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Visibility Maintenance of a Moving Segment Observer inside Polygons with
Holes
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Abstract

We analyze how to efficiently maintain and update the
visibility polygons for a segment observer moving in a
polygonal domain. The space and time requirements for
preprocessing are O(n?) and after preprocessing, visibil-
ity change events for weak and strong visibility can be
handled in O(log|VP|) and O(log(| VPi| + | VPs])) re-
spectively, or O(logn) in which |VP] is the size of the
line segment’s visibility polygon and |VP;| and |VPs]
represent the number of vertices in the visibility poly-
gons of the line segment endpoints.

1 Introduction

Visibility problems have broad applications in several
areas such as computer graphics, robotics and motion
planning, and geographic information systems. Two
points inside a polygon are said to be mutually visible iff
their connecting segment remains completely inside the
polygon (Figure 1). For a collection of point observers
— or a segment observer as a special case — a point
is weakly visible if it is visible from at least one of the
points, and strongly visible if it is visible from all the
points. For a line segment in a planar polygonal scene,
the collection of all points weakly (strongly) visible to
the observer forms a polygon called the weak (strong)
visibility polygon(Figure 2).

In this paper, we discuss the problem of efficiently
maintaining the weak and strong visibility polygons of
a line segment moving in a static planar polygonal do-
main. The problem can arise in several real world ap-
plications, such as finding the regions illuminated by a
fluorescent lamp moving among obstacles. As the ob-
server moves, its visibility polygon changes combinatori-
ally at discrete instants. We assume that the observer’s
coordinates at any instant can be determined by a fixed
degree algebraic function of time. There is no other re-
striction on the motion path (e.g., linear, polyline, etc.).
We further assume that the observer’s motion equation
is allowed to change. To the best of our knowledge,
this problem has not been addressed before, and con-
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Figure 1: Visibility of points in (left) a simple polygon; and
(right) a polygon with holes: v, y and w are visible from z,
while z is not.

(b) (a)

Figure 2: (a) Weak; and (b) strong visibility polygons of a
segment observer in a polygon with holes.

sidering the previously solved related problems, has no
trivial solution (See section 3.1 for more details).

This paper is organized as follows: We continue by
a review of the related work in section 2. Section 3
explains the proposed solution. The algorithm’s space
and time complexity is analyzed in section 4.

2 Related Work

Visibility problems have been examined vastly in the
computational geometry literature. Related work in this
area can be put into three categories: basic problems,
query problems and kinetic problems.

In the basic problems, locations of both the observer
and the environment objects have been specified before,
and the problem asks for finding parts of the environ-
ment visible to the observer. All the configurations are
static as neither the environment objects nor the ob-
server is considered moving, and once the visible region
has been detected, no queries have to be answered any-
more.

Among problems of this category, the most basic one
is calculating the visibility polygon of a point observer
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in a simple polygon. Among several existing solutions
to this problem, those of Elgindy and Avis, and Lee [2]
can solve the problem in optimal linear time. The
problem of finding the visibility polygon of a point ob-
server located among polygonal obstacles has a worst-
case optimal O(nlogn) time solution, proposed by Suri
et al. [18], in which they’ve made use of angular sweep
technique and proved optimality by giving a reduction
from the problem of sorting n numbers.

For a segment observer in a simple polygon, two prob-
lems are computing the weak visibility polygon and the
strong visibility polygon. An important fact regarding
a segment’s strong visibility is that the strong visibility
polygon is the visibility polygon of one of the segment’s
endpoints inside the visibility polygon of the other end-
point. This gives a way to compute the strong visi-
bility polygon both in simple polygons and polygons
with holes, which reduces the problem to problems re-
garding point observers. Based on this fact, there are
optimal solutions for computing the strong visibility of
a line segment in simple polygons and polygons with
holes, which solve the problem in O(n) and O(nlogn)
time respectively [2]. Computing the weak visibility
is not so straightforward, and has solutions proposed
by ElGindy [8], Lee and Lin [14] and Chazzelle and
Guibas [7]. There is also an optimal solution of O(n)
time, which is a combination of linear time polygon tri-
angulation algorithm and the algorithm of finding the
weak visibility polygon of a line segment inside triangu-
lated simple polygons [2].

Query problems are instances of visibility problems
in which the observer’s location is not determined in
advance. Coordinates of the environment objects are
fixed and as the observer’s location is arbitrarily chosen
in query time, suitable preprocessing structure should
be built using which the visible region can be computed
efficiently in query time. As there is a tradeoff between
preprocessing time and space and query time, there is
no single optimal solution to any of problems of this
kind.

For a point in a simple polygon, there is an algorithm
proposed by Bose et al. [6] in which a visibility change
graph is constructed on the polygon’s visibility decom-
position structure, and visibility polygons for sinks of
this graph are computed and stored in preprocessing
time using O(n3logn) time and O(n?) space. Travers-
ing this structure and applying proper changes, the vis-
ibility polygon V (q) of a query point ¢ can be computed
in O(logn + |V (q)]) time.

Another solution to this problem is that of Aronov
et al. [3], in which they build a hierarchical balanced
triangulation structure on the simple polygon and pre-
process each node of the triangulation tree, such that
the visibility polygon of an external query point can be
determined efficiently. At query time, the triangulation

tree is traversed; external visibility polygons are com-
puted and glued together to shape the final visibility
polygon. The preprocessing time and space of this al-
gorithm are O(n?logn) and O(n?) respectively, and the
visibility polygon of a query point q can be reported in
O(log®n + |V (q)|) time at query time.

Zarei et al. [19] give an algorithm for computing the
visibility of a query point in polygons with holes. This
algorithm uses O(n?logn) time and O(n?) space in pre-
processing, after which the visibility polygon of any
query point can be reported in O((1+h")logn+|V (q)|),
in which n and h are the number of the vertices
and holes of the polygon respectively, |V(q)| is the
size of the visibility polygon of ¢, and A’ is an out-
put and preprocessing sensitive parameter of at most
min(h, [V (q)]).

Kinetic problems are the third category of visibil-
ity problems. In these problems, the observer or both
the observer and environment objects are moving ac-
cording to predetermined equations, and it is possi-
ble to impose restrictions on these movements to ob-
tain a simpler problem or achieve a more efficient algo-
rithm for a special case of the problem. As an exam-
ple, algorithm of [17] can be considered of this category
which is based on visibility complex, a data structure
for storing the visibility relations between objects of
the scene. The algorithm maintains the view around a
point moving from point p to ¢ in total running time of
O(max(v(p), v(p, q))), where v(p) is the size of the view
around p and v(p, ¢) the number of changes of visibility
along (p, q).

In [3], the authors consider the problem of maintain-
ing the view of a point moving along a polygonal path.
This algorithm uses linear space and handles combina-
torial changes in the visibility and changes in the motion
in O(log® n) time. Zarei et al. [20] have made use of the
method proposed in [19] to maintain the visibility of a
point moving in a polygon with holes. The visibility
events can be handled in O(logn) time. In [13], the
authors have presented an algorithm based on main-
tenance of the shortest path tree for maintaining the
strong and weak visibility of a moving segment observer
in a simple polygon. Their preprocessing data struc-
ture is linear sized and can be constructed in linear
time. Each change in the visibility can be computed
in O(log?(|V P|)) time when the observer is allowed to
change its direction, and in O(log(|V P])) time when the
movement is along a given line.

3 Problem Solution

3.1 Why the Solution is not Trivial

Although the problem seems similar to the ones ad-
dressed in [13] and [20], their methods cannot be triv-
ially extended to this problem. When holes are intro-
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Figure 3: Vertex types in (left) strong and (right) weak
visibility polygons. Observer is the horizontal line segment,
and the shaded areas constitute its visibility polygon.

duced in a simple polygon, the visibility of a line seg-
ment cannot be determined solely based on the visibil-
ity of its endpoints — a crucial property needed for the
algorithm in [13]. Also, a point visibility maintenance
algorithm [20] is not readily extensible to our case, since
in a polygon with holes, the visibility of a line segment
cannot be determined by only tracking the visibility of
its endpoints.

3.2 \Visibility Polygon Vertices and Events

Vertices of a segment observer’s visibility polygon can
be considered of three types: type A vertices are the
vertices of environment visible to the observer. type B
vertices are vertices of the visibility polygon located on
the boundary segments but somewhere other than their
endpoints. type C vertices are those vertices formed
inside the free area of environment, not on the polygon
line segments (Figure 3). In strong visibility, the visibil-
ity polygon is always a simple polygon in which type A
vertices are fixed and vertices of type B and C' move as
the observer changes place. type B and C' vertices in
a weak visibility polygon may be either fixed (subcases
B2 and C2) or moving (subcases Bl and C1).

During the observer’s motion, several events may oc-
cur. Vertices of each type can be added to or removed
from the visibility polygon. We call the events leading
to addition or deletion of type A vertices, as type A
events. There are two ways for type B vertices to ap-
pear: at the same time a type A vertex is added or
removed; or when a type C vertex approaches an edge
until a collision occurs. The former can be handled at
the same time of handling the corresponding type A
event, and the latter is called a split event. Similarly,
disappearance of type B vertices occurs either simulta-
neous with a type A event, or when during the motion
two type B vertices on an edge get closer and closer
until they collide. We name the latter a merge event
(Figures 4 and 5).

3.3 Data Structures

Here, we give an outline of the data structures which
will be referred to in subsequent sections. For further
explanation and technical details see section 4.

@

Figure 4: Split (1 — 2) and merge (2 — 1) events in strong
visibility.

@

Figure 5: Split (1 — 2) and merge (2 — 1) events in weak
visibility.

(VP.pny) For each reflex vertex in the environment, we
calculate in preprocessing its visibility polygon by ap-
plying angular sweep technique on a circular list of ver-
tices around it sorted by angle.

(V P,s) Visibility polygons of the observer’s endpoints
can be calculated in preprocessing at the same time
as (VP.n,). Throughout the visibility maintenance
process, we update these visibility polygons. We also
maintain the following pieces of information associated
with each ray r from an observer’s endpoint toward a
visible vertex v:

(pos): the angular position of r in v’s circular list
constructed as part of (V P.,); and

(hit edge) : the first polygon edge met by extending
r beyond v.

(BT) With each edge of the environment, we asso-
ciate a binary tree. In binary tree of e, we maintain all
type B vertices of the observer’s visibility polygon which
lie on edge e ordered based on their positions along e,
such that predecessors/successors in the tree are adja-
cent type B vertices on e. Whenever a type B vertex is
formed (because of a type A or split event), the vertex
is inserted in the binary tree corresponding to its edge.

(TrigQuery) A preprocessing data structure created
by considering all the vertices, that can efficiently report
the number of points inside any triangular query region.

(PolygIntersect) Each of the visibility polygons con-
structed in V P,,,,, is preprocessed as a simple polygon,
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such that given a query ray, we can efficiently determine
if the ray intersects the polygon.

3.4 Detecting Events

type A Events — Vertex Appearance: Consider a
type A event that causes a previously unseen vertex v of
the environment to be added to the visibility polygon.
We need to calculate the first time at which a ray from
an endpoint of the observer toward a reflex vertex acting
as an obstacle, reaches v. We use (V P,s(pos)) to track
extensions of all the rays connecting one endpoint of the
observer to a visible reflex vertex which may act as an
obstacle. type A vertex appearance events are in one-to-
one correspondence with changes in (V P,ys(pos)). Posi-
tion change times can be determined considering equa-
tions of fixed rays, and motion equation of the moving
rays. When an appearance event occurs, we update
each (V Pyps(pos)) to its neighboring position in the ob-
stacle’s (V Pepy) list.

type A Events — Vertex Disappearance: This kind of
event happens when a visible reflex vertex begins to act
as an obstacle for the ray toward a previously visible
vertex. To detect these events, we use (V P,ps) and con-
sider the rays from one endpoint of the observer to two
of its visibility polygon vertices. We compute instants
at which two adjacent rays possibly become collinear.
This can simply be done in O(n) at the initial step, af-
ter the visibility polygons of the endpoints are found in
preprocessing.

B — C Events — Merge Event: When two type B ver-
tices on a polygon edge move, they may gradually be-
come closer until a collision takes place and the vertices
become replaced with a type C' vertex. When a new
type B vertex is formed, (BT is updated accordingly.
Then considering positions and motion equations of pre-
decessor and successor of the new vertex in the tree, we
can predict possible collisions.

B — C Events — Split Event: Split events are the re-
verse of merge events, meaning that a type C vertex ap-
proaches an edge, and after a collision takes place, it is
replaced by two type B vertices on the edge it’s collided
with. Detecting this type of event can be performed
noting the fact that at the very last instants before the
collision, the hit edges associated with the two line seg-
ments adjacent to the type C vertex must be the same.
Otherwise, we can conclude that the C vertex isn’t close
enough to any polygon edge to cross it. Changes in the
hit edges can only occur when a type A event occurs,
and therefore can be handled at the same time as type A
events. The new hit edge is the edge adjacent to the
previous hit edge in the visibility polygon of the vertex
playing the obstacle’s role in the type A event. Having
maintained updated information about the hit edges, we

) )

Figure 6: type A vertex appearance event in strong visibility
(Case 1).

(O] 2

Figure 7: type A vertex appearance event in strong visibility
(Case 2).

can use it to predict split events: According to the mo-
tion equation of the observer and moving coordinates of
the type C' vertex, we can insert the possible split event
(the instant at which the moving vertex crosses the hit
edge) into the event queue if the extensions hit the same
edge.

3.5 Event Handling

type A Events — vertex appearance: To process a ver-
tex appearance event, we examine the event based on
Table 1, and determine if it is an internal or external
event. If external, the type A vertex should be inserted
in the visibility polygon, and type B vertices must be
properly updated. If the new vertex appears as a result
of a type B vertex approaching a corner, the type B
vertex is removed. Otherwise the type B vertex is up-
dated such that its corresponding obstacle changes from
the event’s reflex vertex to the newly appeared vertex.
Depending on whether or not the hit edge on which the
type B vertices must be placed is adjacent to the newly
appeared vertex in the original polygon, one or two new
type B vertices should be inserted beside the newly ap-
peared vertex respectively (Figures 6, 7, 8 and 9). In
strong visibility, these two vertices may be merged at
the same time to form a type C' vertex. These vertices
should reside on the edge of the visibility polygon of the
reflex vertex, which is adjacent to the newly appeared
point.

After applying changes to the visibility polygon, the
event queue should be updated by recalculating the ver-
tex disappearance events corresponding to the vertices
adjacent to newly added vertex. Also, if a reflex vertex,
the newly appeared vertex may act as an obstacle, and
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Figure 8: type A vertex appearance event in weak visibility
(Case 1).
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Figure 9: type A vertex appearance event in weak visibility
(Case 2).

therefore according to the angular ordering of vertices
in its visibility polygon and the observer’s movement,
the first vertex that may appear from behind this ob-
stacle can be found by a binary search in the visibility
polygon of this vertex.

Table 1: Different cases of a type A event.
Weak Visibility | Strong Visibility

Vertex Appears. Appears if seen

Appear- by all the points

ance on the observer.
(Case 1)

Vertex Disappears if | Disappears.

Disap- not seen by any

pearance | point on  the
observer. (Case

2)

type A Events — vertex disappearance: After veri-
fying that the event is external based on table 1, we
update the visibility polygon to reflect the changes. Vis-
ibility polygon updates in vertex disappearance events
are the reverse of those of vertex appearance events.
Vertex appearance and disappearance events whose ob-
stacles are the newly disappeared vertex should be re-
moved from the event queue.

B—C Events Updating visibility polygon when merge
or split events occur is as simple as the definitions of
these events themselves. Either two type B vertices
must be replaced by a type C' vertex or the reverse of
this change happens. In weak visibility, this change may
result in the merging of two holes into one or merging a
hole with the outer polygon for split events. The reverse
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Figure 10: (left) Strong and (right) weak visibility of the
vertex cannot be deduced solely based on visibility status of
the endpoints of the observer.

of this scenario happens for merge events, resulting in
forming a hole. When a split event happens, possible
merge events of the new type B vertices and their adja-
cent type B vertices must be recalculated and inserted
in the event queue. For a merge event, possible split
event of the newly created type C' vertex is inserted in
the event queue.

3.6 Detecting internal events

Table 1 summarizes different cases we may face while
handling a type A event, in which the italicized cells rep-
resent cases that are candidates of being internal. When
these internal events occur, considering only states of
the two endpoints of the observer is not sufficient to
deduce visibility status of the vertex subject to the
event (Figure 10). To identify internal events, using
(TrigQuery) we check if any obstacle resides in the
triangle bounded by the observer’s endpoints and the
point subject to the event. If this is the case, there
are still some points on the observer behind obstacles
with respect to the vertex and the event is an inter-
nal event of case 1. If an event of case 2 occurs, using
(PolygIntersect) we can check if the observer still in-
tersects the point’s visibility polygon and therefore the
point remains visible.

3.7 Handling Changes in the Motion Equation

Suppose the equation of motion of the observer changes.
For appearance or disappearance events of type A,
the vertex which is going to appear or disappear may
change, but as this change is limited to one position
change in the angular ordered lists, both detecting new
events and updating event times can be done in time
linear to the number of events. A similar discussion is
valid for split and merge events. In all cases, the event
queue must be reordered, which can be performed in
O(klog k) time if k is the number of events in the queue.

4 Analysis of Time and Space Requirements

Preprocessing time and space: For each ver-
tex(polygon vertices or observer’s endpoints) we can
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construct a circular list of vertices around it sorted by
angle using O(n?) preprocessing time and space [15].
Using angular sweep technique on these lists both
(V Peny) and (V Pyps) can be initialized. To initialize
(pos) values, we apply a binary search technique on
(V P.nw) of each reflex vertex visible from one of the
observer’s endpoints. To set up (TrigQuery), we use
the following lemma:

Lemma 1 We can preprocess a set of n points using
O(n?) time and space, to create a data structure such
that given a triangular query region A, the number of
points inside A can be reported in O(logn) time [9].

We apply the following lemma to each visibility polygon
in (V P.yy), to obtain the (PolygIntersect) preprocess-
ing data structure:

Lemma 2 In a simple polygon with n vertices, using
O(n) time and space in preprocessing, the first intersec-
tion of an arbitrary ray with the polygon can be reported
in O(logn) time [12].

Taking all the above into account, preprocessing time
and space are O(n?).

Size of the event queue: For each vertex in visibility
polygons of the observer’s endpoints, there may be at
most one vertex appearance and one vertex disappear-
ance at each time instant during the observer’s move-
ment; thus making a total number of O(|V P1|+|V Ps|).
For each type B or type C' vertex in the observer’s visi-
bility polygon, there may be at most one scheduled split
or merge event. Therefore, total size of the event queue
will be O(|VPy| + | VPs| + | VP)).

Initializing the event queue: For vertex appearance
events, as we have the ordered list of vertices around
any vertex in the environment, appearance event con-
sidering each of the visible vertices as obstacle can be
calculated in O(logn) time. Thus all events of this type
can be computed in O((| VP1| + | VPz]) logn) time. All
vertex disappearance events can be calculated by a lin-
ear scan of vertices of the observer endpoints’ visibil-
ity polygons and creating possible disappearance events
for each two adjacent vertices. This can be done in
O(|VPy| + |VPs|) time. The number of different split
and merge events is O(| VP|) and having the prepared
preprocessing structures, each of these events can be
computed in O(1) time. The initial visibility polygon
can be obtained using the existing static algorithms, re-
quiring O(nlogn) and O(n*) time for strong and weak
visibility respectively.

Event handling time: For type A events, detecting
whether the event is internal can be done in O(logn)
time using the preprocessing structures. Computing
new events and inserting them in the event queue can
also be performed in total time of O(logn). Handling a

split event includes inserting new type B events in their
edge’s binary tree of type B vertices. Updating the
visibility polygon and calculating and updating merge
events can be done in constant time. Excluding the
O(logn) time needed for inserting events in the queue,
merge events can be handled in O(1) time as the nec-
essary processing consists of updating visibility polygon
and calculating possible split event of the new type C
vertex.

Query time: Query processing requires no processing
other than calculating the exact coordinates based on
the combinatorial structure, in time linear to the output
size.

5 Conclusion

We presented an algorithm for maintaining the visibility
polygon of a line segment observer moving in a polygon
with holes. Time and space requirements for preprocess-
ing are both O(n?), which is a good result compared
to worst-case optimal O(n?) time and space require-
ments of computing initial weak visibility polygon in
the same environment. Efficient logarithmic time event
handling and linear output sensitive query time have
been achieved.
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