New ϵ-Net Constructions

Janardhan Kulkarni*

Sathish Govindarajan ${ }^{\dagger}$

Abstract

In this paper, we give simple and intuitive constructions to obtain linear size ϵ-nets for α-fat wedges, translations and rotations of a quadrant and axis-parallel three-sided rectangles in \mathbb{R}^{2}. We also give new constructions using elementary geometry to obtain linear size weak ϵ-net for d-hypercubes and disks in \mathbb{R}^{2}.

1 Introduction

A set system H, also called hypergraph, is a pair (X, \mathcal{F}), where X is a finite set and \mathcal{F} is a non-empty family of subsets of X. We restrict ourselves to geometric set systems (X, \mathcal{F}), where X is a set of points in \mathbb{R}^{2} and \mathcal{F} is family of subsets of X induced by geometric objects like wedges, quadrants, squares and disk.

For these set systems, we define ϵ-net as follows. A set $N \subseteq X \subseteq \mathbb{R}^{2}$ is called ϵ-net for (X, \mathcal{F}) if $N \cap S \neq \phi$ for all $S \in \mathcal{F}$ with $|S| \geq \epsilon|X|$. If $N \subseteq \mathbb{R}^{2}$, then it is called a weak ϵ-net for (X, \mathcal{F}).

Apart from the great theoretical importance they have in computational and combinatorial geometry, ϵ nets have wide variety of applications in many geometric problems like hitting set, set cover, geometric partitions, range searching, etc. See [8] for a text book treatment of the topic. A central result in the theory of ϵ-nets called Epsilon-net theorem, due to Haussler and Welzl [6] states that, for set systems with bounded VC-dimension d, there exists an ϵ-net of size $O\left(\frac{d}{\epsilon} \log \frac{1}{\epsilon}\right)$.

Linear size ϵ-nets exists for geometric objects like halfspaces in \mathbb{R}^{2} and $\mathbb{R}^{3}[7,9,10]$, pseudo disks $[7,10]$. Aronov et al. [2] show that $O\left(\frac{1}{\epsilon} \log \log \frac{1}{\epsilon}\right)$ size ϵ-nets exist for axis-parallel rectangles. Recent result from Noga Alon [1] shows that there exist simple geometric set systems with VC-dimension two which do not admit linear size ϵ-nets. This result implies a (slightly) superlinear lower bound on the size of ϵ-nets for many geometric objects like lines, wedges and strips in \mathbb{R}^{2} (or fat lines as referred in [1]), triangles, etc.

Weak ϵ-nets for convex objects (which have unbounded VC-dimension) have been studied in [3]. ϵ-nets have also been considered for the dual problem, where X is an arrangement of geometric objects like circles,

[^0]squares, etc. and \mathcal{F} is subsets of X induced by points. See [4] for more details.

1.1 Our results

In this paper, we give new constructions to get ϵ-nets for the following objects.

1) A simple construction to get an ϵ-net of size $O\left(\frac{\pi}{\alpha \epsilon}\right)$ for α-fat wedges in \mathbb{R}^{2}. For the dual problem a linear size ϵ-net is shown in [4], using the combinatorial complexity of the union of objects.
2) Linear size ϵ-nets for quadrants and three-sided axis-parallel rectangles (unbounded axis-parallel rectangles) in \mathbb{R}^{2}.
3) An alternate construction using elementary geometry to get weak ϵ-net of size $\frac{2^{d}}{\epsilon}$ for d-hypercubes and $O\left(\frac{1}{\epsilon}\right)$ size weak net for disks in \mathbb{R}^{2}. These results can also be derived from the solution to HadwigerDebrunner (p, q) problem for d-hypercubes and balls. However, the proofs are more involved. See [5]. For the case of disks in $\mathbb{R}^{2}, O\left(\frac{1}{\epsilon}\right)$ size (strong) ϵ-net exist. See $[7,10]$.

2ϵ-nets for α-fat wedges in \mathbb{R}^{2}

In this section, we present our main result, ϵ-nets for α fat wedges in \mathbb{R}^{2}. Without loss of generality, we assume that points are in general position with no two points having the same X or Y coordinate.

Definition 2.1: In \mathbb{R}^{2}, a wedge is defined as the region of intersection of two non-parallel halfspaces. An α-fat wedge is a wedge having an angle of intersection of at least α-radians between the two lines that define the wedge.

Definition 2.2: An axis-aligned wedge is a wedge with angle less than $\frac{\pi}{2}$, formed by the intersection of two halfspaces one of which is either parallel to horizontal axis or vertical axis.

The intersection of a horizontal halfspace with any other halfspace creates four different types of axisaligned wedges depending upon the direction the open face extends. Similarly, the intersection of a vertical halfspace with any other halfspace creates four different types axis-aligned wedges. Hence we distinguish eight different types of axis-aligned wedges and call them Type 1, Type 2 etc.

Definition 2.3: A Type 1 wedge is an axis-aligned wedge formed by the intersection of a horizontal halfs-
pace ($y \geq y_{0}$) with another halfspace whose defining line has positive slope (The wedge W in Figure 2 is a Type 1 wedge). We show a simple construction to obtain small size ϵ-nets for Type 1 wedges.

Lemma 1 -nets of size $O\left(\frac{1}{\epsilon}\right)$ exist for Type 1 wedges.
Proof. Divide the input point set horizontally into $\frac{2}{\epsilon}$ partitions, each containing $\frac{\epsilon n}{2}$ points. Let M denote the set of points we choose as an ϵ-net. For every partition $i, 1 \leq i \leq \frac{2}{\epsilon}$, let P_{i} denote the set of points lying on or above the partition i. Let H_{i} denote the convex hull of P_{i}. Let H_{i}^{\prime} denote the ordered set of points lying on the boundary of H_{i}, ordered in anti-clockwise direction starting with the topmost point of P_{i}. For every point $p \in H_{i}^{\prime}$, let $N(p)$ denote the point following p in the ordered list H_{i}^{\prime}. For the last point of $H_{i}^{\prime}, N(p)$ is defined as the first element of H_{i}^{\prime}. Let $H_{i}^{\prime \prime}$ be the subsequence of H_{i}^{\prime} consisting of points belonging to the i th partition (the points in $H_{i}^{\prime \prime}$ appear in the same order as they appear in $\left.H_{i}^{\prime}\right)$. Since the point with lowest Y-coordinate of any point set will be on the convex hull, $H_{i}^{\prime \prime}$ is not empty. For every partition $i, 1 \leq i \leq \frac{2}{\epsilon}$, let p_{i} denote the last point in the ordered list $H_{i}^{\prime \prime}$. For every partition $i, 1 \leq i \leq \frac{2}{\epsilon}$, include in M, the point p_{i} and $N\left(p_{i}\right)$, i.e., $M=\bigcup_{i=1}^{\frac{2}{\epsilon}}\left\{p_{i}, N\left(p_{i}\right)\right\}$ (Refer Figure 1). Since we are picking two points for every partition, $|M| \leq \frac{4}{\epsilon}$. We now show that, M indeed forms a valid ϵ-net.

Figure 1: $H_{i}^{\prime}=\{1,2,3,4,5,6,7,8\}, H_{i}^{\prime \prime}=\{5,6,7\}, p_{i}=$ 7 and $N\left(p_{i}\right)=8$.

Let W be a Type 1 wedge containing more than ϵn points, which means, W has to take points from at least three partitions. Let i be the partition containing the horizontal line of W. Let $j, k, i<j<k \leq \frac{2}{\epsilon}$ be the indices such that W takes at least one point from the j th and k th partition. We claim that W contains at least one of p_{j} or $N\left(p_{j}\right)$.
W intersects the convex hull H_{j} as it takes points from the j th partition (see Figure 2). Since W also takes points from the k th partition, it has to either contain or
intersect the edge $\left(p_{j}, N\left(p_{j}\right)\right)$ of H_{j}. In both the cases, W contains at least one of p_{j} or $N\left(p_{j}\right)$.

The ϵ-net construction for the Type 1 wedges can be suitably modified to get an ϵ-net of size at most $\frac{4}{\epsilon}$ for all the other types of axis-aligned wedges. This proves that, ϵ-nets of size at most $\frac{32}{\epsilon}$ exist for the axis-aligned wedges. Now we are ready to prove the main result.

Figure 2: A Type 1 wedge anchored at the partition i and intersecting the edge $\left(p_{j}, N\left(p_{j}\right)\right)$ of H_{j}

Theorem 2ϵ-nets of size $O\left(\frac{\pi}{\alpha \epsilon}\right)$ exist for α-fat wedges.
Proof. The main idea behind the construction of ϵ-net M for α-fat wedges is to find an axis-aligned wedge contained fully in the α-fat wedge and having a good fraction of ϵn points of the wedge. Then we can use the construction given in Lemma 1 to stab such a wedge. To do this, we construct a sequence of ϵ-nets and include them in M.

1. Construct an $\frac{\epsilon}{3}$-net M_{h} for halfspaces in R^{2}.
2. Construct an $\frac{\epsilon}{3}$-net M^{\prime} for axis-aligned wedges as described in Lemma 1.
3. If α is less than $\frac{\pi}{2}$, do the following. For $\forall i, 1 \leq$ $i \leq\left\lceil\frac{\pi}{2 \alpha}\right\rceil$ rotate the coordinate axes by $i \alpha$ radians in clockwise direction and construct an $\frac{\epsilon}{2}$-net M_{i} for axisaligned wedges.
4. Take $M=M_{h} \cup M^{\prime} \cup\left\{\bigcup_{i} M_{i}\right\}$

We show that M is a valid ϵ-net for α-fat wedges. Consider any wedge W forming an angle $\theta, \theta \geq \alpha$, and containing ϵn points. If $\theta \geq \frac{\pi}{2}$, then W contains either an axis-aligned wedge having at least $\frac{\epsilon n}{3}$ points or contains a halfspace having at least $\frac{\epsilon n}{3}$ points. In either case, W contains one of the points of M. If $\theta<\frac{\pi}{2}$ then at one of the orientations of the coordinate axes as described in step $3, W$ contains an axis-aligned wedge having at least $\frac{\epsilon n}{2}$ points. Therefore M forms a valid ϵ-net.

There are many constructions known to get ϵ-net of size at most $\frac{2}{\epsilon}$ for halfspaces in \mathbb{R}^{2}. Hence, $|M|=$ $O\left(\frac{\pi}{\alpha \epsilon}\right)$.

Corollary 1: ϵ-nets of size at most $\frac{64}{\epsilon}$ exist for translations and rotations of a quadrant.

Proof. This follows from the observation that every orientation of a quadrant contains an axis-aligned wedge containing at least $\frac{\epsilon n}{2}$ points.

3ϵ-nets for axis-parallel three-sided rectangles

In this section, we consider three-sided axis-parallel rectangles (rectangles with one of the sides open) in \mathbb{R}^{2} and show by elementary construction that linear size ϵ nets exist for them. However, for arbitrary orientations of three-sided rectangles, a non-linear lower bound is shown in [1].

Theorem 3 -nets of size $O\left(\frac{1}{\epsilon}\right)$ exist for axis-parallel three sided rectangles in \mathbb{R}^{2}.

Proof. We assume for simplicity that no two points have the same X or Y coordinate. This assumption can be removed by a trivial modification to our proof. Partition the input point set horizontally and vertically into $\frac{2}{\epsilon}$ blocks such that, each horizontal and each vertical block contains $\frac{\epsilon n}{2}$ points. Let M denote the set of points we chose as ϵ-net. From every horizontal block, include in M, points with the highest and the lowest value of X coordinate. Similarly, from every vertical block, include in M, points with the highest and the lowest value of Y coordinate. Clearly, $|M| \leq \frac{8}{\epsilon}$. We show that M forms an ϵ-net for three sided axis-parallel rectangles. To see this, without loss of generality, consider any axis-parallel three-sided rectangle R with the open region extending towards top. Let l, r, b denote the left, right and bottom sides of R. Assume for contradiction that R does not contain any points from M. To contain more than ϵn points, R has to include points from at least three horizontal and three vertical blocks. Consider the vertical blocks which do not contain the sides l and r. Since from every vertical block, M contains the point with highest Y coordinate, R cannot include points from these blocks without containing the point with highest Y coordinate. Therefore, R is effectively including points from at most two blocks. A contradiction.

Note: The above technique also gives us an ϵ-net of size at most $\frac{4}{\epsilon}$ for axis-parallel quadrants, by considering horizontal (or vertical) partitions only, and taking points as described above.

4 Weak ϵ-nets

In this section we give simple constructions to get linear size weak ϵ-nets for axis-parallel d dimensional hypercubes (d-hypercubes) and disk in \mathbb{R}^{2}.

4.1 Weak ϵ-nets for axis-parallel d-hypercubes

Theorem 4 Weak ϵ-nets of size $\frac{2^{d}}{\epsilon}$ exist for axisparallel d-hypercubes.
Proof. Let P denote the input point set and M denote the set of points we choose as ϵ-net. We consider the smallest d-hypercube containing ϵn points, include all its 2^{d} vertices in M and recurse on the remaining points. We formally state the construction as follows: For any d hypercube C, let $P(C)$ denote the set of points enclosed by C. Let C_{i} be the smallest d-hypercube containing ϵn points on the point set $P \backslash \bigcup_{j=1}^{i-1} P\left(C_{j}\right)$. For all $i, 1 \leq$ $i \leq \frac{1}{\epsilon}$, include all the vertices of C_{i} in M. Since at each iteration we pick 2^{d} points, $|M|=\frac{2^{d}}{\epsilon}$.

We show that, M is a weak ϵ-net for axis-parallel d hypercubes. Consider any axis-parallel d-hypercube C which contains more than ϵn points. Let $S \subseteq\left\{C_{i} \mid 1 \leq\right.$ $\left.i \leq \frac{1}{\epsilon}\right\}$ be the set of d-hypercubes that C intersects. Let C_{j} be the d-hypercube with the smallest index in S. Since at each iteration we pick the smallest d hypercube containing ϵn points, C_{j} cannot be larger than C. Therefore, C contains one of the vertices of C_{j}. Hence, M is a weak ϵ-net for d-hypercubes.

4.2 Weak ϵ-nets for disks

Theorem 5 Weak ϵ-nets of size $\frac{13}{\epsilon}$ exist for disks.
Proof. We use a similar technique as described in Theorem 4. Let P denote the input point set and M denote the set of points we choose as ϵ-net. For any disk C, let $P(C)$ denote the set of points enclosed by C. Let C_{i} be the smallest disk containing ϵn points on the point set $P \backslash \bigcup_{j=1}^{i-1} P\left(C_{j}\right)$. For all $i, 1 \leq i \leq \frac{1}{\epsilon}$, let C_{i}^{\prime} denote the concentric circle with radius $\frac{3}{2}$ times the radius of C_{i}. From the circumference of $C_{i}, 1 \leq i \leq \frac{1}{\epsilon}$, include in M, five equally spaced points. Similary, from the circumference of $C_{i}^{\prime}, 1 \leq i \leq \frac{1}{\epsilon}$, include in M, eight equally spaced points. Since, at each iteration we pick exactly thirteen points, $|M|=\frac{13}{\epsilon}$. We shall show that M is a valid weak ϵ-net for disks. Towards this end, we shall make an elementary observation.

Claim: Let C_{1}, C_{2} be concentric circles of radius r and $\frac{3 r}{2}$. Let C^{\prime} be circle of radius r which intersects C_{1}. Then, C^{\prime} will either enclose an arc of length at least $\frac{1}{5}$ th fraction of circumference of C_{1} or enclose an arc of length at least $\frac{1}{8}$ th fraction of circumference of C_{2}.

Refer figure 3. Consider the case when C^{\prime} touches the circle C_{1}. Using the cosine rule, it follows that $\angle Q P A$ is at least 25° and $\angle B P A$ is at least 50°. Therefore C^{\prime} encloses an arc of length at least $\frac{1}{8}$ th fraction of circumference of C_{2}.

Now consider the case when center of C^{\prime} lies on the circumference of C_{2}. Refer figure 4 . In this case, the

Figure 3: Circles C_{1} and C_{2} are concentric circles with radius r and $\frac{3 r}{2}$. Circle C^{\prime} touches C_{1}.

Figure 4: Circles C_{1} and C_{2} are concentric circles with radius r and $\frac{3 r}{2}$. Center of C^{\prime} lies on circumference of C_{2}.
$\angle Q P A$ is at least 35° and $\angle B P A$ is at least 70°. So, C^{\prime} still encloses an arc of length at least $\frac{1}{8}$ th fraction of circumference of C_{2}. It is easy to see that if the center of C^{\prime} lies in between these two configurations, length of the arc enclosed by C^{\prime} increases monotonically.

It also follows from the cosine rule that, the $\angle Q P E$ is at least 40° and $\angle E P F$ is at least 80°. Hence at this configuration, C^{\prime} will enclose an arc of length at least $\frac{1}{5}$ th fraction of circumference of C_{1}. If C^{\prime} intersects the circle C_{1} more deeply, it will enclose a larger fraction of circumference of C_{1}. This proves the claim. It is clear that the above claim holds when the radius of C^{\prime} is greater than r.

Now consider any disk C containing more than ϵn points. Let $S \subseteq\left\{C_{i} \left\lvert\, 1 \leq i \leq \frac{1}{\epsilon}\right.\right\}$ be the set of disks that C intersects and let C_{j} be the disk with the smallest index in S. Let C_{j}^{\prime} denote the concentric disk of radius $\frac{3}{2}$ times radius of C_{j}. Since at each iteration we pick the smallest disk containing ϵn points, C_{j} cannot be larger than C. Therefore, from the observation mentioned above, C will either enclose an arc of length at least $\frac{1}{5}$ th fraction of circumference of C_{j} or enclose an arc of length at least $\frac{1}{8}$ th fraction of the circumference C_{j}^{\prime}. Since M contains five equally spaced points from the circumference of C_{j} and eight equally spaced points from the circumference of C_{j}^{\prime}, C has to contain at least one of these points. Hence M is a valid ϵ-net.

Conclusion

In this paper, we have shown a simple construction to get small size ϵ-nets for α-fat wedges. Since arbitrary wedges do not admit linear size ϵ-nets (they do not admit linear size weak ϵ-nets as well), it is an interesting open question to get tight bounds on the size of ϵ nets. Another interesting open question is to find tight bounds on the size of weak ϵ-nets for axis-parallel rectangles.

References

[1] N. Alon. A non-linear lower bound for planar epsilonnets. Manuscript.
[2] B. Aronov, E. Ezra, and M. Sharir. Small-size epsilonnets for axis-parallel rectangles and boxes. In Symposium on Theory of Computing, pages 639-648, 2009.
[3] B. Bukh, J. Matousek, and G. Nivasch. Lower bounds for weak epsilon-nets and stair-convexity. In Proceedings of the 25th annual symposium on Computational geometry, pages 1-10, 2009.
[4] K. L. Clarkson and K. R. Varadarajan. Improved approximation algorithms for geometric set cover. In Symposium on Computational Geometry, pages 135-141, 2005.
[5] J. Eckhoff. A Survey of the Hadwiger-Debrunner (p, q) problem. Discrete and Computational Geometry: Goodman-Pollack Festschrift. pages 347-378, 2003.
[6] D. Haussler and E. Welzl. Epsilon-nets and Simplex range queries. Discrete $\&$ Computational Geometry, 2:127-151, 1987.
[7] J. Matousek, Raimund Seidel, Emo Welzl. How to net a lot with little: Small epsilon-nets for disks and halfspaces. In Symposium on Computational Geometry, pages 16-22, 1990.
[8] J. Matousek. Lectures on Discrete Geometry. SpringerVerlag New York, Inc., Secaucus, NJ, USA, 2002.
[9] J. Pach and G. J. Woeginger. Some new bounds for epsilon-nets. In Symposium on Computational Geometry, pages 10-15, 1990.
[10] E. Pyrga and S. Ray. New existence proofs for ϵ-nets. In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages 199-207, 2008.

[^0]: *Department of Computer Science and Automation, Indian Institute of Science, Bangalore, janardhan@csa.iisc.ernet.in
 \dagger Department of Computer Science and Automation, Indian Institute of Science, Bangalore, gsat@csa.iisc.ernet.in

