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Oja Medians and Centers of Mass∗

Dan Chen† Olivier Devillers‡ John Iacono§ Stefan Langerman¶ Pat Morin∗

1 Introduction

Given a set S of n points in Rd, the Oja depth [7] of a
point x ∈ Rd is

d(x, S) =
∑

y1,...,yd∈(S
d)

v(x, y1, . . . , yd) ,

where v(p1, . . . , pd+1) denotes the volume of the simplex
whose vertices are p1 . . . pd+1.1 A point in Rd with the
minimum Oja depth is called an Oja center.

1.1 New Results

In this paper we consider relationships between centers
of mass of certain sets and Oja depth. The center of
mass of a finite point set S ⊂ Rd is the average of those
points,

c(S) = |S|−1
∑
x∈S

x .

If P ⊂ Rd is a bounded object of non-zero volume, the
center of mass of P is

c(P ) =

∫
x∈P x dx

v(P )
.

In this paper, we prove the following results about
the Oja depth of an n point set S, whose convex hull A
has unit volume and that has an Oja center x:

d(c(A), S) ≤
(
n

d

)
/(d + 1) , (1)

d(c(S), S) ≤ (d + 1) d(x, S) . (2)

The bound in (1) is not known to be tight. The bound
in (2) is tight, up to a lower-order term, for some point
sets S.
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1In Oja’s original definition, the sum is normalized by dividing

by
(|S|

d

)
. We omit this here since it changes none of our results

and clutters our formulas.

1.2 Related Results

Our first result, (1), is a form of Centerpoint Theorem
that upper-bounds the Oja depth of c(A), and hence
also the Oja depth of x, in terms of the volume of the
convex hull of S. Previously, centerpoint theorems were
known for other depth functions such as Tukey depth
[5, 8, 10] and simplicial depth [2, 3, 4]. To the best of
our knowledge, this is the first such result for Oja depth.

Our next result, (2), can be viewed in two ways. The
first is as a linear-time constant factor approximation
for finding an Oja median.

In 1-d, Oja depth is minimized by the median, which
can be found in O(n) time. However, in 2-d, the best
known algorithm for minimizing Oja depth exactly takes
O(n log3 n) time [1]. Approximation algorithms for min-
imizing Oja depth, based on uniform grids and sampling
from

(
S
d

)
, are given by Ronkainen, Oja, and Orponen

[9]. However, in pathological cases, their approxima-
tion algorithm is not guaranteed (or even likely) to find
a point that closely approximates the Oja median, ei-
ther in terms of distance or in terms of its Oja depth.2

Another view of (2) is that it gives insight into the
Oja depth function and the Oja median. In some sense,
it tells us that the Oja median is not terribly different
from the center of mass of S, since the center of mass of
S minimizes, to within a constant factor, the Oja depth
function.

2 Oja Center and Mass Center of A

In this section, we relate the Oja depth of the center
of mass of the convex hull of S to the volume of the
convex hull of S. Throughout this section, A denotes
the convex hull of S and we assume, without loss of
generality, that v(A) = 1.

Our upper-bound is based on the following central
identity : For any disjoint sets X,Y ⊆ Rd with v(X ∪
Y ) > 0,

c(X ∪ Y ) =
v(X) c(X) + v(Y ) c(Y )

v(X ∪ Y )
.

We first give an inductive proof of our result for point
sets in R2, and then give a proof for point sets in Rd

that uses tools from convex geometry.

2This follows from the fact that the value of the Oja depth
function and the location of the Oja median can be arbitrarily
different for two sets S1 and S2 that differ in only d points [6].
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2.1 An Upper Bound in R2

Lemma 1 Let E be a convex polygon, let ge be the mass
center of E, and let y1, y2 be any two points in E. Then
v(y1y2ge) ≤ 1

3 v(E).

Proof. Assume, without loss of generality, that y1y2 is
horizontal and that c(E) is above y1y2. We may assume
that y1y2 is edge of E since, otherwise, we can remove
the part of E that is below y1y2 decreasing v(E) and
increasing v(c(E)y1y2).

The proof is by induction on the number of vertices of
E. If E is a triangle then one can easily verify the result.
Therefore, assume E has n ≥ 4 vertices. Consider an
edge ab of E where a 6= y2 is adjacent to y1 and let c 6= a
be adjacent to b (see Figure 1). Draw a ray r whose
origin is at y1 and such that the triangle t1 supported
by y1a, ab and r and the triangle t2 supported by r,
ab, and the line through bc have the same area. Such
a ray is guaranteed to exist by a standard continuity
argument that starts with r containing a and rotates
about y1 until r contains b.

Now, convert E into a polygon E′ by removing t1
and adding t2. This does not change the area of E.
Furthermore, since t1 and t2 are separated by a verti-
cal line, with t2 above t1, this implies that the c(E′)
has a larger y-coordinate than c(E), so v(c(E)y1y2)) ≤
v(c(E′)y1y2). Note, also, that E′ has n− 1 vertices so,
by induction,

v(c(E)y1y2) ≤ v(c(E′)y1y2) ≤ 1

3
v(E′) =

1

3
v(E) ,

completing the proof. �

Theorem 2 Let S be a set of points in R2 whose convex
hull, A, has unit area. Then d(c(A), S) ≤ n2/6.

Proof. According to Lemma 1,

d(c(A), S) =
∑

y1,y2∈(S
2)

v(y1y2 c(A)) ≤
(
n

2

)
/3 =

n2

6
.

�

2.2 An Upper Bound in Rd

First let us introduce a notion from convex geometry.
Let A be a convex body in Rd, where d ≥ 2. Suppose
A lies between parallel hyperplanes x1 = a and x1 = b,
where a < b. For each x with a ≤ x ≤ b, let Ax be
the intersection of A with the hyperplane x1 = x, and
define rx by the equation

ωd−1r
d−1
x = vd−1(Ax),

where vd−1(X) denotes the (d− 1)-dimensional volume
of X and ωd−1 is the (d− 1)-dimensional volume of the

unit (d−1)-ball. In this way, rx is the radius of a (d−1)-
ball whose vd−1-volume is the same as that of Ax. For
each a ≤ x ≤ b, let Cx be defined by the equation

Cx = {(x, x2, . . . , xd) : x2
2 + · · ·+ x2

d ≤ r2x}.

Then the set

C = ∪(Cx : a ≤ x ≤ b)

is called the Schwarz rotation-symmetral of A in the
x1-axis. For example, in R3, C is a stack of disks per-
pendicular to, and centered on, the x-axis. Each disk
has the same area as the corresponding slice of A.

Theorem 3 (Webster [11]) Let A be a convex body
in Rd (d ≥ 2) whose Schwarz rotation-symmetral in the
x1-axis is C. Then C is a convex body having the same
volume as A.

Lemma 4 Let g be the center of mass of a convex d-
polytope P . Then any d-simplex T whose vertices are g
plus d points inside P has volume at most v(P )/(d+1).

Proof. Let p1, . . . , pd be any d points in P , and let h
be the hyperplane that contains them. If g is in h, then
v(T ) = 0. If not, rotate P to make h perpendicular to
the x1-axis with g above h. If there is any volume of
P below h, we can cut that part off from P to obtain
a new polytope P ′. The volume of P ′ will be less than
1, and its mass center g′ will be above g. In this way, if
(P, p1, . . . , pd) is a counterexample to the lemma, then
so is (P ′, p1, . . . , pd). The face of P ′ in h is a convex
hull B containing the d points. Let q be a point above
h such that the pyramid D with B as base and q as
apex has the same volume as P ′.

Let C be the Schwarz rotation-symmetral of P ′ in the
x1-axis, and R be that of D (see Figure 2). Note that
R is a conic pyramid. By Theorem 3, C is convex and
v(C) = v(P ′) = v(R). Let c be the intersection of the
surfaces of C and R above B. Note that the surface of R
is bounded by a collection of lines that pass through q.
Each of these lines intersects C in at most 2 points. One
of these points has the same x1-coordinate as B and the
other points lie on the boundary of a (d− 1)-ball c.

Let xc be the x1-coordinate of c. Since C is convex,
the surface of C below x1 = xc is outside the surface
of R. By the definition of Schwarz rotation-symmetral,
the volume of C that is outside of R is below xc, and
the volume of R outside of C is above xc. Therefore, the
mass center of R is above that of C because of central
identity.

The mass centers of P ′ and C have the same height
because in the Schwarz rotation-symmetral Cx has the
same x1 value as Ax. So do the mass centers of D and
R. Let gd be mass center of D. Since D is a pyramid,
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Figure 1: The proof of Lemma 1.
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Figure 2: The Schwarz rotation-symmetral of P ′ and D

the convex hull of the d points is contained in B, g is
below g′, and g′ is below gd, we have

v(T ) ≤ v(P ′)/(d + 1) ≤ v(P )/(d + 1).

To see this, consider that v(T ) = v(g, p1, . . . , pd) ≤
v(gd, p1, . . . , pd) = v(q, p1, . . . , pd)/(d + 1). �

The bound in Lemma 4 is tight, for example, when
S consists of the d + 1 vertices of a simplex. Next we

show how this relates to Oja depth:

Theorem 5 Let S be a set of points in Rd whose convex
hull, A, has unit volume. Then d(c(A), S) ≤

(
n
d

)
/(d+1).

Proof.

d(c(A), S) =
∑

y1,...,yd∈(S
d)

v(c(A), y1, . . . , yd)

≤
(
n

d

)
/(d + 1) ,

where the inequality is an application of Lemma 4. �

3 Oja Center and Mass Center of S

In this section, we show that the center of mass of S
provides a constant-factor approximation to the point
of minimum Oja depth.

Theorem 6 For any finite set S ⊂ R, and any x ∈ R,
d(c(S), S) ≤ 2 d(x, S).

Proof. Denote the elements of S by p1, . . . , pn in any
order. Let the multiset Si contain p1, . . . , pi as well as
n − i copies of x. Let ci = c(Si). We will show, by
induction on i, that d(ci, Si) ≤ 2 d(x, Si) for all i ∈
{0, . . . , n}. This is sufficient, since Sn = S.

For the base case S0 consists of n copies of x, so c0 = x
and d(c0, S0) = 0 = 2 d(x, S0). Next, we assume that
d(ci, Si) ≤ 2 d(x, Si) and prove that d(ci+1, Si+1) ≤
2 d(x, Si+1). Note that

d(x, Si+1) = d(x, Si) + |pi+1 − x| .

Furthermore,

ci+1 = ci + (pi+1 − x)/n ,
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so

d(ci+1, Si+1) = d(ci, Si)

+
∑
q∈Si

(|ci+1 − q| − |ci − q|)

+ (|ci+1 − pi+1| − |ci+1 − x|)
≤ d(ci, Si) + n|pi+1 − x|/n

+ (|ci+1 − pi+1| − |ci+1 − x|)
≤ d(ci, Si) + 2|pi+1 − x|
≤ 2 d(x, Si) + 2|pi+1 − x|
= 2 d(x, Si+1) ,

as required. �

We remark that the above proof uses little more than
triangle inequality. In particular, the same proof shows
that the center of mass gives a 2-approximation for the
Fermat-Weber center in any dimension.3 Unfortunately,
in higher dimensions, Oja depth does not enjoy this nice
property.

Theorem 7 For any finite set S ⊆ Rd, d(c(S), S) ≤
(d + 1) d(x, S) for any x ∈ Rd.

Proof. In this proof, we will make use of the fact that,
for any d-simplex T with vertex set VT and a point
q ∈ Rd,

v(T ) ≤
∑

p1,...,pd∈(VT
d )

v(p1, . . . , pd, q) , (3)

since T is contained in the union of the simplices on the
right hand side. Equality occurs if q is inside T .

Define Si as in the proof of Theorem 6. Let S′ be Si+1

with one occurence of pi+1 removed. The induction and
base case are the same as in Theorem 6. First, we have

d(x, Si+1) = d(x, Si)

+
∑

Q∈( Si
d−1)

v(x, pi+1, Q), (4)

where Q is a set of d− 1 points, and

d(ci+1, Si+1)

= d(ci, Si)

+
∑

P∈(Si
d )

(v(ci+1, P )− v(ci, P )) (5)

+
∑

Q∈( S′
d−1)

(v(ci+1, pi+1, Q)− v(ci+1, x,Q)), (6)

3The Fermat-Weber center of a point set S in Rd is the point
x that minimizes

∑
y∈S ‖x− y‖.

where P is a set of d points. We denote y⊥ the projec-
tion of a point y on a line perpendicular to the d − 1
dimensional simplex P .

| v(ci+1, P )− v(ci, P )|
= (1/d) vd−1(P ) | ‖c⊥i P⊥‖ − ‖c⊥i+1P

⊥‖ |
≤ (1/d) vd−1(P )‖c⊥i c⊥i+1‖
≤ (1/d) vd−1(P )‖(1/n)x⊥p⊥i+1‖

Then if x⊥ and p⊥i+1 are on the same side of the hyper-
plane supporting P , we have

(1/d) vd−1(P )‖(1/n)x⊥p⊥i+1‖
≤ (1/nd) vd−1(P )

∣∣ ‖x⊥P⊥‖ − ‖p⊥i+1P
⊥‖
∣∣

≤ (1/n)| v(pi+1, P )− v(x, P )|
≤ (1/n)

∑
Q∈( P

d−1)

v(x, pi+1, Q)

Otherwise if x⊥ and p⊥i+1 are on different sides of the hy-
perplane supporting P , we have ‖x⊥p⊥i+1‖ = ‖x⊥P⊥‖+
‖p⊥i+1P

⊥‖. In this case the two simplices Px and Ppi+1

are disjoints and the convex hull of Pxpi+1 is covered by
the union of the simplices Qxpi+1 for Q ∈

(
P

d−1
)
, thus

(1/d) vd−1(P )‖(1/n)x⊥p⊥i+1‖
≤ (1/nd) vd−1(P )(‖x⊥P⊥‖+ ‖p⊥i+1P

⊥‖)
≤ (1/n) v(pi+1, P ) + v(x, P )

≤ (1/n)
∑

Q∈( P
d−1)

v(x, pi+1, Q)

We can now prove that (5) ≤ (4) as follows:

∑
P∈(Si

d )

(v(ci+1, P )− v(ci, P ))

≤
∑

P∈(Si
d )

(| v(ci+1, P )− v(ci, P )|)

≤ (1/n)
∑

P∈(Si
d )

∑
Q∈( P

d−1)

v(x, pi+1, Q)

≤ (n− (d− 1)/n)
∑

Q∈( Si
d−1)

v(x, pi+1, Q) .
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Next, we show that (6) ≤ d× (4). Applying (3),∑
Q∈( S′

d−1)

(v(ci+1, pi+1, Q)− v(ci+1, x,Q))

≤
∑

Q∈( S′
d−1)

v(x, pi+1, Q) +
∑

R∈( Q
d−2)

v(x, pi+1, ci+1, R)


≤

∑
Q∈( Si

d−1)

v(x, pi+1, Q)

+ (n− 1− (d− 2))
∑

R∈( Si
d−2)

v(x, pi+1, ci+1, R) ,

where R is a set of d − 2 points. By linearity of the
determinant we have

v(x, pi+1, ci+1, R) = (1/n)
∑

y∈Si+1

v(x, pi+1, y, R)

= (1/n)
∑
y∈Si

v(x, pi+1, y, R)

Since the absolute value of the sum can be bounded by
the sum of the absolute values, we get

v(x, pi+1, ci+1, R) ≤ (1/n)
∑
y∈Si

v(x, pi+1, y, R),

and thus∑
R∈( Si

d−2)

v(x, pi+1, ci+1, R) = (d−1/n)
∑

Q∈( Si
d−1)

v(x, pi+1, Q).

Thus we can get (6) ≤ d× (4).
Finally, we resubstitute to obtain

d(ci+1, Si+1)

≤ d(ci, Si) + (d + 1)
∑

Q∈( Si
d−1)

v(x, pi+1, Q)

≤ (d + 1) d(x, Si) + (d + 1)
∑

Q∈( Si
d−1)

v(x, pi+1, Q)

= (d + 1) d(x, Si+1) .

Then we have d(c(S), S) ≤ (d + 1) d(x, S). �

We remark that Theorem 6 and 7 are essentially the
best possible. To see this, take the multiset S that con-
tains n − d copies of the origin o, and each of the re-
maining d points has one different coordinate 1 and all
other coordinates 0. In this case d(o, S) = 1/d! and
d(c(S), S) = (d + 1−O(d2/n))× 1/d!.

4 Conclusion

We have given several results on Oja depth and centers
of mass. There are several directions for future work.

Theorem 5 has no matching lower bound. The best
lower-bound we know is that placing n/(d + 1) points
at each vertex of any d-simplex of unit volume yields
to an Oja depth of nd/(d + 1)d for any point inside the
simplex. For d = 2, for example, Theorem 5 implies
d(x, S) ≤ n2/6 − O(n) where as the best lower bound
(above) has d(x, S) ≥ n2/9. This construction leads us
to the following conjecture:

Conjecture 1 For any point set S ⊂ Rd whose convex
hull has unit volume, there exists x ∈ Rd, such that
d(x, S) ≤ nd/(d + 1)d
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