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Abstract

We consider two classes of higher order proximity graphs
defined on a set of points in the plane, namely, the
k-Delaunay graph and the k-Gabriel graph. We give
bounds on the following combinatorial and geometric
properties of these graphs: spanning ratio, diameter,
chromatic number, and minimum number of layers nec-
essary to partition the edges of the graphs so that no
two edges of the same layer cross.

1 Introduction and basic notation

Let S be a set of n points in the plane in general posi-
tion (no three are collinear and no four are concyclic).
A proximity graph on S is a geometric graph where two
points are adjacent if they satisfy some specific proxim-
ity criterion. Proximity graphs have been widely studied
due to their theoretical interest and to their applications
in situations where it is necessary to extract the “shape”
of a set of points (see [10] for a survey).

Adjacency in many proximity graphs is defined in
terms of an empty region associated to any pair of
points. To provide more flexibility the definition of the
graphs can be relaxed to allow up to k points to lie in
the neighborhood region. This gives rise to higher order
proximity graphs. In this paper we deal with two such
graphs.

We consider the k-Delaunay graph of S (denoted
k-DG(S)), where a straight-line segment connects points
pi, pj ∈ S if there exists a circle C(pi, pj) through pi and
pj with at most k points of S in its interior. The stan-
dard Delaunay triangulation corresponds to 0-DG(S)
and will be denoted by DT(S).

We also study the k-Gabriel graph of S (denoted by
k-GG(S)), where a straight-line segment connects points
pi, pj ∈ S if the closed disk centered at the midpoint of
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the segment pipj with both pi and pj on its boundary
contains at most k points from S different from pi, pj .
The standard Gabriel graph corresponds to 0-GG(S)
and will be denoted by GG(S).

The combinatorial and geometric properties of these
graphs have been widely studied for the case k = 0
(see [10]). However, not so much is known for higher
values of k. Some results are given in [1, 16], but the
topic has still not been explored in full depth; a system-
atic study is being developed in [15].

The first property considered in this paper is the
spanning ratio, a parameter capturing to what extent
traveling along a graph is much longer than traveling
along the plane (the formal definition is given below).
For k = 0, the spanning ratio of several proximity
graphs has been studied in the literature [5, 6, 9, 11],
and determining the exact value of the spanning ratio of
the Delaunay triangulation remains a challenging open
problem. Our main goal here is to study the relationship
between k and the spanning ratio.

We also study the diameter of k-DG(S) and k-GG(S),
which can be seen as a combinatorial counterpart to the
spanning ratio.

Finally, we give bounds on the minimum number of
layers necessary to partition the edges of k-DG(S) or
k-GG(S) so that no two edges of the same layer cross.
From a theoretical point of view, this is related to a
more general problem that remains unsolved (see, for
example, [4, 12]): for every geometric graph G with at
most λ pairwise crossing edges, can the edges of G can
be colored with f(λ) colors such that crossing edges
receive distinct colors? In our particular case, the an-
swer is affirmative, as it can be shown that the graphs
k-GG(S) and k-DG(S) contain at most 2k + 1 pairwise
crossing edges. In Section 6 we give a quadratic upper
bound on the number of colors required.

From a more practical point of view, DT(S) and
GG(S) satisfy some properties that make them interest-
ing in the context of routing in wireless networks [7, 13].
Finding ways to extract plane layers from k-DG(S) or
k-GG(S) may have applications in this setting.

For all k ≥ 0, the following relations hold:
(i) k-DG(S) ⊆ (k + 1)-DG(S), (ii) k-GG(S) ⊆
(k + 1)-GG(S), (iii) k-GG(S) ⊆ k-DG(S).
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2 Spanning ratio

Let G be a geometric graph on S and P = {p1p2 · · · pl}
be a path in G. We define the geometric length of P as∑l−1
i=1 |pipi+1|, where |pipj | is the Euclidean distance be-

tween pi and pj . The geometric distance between points
pi, pj ∈ S, denoted by dg(pi, pj), is the minimum over
the geometric length of all paths in G connecting pi and
pj . The spanning ratio of G is defined as

SR(G) = max
pi 6=pj∈S

dg(pi, pj)
|pipj |

.

The number of edges of k-Delaunay graphs grows
with k. Consequently, it would be reasonable to believe
that the spanning ratio of these graphs decreases as k
increases. Surprisingly, the next theorem shows that in
the worst case the spanning ratio of k-DG is not smaller
than the spanning ratio of the Delaunay triangulation.

Theorem 1 For any set S of n points in the plane, any
constant value of k, and any ε > 0, there exists a set of
points S′ such that SR(k-DG(S′)) ≥ SR(DT(S))− ε.

Proof. Consider the Delaunay triangulation of S.
Since S is in general position, the combinatorial struc-
ture of the graph does not change when moving each
point in S at most ε′, for sufficiently small values of
ε′ > 0. The supremum of the values of ε′ satisfying this
property is called the tolerance of DT(S) and is denoted
by tol (DT(S)) [2].

Let us suppose that

SR(DT(S)) =
dg(pi, pj)
|pipj |

.

Given ε > 0, for each pl ∈ S, define pl,0 = pl and place
k new points pl,1, pl,2, . . . , pl,k at distance from pl,0 less
than min{tol (DT(S)), |pipj |ε

2n }. Let S′ be the resulting
set of points. By construction, if pl and pm are not
adjacent in DT(S), then pl,ν and pm,ι are not adjacent
in k-DG(S′) for any ν, ι ∈ {0, 1, . . . , k}. Therefore, in
k-DG(S′),

dg(pi,0, pj,0)
|pi,0pj,0|

≥ SR(DT(S))− ε.

�

For k-Gabriel graphs we provide the following
bounds:

Theorem 2 For any set S of n points in the plane and
k ≤ n − 2, the spanning ratio of k-GG(S) is O(

√
n).

There exist sets of n points in the plane whose k-Gabriel
graphs have spanning ratio Θ(

√
n
k ).

Proof. The first part follows from a result in [5] stating
that the spanning ratio of the 0-Gabriel graph of any n-
point set is at most 4π

3

√
2n− 4.

As for the second part, consider the Gabriel graph
tower construction in [5] with d n

k+1e points, which has
spanning ratio Θ(

√
n
k ). For sufficiently small values of

ε′ > 0, each point can be moved at most ε′ with-
out changing the combinatorial structure of the graph.
Now, proceeding as in the proof of Theorem 1, we ob-
tain a point set whose k-Gabriel graph has spanning
ratio Θ(

√
n
k ). �

3 Diameter

We define the combinatorial length of a path P on a ge-
ometric graph G as the number of its edges. The combi-
natorial distance between points pi, pj ∈ S, denoted by
dc(pi, pj), is the minimum over the combinatorial length
of all paths in G connecting pi and pj . The diameter of
G, denoted by D(G), is defined as the maximum over
the combinatorial distance of all pairs of points in S.

Theorem 3 Let S be a set of n points in the plane and
k ≤ dn/2e−1. Let i be the integer such that dn/2i+1e−
1 ≤ k < dn/2ie − 1. Then D(k-DG(S)) ≤ 2i. There
exist sets of n points in the plane whose k-Delaunay
graphs have diameter b dn/(k+1)e

2 c.

Proof. It suffices to prove the upper bound for values
of k of the form k = dn/2i+1e − 1. We use induction
on i.

For i = 0, we want to prove that (dn2 e − 1)-DG(S)
has diameter 1, i.e., is the complete graph. Let pj and
pl be two points in S. The line passing through pj and
pl divides the plane into two open half-planes, one of
which contains at most dn/2e − 1 points in S. It is easy
to see that there exists a circle through pj and pl that
does not contain any point in S lying on the opposite
half-plane. This circle contains no more than dn/2e − 1
points of S in its interior, hence pj and pl are adjacent
in (dn2 e − 1)-DG(S).

Now assume that the result holds for some fixed i.
Then (d n

2i+1 e − 1)-DG(S) contains a path connecting
pj and pl with combinatorial length at most 2i. Let
(pa, pb) be an edge of such path. Since (pa, pb) be-
longs to (d n

2i+1 e − 1)-DG(S), there exists a circle C
through pa and pb whose interior contains no more
than dn/2i+1e − 1 points of S. If C contains at most
dn/2i+2e−1 points of S in its interior, then (pa, pb) is an
edge of (d n

2i+2 e − 1)-DG(S). Otherwise, for each pm in
the interior of C and ν ∈ {a, b}, define Cν,m as the circle
tangent to C at point pν containing pm on its boundary.
Either there exists a point pm in the interior of C such
that Ca,m contains dn/2i+2e − 1 points of S in its inte-
rior, or there exist two points pm, pm′ in the interior of
C such that Ca,m = Ca,m′ contain dn/2i+2e − 2 points
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of S in their interior. Here we deal with the first case;
the second case is analogous. Let C1 = Ca,m, where
pm is such that Ca,m contains dn/2i+2e − 1 points of S
in its interior. Let C2 = Cb,m. See Figure 1. If pm is
the only point of S in the intersection of C1 and C2,
then C2 contains at most dn/2i+2e − 1 points of S in
its interior and both edges (pa, pm), (pm, pb) belong to
(d n

2i+2 e − 1)-DG(S). Otherwise let pm′′ be a point in the
intersection of C1 and C2 such that the radius of Cb,m′′

is minimum. Then the only points of S in the intersec-
tion of C1 and Cb,m′′ are pm′′ and possibly another point
in the boundary of Cb,m′′ . Thus (pa, pm′′) and (pm′′ , pb)
are edges in (d n

2i+2 e − 1)-DG(S).
In conclusion, each edge of the path in

(d n
2i+1 e − 1)-DG(S) connecting pj and pl can be

replaced by at most two edges in (d n
2i+2 e − 1)-DG(S).

Therefore, in the last graph, there exists a path from pj
to pl of combinatorial length less than or equal to 2i+1.

pa

pb

pm

C

C1

C2

Figure 1: Points pa, pb, and pm, and circles C,C1, and
C2 in the proof of Theorem 3.

The lower bound is attained by any set of d n
k+1e

points such that its Delaunay triangulation is a sequen-
tial triangulation. As in Theorem 1, each point (except
possibly one) can be replaced by k + 1 points so that
any two points are adjacent if and only if they belong to
the same cluster or their original points were adjacent.
The k-Delaunay graph of this point set has diameter
b dn/(k+1)e

2 c. �

In general, the k-Gabriel graph has fewer edges than
the k-Delaunay graph, so its diameter is usually greater:

Theorem 4 For any set S of n points in the plane and
k ≤ n − 2, D(k-GG(S)) ≤ d3n/ke. There exist sets
of n points in the plane whose k-Gabriel graphs have
diameter dn−1

k+1 e.

Proof. The upper bound follows from a general result
on the diameter of a graph with given minimum degree
(see [14]) together with the fact that the vertices of any
k-Gabriel graph have degree at least k. As for the lower
bound, let S = {p1, . . . , pn} be a set of n points sorted
by x coordinate in an infinitesimally perturbed horizon-
tal line. Then k-GG(S) contains the edge (pi, pj) if and
only if |i− j| ≤ k + 1. Thus dc(p1, pn) = dn−1

k+1 e. �

4 Chromatic number

A j-coloring of a graph G = (V,E) is a mapping f :
V → {1, 2, . . . , j} such that f(v) 6= f(w) for every edge
(v, w) of G. The chromatic number of G, denoted by
χ(G), is the minimum j such that G is j-colorable.

Since the main result in Section 6 is given in terms of
the chromatic number of k-DG(S), we provide an upper
bound on this parameter:

Theorem 5 For any set S of n points in the plane and
k ≤ dn/2e − 1, χ(k-GG(S)) ≤ χ(k-DG(S)) ≤ 6(k + 1).

Proof. The number of edges of k-DG(S) does not ex-
ceed 3(k + 1)n− 3(k + 1)(k + 2) [1]. Consequently, the
graph contains a vertex of degree at most 6k+5.Observe
that, if (pi, pj) is an edge of k-DG(S), this edge is also
present in k-DG(S r {pl}) for any pl ∈ S (pl 6= pi, pj).
Thus, if k-DG(S)rS′ is an induced subgraph of k-DG(S)
on n′ vertices, then it is a subgraph of k-DG(SrS′) and
it has no more than 3(k + 1)n′ − 3(k + 1)(k + 2) edges.
Hence we can color k-DG(S) with 6k+6 colors applying
the minimum degree greedy algorithm [8]. �

Next we describe a point set for which these graphs
have high chromatic number:

Proposition 6 For any n ≥ 3 and k ≤ n−3
2 , there

exists a set S of n points in the plane whose k-Gabriel
and k-Delaunay graphs have chromatic number at least
2k + 3.

Proof. Let S = {p1, p2, . . . , p2k+3} denote the set of
vertices of a slightly perturbed regular (2k + 3)-gon.
These points form a (2k+ 3)-clique in k-GG(S). There-
fore the chromatic number of the graph is at least 2k+3.
If n > 2k + 3, it suffices to add to S additional points
far from p1, . . . , p2k+3, so that the adjacencies are pre-
served. �

5 Constrained geometric thickness of 1-DG(S) and
1-GG(S)

Suppose that we want to partition the edges of a ge-
ometric graph G into layers in such a way that no
two edges of the same layer cross. We define the con-
strained geometric thickness of G, denoted by θc(G), as
the smallest number of necessary layers. Observe that,
in contrast to the notion of geometric thickness of a
combinatorial graph, when it comes to the constrained
geometric thickness the embedding of the graph is fixed.
In this section we give bounds on the constrained geo-
metric thickness of 1-DG(S) and 1-GG(S).

Let us first introduce some definitions and recall some
properties of 1-DG(S).

Edges of DT(S) are said to have order 0. The edges
of order k ≥ 1 are those belonging to k-DG(S), but not
to (k − 1)-DG(S).
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Let (pi, pj) be an edge of order 1. Then (pi, pj) is an
edge in DT(Srpl) for a certain pl ∈ S. We will say that
(pi, pj) is generated by pl. Observe that: (i) (pi, pj) is
generated by pl if and only if there exists a circle through
pi and pj whose interior contains pl and no other point
in S; (ii) every edge of order 1 is generated by at most
one point on each side of the line determined by the
edge; (iii) if (pi, pj) is generated by pl, then (pl, pi) and
(pl, pj) are edges in DT(S). (See [1].)

Lemma 7 [3] Let (pi, pj), (pl, pm) be two crossing
edges in 1-DG(S). If both edges have order 1, then one
of them can only be generated by the endpoints of the
other. If (pl, pm) has order 0 and (pi, pj) has order 1,
then (pi, pj) can only be generated by pl and pm.

We now prove the main result of this section:

Theorem 8 For any set S of n points in the plane,
2 ≤ θc(1-DG(S)) ≤ χ(DT(S)) ≤ 4.

Proof. The graph DT(S) is maximal planar, hence
each edge of order 1 crosses at least one edge in DT(S).
Since the number of edges of order 1 is strictly greater
than zero [1], at least two layers are needed.

We now prove the upper bound. Let f be a χ(DT(S))-
coloring of the vertices of DT(S). We define a χ(DT(S))-
coloring of the edges of 1-DG(S) as follows. Let (pi, pj)
be an edge of 1-DG(S). If (pi, pj) has order 1 and is
generated by pl, we assign it the color f(pl) (if (pi, pj)
is generated by two points, we arbitrarily assign one of
the two colors). If (pi, pj) belongs to DT(S), we assign
it an arbitrary color different from f(pi) and f(pj).

Next we prove that each color class is plane.
Suppose that (pi, pj) and (pl, pm) are two crossing

edges of order 1. By Lemma 7, one of them can only be
generated by the endpoints of the other. Let us assume
that this is the case of edge (pi, pj). Then (pi, pj) has
color f(pl) or f(pm). Since the points generating (pl, pm)
are connected to both pl and pm in DT(S), their color is
different from f(pl) and f(pm). Consequently, (pl, pm)
is assigned a color different from f(pl) and f(pm).

Suppose that (pi, pj) and (pl, pm) are two crossing
edges, where (pi, pj) has order 1 and (pl, pm) has order 0.
The color of (pl, pm) is different from f(pl) and f(pm).
By Lemma 7, (pi, pj) can only be generated by pl and
pm. Hence its color is f(pl) or f(pm). �

Corollary 9 For any set S of n points in the plane,
θc(1-GG(S)) ≤ χ(DT(S)).

We now give a worst-case lower bound on the con-
strained geometric thickness of 1-DG(S) and 1-GG(S):

Proposition 10 For any n ≥ 6, there exists a set
S of n points in the plane such that θc(1-DG(S)) ≥
θc(1-GG(S)) ≥ 3.

Proof. Figure 2 shows a set of 6 points whose 1-Gabriel
graph contains three pairwise intersecting edges. Thus
its constrained geometric thickness is at least three. For
larger values of n it suffices to add n− 6 points outside
the disks. �

Figure 2: Example of a set of 6 points whose 1-Gabriel
graph has constrained geometric thickness at least 3.

6 Constrained geometric thickness of k-DG(S) and
k-GG(S)

The arguments in the preceding section are generalized
in Theorem 11. First we make some observations on the
structure of k-DG(S).

Let (pi, pj) be an edge of order k. Then (pi, pj) is an
edge in DT(Sr{p1

l , p
2
l , . . . , p

k
l }) for some {p1

l , . . . , p
k
l } ∈

S. We will say that (pi, pj) is generated by {p1
l , . . . , p

k
l }.

It holds that: (i) (pi, pj) is generated by {p1
l , . . . , p

k
l } if

and only if there exists a circle through pi and pj whose
interior contains p1

l , . . . , p
k
l and no other point in S; (ii)

if (pi, pj) is generated by {p1
l , . . . , p

k
l }, then (pνl , pi) and

(pνl , pj) are edges in (k − 1)-DG(S) for all ν ∈ {1, . . . , k}.

Theorem 11 For any set S of n points in the plane
and k ≤ dn/2e − 1, θc(k-DG(S)) ≤ χ2((k − 1)-DG(S))

2 .

Proof. We define a χ2((k − 1)-DG(S))
2 -coloring of the

edges of k-DG(S) such that within each color class no
two edges cross.

Consider a χ((k − 1)-DG(S))-vertex coloring f of
(k − 1)-DG(S). If (pi, pj) is an edge of k-DG(S), the
color assigned to (pi, pj) is the tuple {f(pi), f(pj)}.

Let us prove that no two edges of the same color cross.
Suppose that (pi, pj) and (pl, pm) are two crossing edges
in k-DG(S), where (pi, pj) has order s and (pl, pm) has
order t, with 0 ≤ s, t ≤ k. Without loss of generality,
let us assume that s ≥ 1 and that the circle C(pi, pj)
contains pl in its interior. Then pl is connected to pi
and pj in the graph (s− 1)-DG(S) ⊆ (k − 1)-DG(S).
Therefore f(pl) 6= f(pi), f(pj). �

Corollary 12 For any set S of n points in the plane
and k ≤ dn/2e−1, θc(k-GG(S)) ≤ θc(k-DG(S)) ≤ 18k2.
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Unfortunately, in this case our worst-case upper and
lower bounds do not have the same order of magnitude:

Proposition 13 For any n ≥ 3 and k ≤ n−3
2 , there

exists a set S of n points in the plane whose k-Gabriel
and k-Delaunay graphs have thickness at least k + 1.

Proof. Consider the point set in the proof of Proposi-
tion 6, with the points labelled in clockwise order. The
edges (p1, pk+2), (p2, pk+3), . . . , (pk+1, p2k+2) belong to
the k-Gabriel graph and are pairwise crossing. There-
fore the thickness of the graph is at least k + 1. �

7 Final remarks

We have studied several properties of two fundamental
higher order proximity graphs.

As for open problems, a natural one is to close
the gaps between the lower and upper bounds on
the spanning ratio of k-Gabriel graphs and on the
constrained geometric thickness of k-Gabriel and k-
Delaunay graphs. In both cases we are inclined to think
that the lower bounds are closer to the true values.
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