are taken modulo m), on the bound-
ary of conv(B′), such that T does not contain the in-
terior of conv(B′) (see Figure 6 (a)). Let B′′ denote
the set of vertices of conv(B′) except b′i and b′i+1. Ob-
serve that we have an l-zoo Z having B(Z) = B \ B′′,
R(Z) = R, b′i and b′i+1 as x(Z) and y(Z), respectively.
By the general position of B we can take z(Z) to be
a point very close to the line segment b′ib

′
i+1, so that

B∗(Z) contains Ω(l2) blue points. Thus, by Lemma 11
we obtain a nice partition of Z. Hence, by Proposition 9
we obtain a blue polygonal path Q having B\B′′ as a set
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of vertices. The desired polygonal path is obtained by
concatenating the path Q with the convex chain formed
by the points in B′′ ∪ {b′i, b′i+1}.

b0

b1

b2

P ′

Figure 7: Forming a polygonization

2◦ conv(B′) contains Ω(l4) points in its interior.
Let Ri denote the intersection of R with the triangle
b′0b
′
ib
′
i+1, for all 1 ≤ i < m − 1. For each triangle

b′0b
′
ib
′
i+1 we consider the lines through all the pairs r

and b, such that b = b′0, b
′
i or b′i+1 and r ∈ Ri. For

each i, 1 ≤ i < m − 1, these lines partition the trian-
gle b′0b

′
ib
′
i+1 into O(|Ri|2) 2-dimensional regions. Hence,

by doing such a partition in all the triangles b′0b
′
ib
′
i+1

we partition conv(B′) into O(
∑m−2

i=1 |Ri|2) = O(|R|2)
regions, each of them fully contained in one of the tri-
angles b′0b

′
ib
′
i+1. It follows that one of these regions, let

us denote it by P ′, contains at least Ω(l2) blue points
(see Figure 6 (b)). Clearly, P ′ is contained in a triangle
b′0b
′
ib
′
i+1, for some 1 ≤ i < m− 1.

For the convenience we rename the points b′0, b
′
i, b
′
i+1

by b0, b1, b2 in clockwise order. We apply Partition
Lemma (Lemma 5) on the triangle b0b1b2, so that we ob-
tain a partition of the triangle b0b1b2 into three convex
polygonal regions P ′0, P

′
1, P

′
2 (in fact triangles), such that

each part contains Ω(l2) blue points belonging to P ′∩P ′j ,
for all 0 ≤ j ≤ 2, and has bjbj+1 as a boundary segment.
We denote by P0, P1, P2 the parts in the partition of
conv(B), which is naturally obtained as the extension
of the partition of b0b1b2, so that Pj , Pj ⊇ P ′j , has bjbj+1

(indices are taken modulo 3) either as a boundary edge
or as a diagonal.

In what follows we show that in each Pj , 0 ≤ j ≤ 2,
we have an lj-zoo Zj , lj ≤ l, with bj as x(Zj) and bj+1

and y(Zj), respectively, and with Ω(l2) blue points in
B∗(Zj).

First, we suppose that there exists a red point in P ′j .
We take z(Zj) to be the intersection of two tangents t1
and t2 from bj and bj+1, respectively, to conv(R ∩ P ′j)
that have conv(R ∩ P ′j) and bjbj+1 on the same side.
Clearly, P ′ has to be contained in one of four wedges
defined by t1 and t2. However, if P ′ is not contained

in the wedge defined by t1 and t2, which has the empty
intersection with the line through bj and bj+1, either
Pj+1 or Pj−1 cannot have a non-empty intersection with
P ′ (contradiction). Thus, B∗(Zj) of Zj contains at least
Ω(l2) blue points.

Hence, we can assume that P ′j does not contain any
red point. In this case, by putting z very close to bjbj+1,
so that z ∈ b0b1b2, we can make sure, that the corre-
sponding wedge above the line bjbj+1 contains all the
blue points in P ′.

Thus, in every Pj , 0 ≤ j ≤ 2, we have Zj with bj and
bj+1 as x(Zj) and y(Zj), respectively, the set of blue
points in Pj as B(Zj), and the set of red points in Pj

as R(Zj). By using Proposition 9 on a nice partition of
Zj obtained by Lemma 11 we obtain a polygonal path
using all the blue points in Pj which joins bj and bj+1,
and which has all the red points in Pj on the ”good”
side. Finally, the required polygonization is obtained
by concatenating the paths obtained by Lemma 11 (see
Figure 7). �

4 Proof of Theorem 3

Proof. [Proof of Theorem 3.] Let b1, . . . , bn be the ver-
tices of the convex hull. Consider all the lines deter-
mined by one blue point from the convex hull and one
red point. It is easy to see that by drawing these nl
lines the interior of conv(B) is divided into no more
than (nl)2 2-dimensional regions. Since we have at least
K ′(l, n) interior blue points, it follows that there is a re-
gion that contains at least n blue points (see Figure 2).

Let p1, . . . , pn be blue points that lie inside one region.
By Corollary 6 it follows that there exists a simple 2n-
polygon P whose vertices are taken alternatingly from
the sets {b1, . . . , bn} and {p1, . . . , pn}. It is easy to see
from the proof of Corollary 6 (based on Lemma 5) that
this 2n-gon satisfies the following property: for each
point x from the interior of the 2n-gon there is a blue
point bi such that the segment bix is entirely contained
in the 2n-gon.

By relabeling the points if necessary we can assume
that P = b1p1 . . . bnpn. We claim that P does not con-
tain any red point in its interior. Suppose the contrary,
i.e., there exists a red point r in the interior of P . Then
there exists a blue vertex bi such that the segment bir
lies in the interior of P . Hence, the line l through bi and
r intersects the line segment pi−1pi (where p0 = pn),
which cannot be true because all the points p1, . . . , pn

lie in the same closed half-plane defined by l. This con-
tradiction finishes the proof. �

5 Lower bound

Here we give a proof of Theorem 2.
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Proof. For fixed n and l ≥ 1 and k = 2l − 2 we define
the set B as follows (see Figure 8(a) for an illustration).
We put two blue points x and y on the x-axis, x be-
ing left from y. In the upper half-plane we put n − 2
blue points Z = {z1, z2, ..., zn−2} close to each other
such that Z ′ = {x, y} ∪ Z are in convex position. Let
us call a vertex in Z a z-vertex. Furthermore, we put
l− 1 blue points (not necessarily in convex position) to
the interior of conv(Z ′) close to the z-vertices, we call
them b-vertices. Next, we put l red points in the inte-
rior of conv(Z ′), all below the lines xzn−2 and yz1 such
that together with x and y they form a convex chain
xr1r2 . . . rly. Finally, for each segment riri+1, we put
a blue point li a bit below its midpoint. We call these
l-vertices (lower blue vertices). This way we added l−1
more blue points. Suppose that there exists a polygon P
through all the blue points excluding all the red points.
Starting with a b-vertex we take the vertices of the poly-
gon one by one until we reach an l-vertex, say li. The
vertex preceding li on the polygon cannot be x, as in
this case r1 would be in the interior of P , and similarly
it cannot be y as then rl would be in the interior of
P . If it is a z-vertex then ri or ri+1 is inside P . Thus,
it can be only a b-vertex. Now, the vertex following li
on the polygon cannot be neither x, y nor an l-vertex
as in all of these cases ri or ri+1 would be inside P .
For the same reason it cannot be a z-vertex. Hence, it
must be a b-vertex. Now, we find the next l-vertex on
the polygon. Again, the vertex before and after it must
be a b-vertex. Proceeding this way we see that every
l-vertex is preceded and followed by a b-vertex. As we
have other vertices on the polygon too, it means that
the number of b-vertices is at least one more than the
number of l-vertices, a contradiction. �

6 Proof of Theorem 4

Proof. Let R = {r1, . . . , rn}, where x(r1) ≤ x(r2) ≤
· · · ≤ x(rn). By choosing the coordinate system appro-
priately we can assume that x(r1) = x(r2) = 0. Due
to the general position we can find numbers a, b > 0
large enough so that for certain c > 0 the triangle T1

(see Figure 8(b)) with vertices p1 = (0,−a), p2 = (c, b),
p3 = (−c, b) has the following properties:

• T1 contains r1 and r2 and does not contain any
other red or blue points

• all the lines r2i−1r2i (i = 2, 3, . . . ) intersect the
boundary of T1

We will proceed by enlarging the polygon T1 adding
to it in each step three new vertices so that the new
polygon contains the next pair of red points and no
blue points. Since the line r3r4 intersects the boundary
of T1 at some point p0 we can find two points t and u
on the boundary of T1 close enough to p0 and a point v
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b2 b3

r1

r2

r3

r4

r5
l1

l2 l3
l4

b4

(a)

T1

p1

p3 p2

p0

t

u

v

r1

r2

(b)

b1

b2

b3

b4

r1

r2

r3

r4

(c)

Figure 8: (a) Construction of the red-blue separation,
(b) The lower bound construction for red-blue separa-
tion

on the line r3r4 close to one of the points r3, r4, so that
the triangle tuv can be joined with T1 thereby creating
a new polygon T2 that contains the points r1, r2, r3, r4,
and does not contain any other red or blue point. Notice
that the condition requiring, that any line determined
by two consecutive red points intersects the boundary
of T2, is still satisfied, since it was already true for T1.
Observe that T2 has 6 vertices.
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We can continue in this way by adding the pairs
ri, ri+1 for i = 5, 7, . . . , 2bn/2c − 1 one by one. In the
end we get a polygon Tbn/2c, that contains all the red
points, except rn in case of odd n, has 3bn/2c vertices,
and does not contain any blue point. If n is even, we are
done. Otherwise we can add in the same manner three
new vertices to Tbn/2c in order to include rn as well.

Finally, let us show that we cannot always find
a separating polygon with less than n sides. Let
r1, b1, r2, b2, . . . , rn, bn be the vertices of a convex 2n-
gon appearing in that order on the circumference and set
R = {r1, . . . , rn} and B = {b1, . . . , bn} (see Figure 8(c)).
Let P be any polygon that separates the two sets. Obvi-
ously, each of the 2n segments r1b1, b1r2, . . . , rnbn, bnr1

must be intersected by a side of P . Since one side of P
can intersect simultaneously at most two of these seg-
ments, it follows that P must have at least n sides. �

7 Concluding remarks

Theorem 1 in Section 3 proves the existence of a to-
tal blue polygonization excluding red points if we have
enough inner blue points. We showed an upper bound
on K(l), the needed number of inner blue points, that
is polynomial, but likely not tight. We conjecture that
the upper bound is 2l−1, which meets the lower bound
in Theorem 2. If l ≤ 2 then a non-trivial case-analysis
shows that the conjecture holds. If finding the right val-
ues of K(l) for all l turns out to be out of reach, it is
natural to ask the following.

Question 1 What is the right order of magnitude of
K(l) ?

One could obtain a better upper bound on K(l), e.g.,
by proving Lemma 11 with a weaker requirement on
the number of blue points in W (Z), which we suspect
is possible.

Question 2 Does Lemma 11 still hold, if we require
only to have Ω(l) points in W (Z), instead of Ω(l2)?

Finally, the bounds we have on the minimal number
of sides for the red-blue separating polygon do not meet.

Problem 1 Improve the bounds n or/and 3dn/2e in
Theorem 4.
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