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Abstract

Let µ be a function that assigns a real number µ(P ) ≥ 0
to any point set P in Rd; for example, µ(P ) can be
the diameter or radius of the smallest enclosing ball of
P . Let S be a set of n points in Rd. We consider the
problem of storing S in a data structure, such that for
any query rectangle Q, we can efficiently compute an
approximation to the value µ(S ∩Q). Our solutions are
obtained by combining range-searching techniques with
coresets.

1 Introduction

Let S be a set of n points in Rd. In the orthogonal
range searching problem, we have to construct a data
structure such that the following type of queries can be
answered: Given a query rectangle Q =

∏d
i=1[ai, bi],

report or count the points of S ∩Q, i.e., all points of S
that are in the query range Q. This problem has a rich
history in computational geometry; see, e.g., the survey
by Agarwal and Erickson [2]. In this paper, we consider
range-aggregate queries, in which we want to compute
some function of the point set S ∩Q; examples are the
diameter, width, and radius of the smallest enclosing
ball.

To be more precise, let µ be a function that assigns
to any finite set P of points in Rd a non-negative real
number µ(P ). We want to construct a data structure
for the set S, such that, for any query range Q, we can
efficiently compute the value µ(S ∩Q).

Gupta et al. [6] considered this problem for the pla-
nar case (i.e., d = 2) and the cases when µ(P ) is the
closest-pair distance in P , the diameter of P , and the
width of P . They presented a data structure of size
O(n log5 n), such that the closest-pair in a query rect-
angle Q can be computed in O(log2 n) time. (The pre-
processing time, however, is Ω(n2). Abam et al. [1]
gave an algorithm that constructs this data structure
in O(n log5 n) time.) For the cases when µ is the diam-
eter or width, no data structure is known having size
O(n · polylog(n)) and O(polylog(n)) query time. There-
fore, Gupta et al. considered approximation algorithms.
They presented a data structure of size O(n log n) that
allows a (1− ε)-approximation to the diameter of S ∩Q
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to be computed in O(log2 n) time. They also presented
a data structure of size O(n log2 n) that allows to com-
pute a (1 + ε)-approximation to the width of S ∩ Q in
O(log3 n) time.

In this paper, we consider approximate range-
aggregate queries in a more general framework. The
main result is that for any function µ that can be ap-
proximated using a decomposable coreset (to be de-
fined below), we can construct a data structure of size
O(n · polylog(n)) that allows to approximate µ(S ∩ Q)
in O(polylog(n)) time.

The notion of a coreset was introduced by Agarwal et
al. [3]:

Definition 1 Let S be a finite set of points in Rd and
let ε > 0 be a real number. A subset S′ of S is called an
ε-coreset of S (with respect to µ) if µ(S′) ≥ (1−ε)·µ(S)

Let C be a function that assigns to any finite set S of
points in Rd and any real number ε > 0, an ε-coreset
C(S, ε) of S.

Let f(n, ε) be the smallest integer such that for any
set S of n points in Rd and any real number ε > 0,
the coreset C(S, ε) has size at most f(n, ε). Since the
maximum size of all coresets that we are aware of only
depends on ε (and not on n), we will write f(ε) instead
of f(n, ε).

Definition 2 The function C is called a decomposable
coreset function, if the following holds for any finite set
S of points in Rd, any ε > 0, and any partition of S
into two sets U and V : Given only the coresets C(U, ε)
and C(V, ε) of U and V , respectively, we can compute
the ε-coreset C(S, ε) of S in O(f(ε)) time.

Thus, the algorithm that computes C(S, ε) only has “ac-
cess” to C(U, ε) and C(V, ε); it does not have access to
the entire point sets U and V .

Throughout the rest of this paper, we assume that C
is a decomposable coreset function.

Let S be a set of n points in Rd and let ε > 0 be a
real number. We consider the problem of storing the
points of S in a data structure such that, for any query
rectangle Q, we can efficiently compute the coreset C(S∩
Q, ε).

Using a d-dimensional range tree, in which each node
stores an ε-coreset of all points in its subtree, we can
compute, given a query rectangle Q, O(logd n) canonical
nodes whose subtrees partition S ∩Q. By Definition 2,
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we can then use the coresets stored at these nodes to ob-
tain the coreset C(S∩Q, ε). This data structure has size
O(f(ε)n logd−1 n) and a query time of O(f(ε) logd n).
In the rest of this paper, we will present improved solu-
tions.

We start in Section 2 by considering the planar case,
i.e., d = 2. In Section 3, we extend the solution to any
constant dimension d ≥ 2. In Section 4, we consider the
dynamic problem, in which points can be inserted to
and deleted from the point set S. Finally, in Section 5,
we present some applications for specific functions µ.

2 Coreset Range Queries in R2

Let S be a set of n points in the plane. We want
to store the points of S in a data structure such that
the following type of queries can be answered: Given a
query rectangle Q = [a, b]× [c, d], compute the ε-coreset
C(S ∩Q, ε).

We start by giving a solution for the case when Q is a
vertical strip. Then we extend this solution to the case
when Q is a three-sided rectangle. Finally, we consider
the general case.

2.1 Vertical Strips

Given two real numbers a and b with a < b, we want
to compute the coreset C(S ∩ Q, ε), where Q is the set
of all points in the plane whose x-coordinates are in the
interval [a, b].

We construct a one-dimensional range tree T on the
x-coordinates of the points in S. Let Sx denote the set
that contains the x-coordinates of all points in S. The
leaves of T store the elements of Sx. The range of a
node v is the interval rng(v) = [`v, rv], where `v and rv

denote the smallest and largest values stored in the leaf
descendants of v. We denote by Sv the set of all points
whose x-coordinates belong to rng(v). At each node v
of T , we store the coreset C(Sv, ε).

Consider a vertical query slab Q with x-interval [a, b].
We can find, in O(log n) time, O(log n) canonical nodes
v1, . . . , vm, such that S ∩ Q =

⋃m
i=1 Svi

. Thus, using
Definition 2, we can use the coresets C(Svi , ε) to com-
pute C(S ∩Q, ε) in O(f(ε) log n) time.

The space usage of the data structure is O(f(ε)n).
We can reduce this to O(n) by storing x-coordinates of
f(ε) points in every leaf of the tree T . We store coresets
C(Sv, ε) only at the internal nodes v. Since the number
of internal nodes is O(n/f(ε)), all coresets can be stored
in O(n) space.

Consider again the vertical query slab Q. Suppose
that the successor of a in Sx and the predecessor of b in
Sx are stored in the leaves `(a) and `(b), respectively.
Let S′

`(a) be the set of all points in `(a) that are con-
tained in Q, and let S′

`(b) be the set of all points in `(b)

that are contained in Q. Then we can compute O(log n)
canonical internal nodes v1, . . . , vm, such that

S ∩Q = S′
`(a) ∪ S′

`(b) ∪

(
m⋃

i=1

Svi

)
.

Observe that S′
`(a) and S′

`(b) are coresets of themselves
and both have size at most f(ε). Therefore, we can
again use Definition 2 to compute the coreset C(S∩Q, ε)
in O(f(ε) log n) time.

2.2 Three-Sided and General Rectangles

We now consider the case when the query region Q is
the set of all points in R2 whose x-coordinates are in
the interval [a, b] and whose y-coordinates are at most
c, i.e., Q = [a, b]× (−∞, c].

Essentially, our data structure is based on a combina-
tion of the sweepline technique and a persistent variant
of the data structure of Section 2.1. We can navigate in
the tree and obtain the appropriate version of the core-
set stored in a node of the range tree using the fractional
cascading technique [4]. Details of the construction are
given below.

We sort the points of S in increasing order of their y-
coordinates. Let the sorted sequence be p1, p2, . . . , pn.
A hypothetical horizontal sweepline h is moved in the
positive y-direction. Initially, the y-coordinate of h is set
to −∞. At any moment, all points of S that are below
h are stored in the the tree T of Section 2.1. Thus, T is
initially empty and new points are inserted into T as h
is moved upwards.

Each node v of T contains the following information:
(1) an array v.children that is used to navigate from the
node v to its children, (2) sets Y (v) and Y1(v), where
Y (v) contains the y-coordinates of h for all times when
a new point is inserted into Sv, and Y1(v) contains the
y-coordinates of h for all times when the set of children
of v is updated, and (3) arrays v.max and v.min that
contain the maximal and minimal values stored in the
leaf descendants of v. Every entry in v.children corre-
sponds to an element of Y1(v) and every entry of v.min
(v.max) corresponds to an element of Y (v).

When the sweepline h is moved above a point pi, we
insert pi into the corresponding leaf ` of T . We update
the coresets for all ancestor nodes u of `. That is, we add
pi to the set Su and construct the coreset C(Su∪{pi}, ε).
We associate each coreset C stored in a node u with the
y-coordinate of the point pi. We also add pi.y to the
set Y (u) and insert a new entry into the arrays u. max
and u. min. Observe that we insert a new entry into
u. max and u. min even if pi does not have the largest
(smallest) x-coordinate among all point in Su.

When the number of points in a leaf ` equals 4, we
replace ` with two new leaves `1 and `2. We add a new
entry to the array v.children for the parent v of `. The
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new entry v.children[i] contains pointers to `1 and `2 in-
stead of a pointer to `; v.children[i] also contains point-
ers to all other children of v. We associate v.children[i]
with the current y-coordinate of the sweepline h. We
also add the current y-coordinate of the sweepline h to
the set Y1(v).

Let v be an internal node and let i be its height. When
the total number of points that belong to the range of v
exceeds 2i+1, we replace v with two new nodes v1 and v2.
The array w.children for the parent w of v is updated
in the same way as for the parent of a leaf node.

Consider a query range Q = [a, b]× (−∞, c]. Let `(a)
and `(b) denote the leaves that contain the successor of a
and the predecessor of b at the time when the sweepline
passed c. First, we identify all relevant nodes on the
path from the root to `(a) and `(b). We start at the root;
in every visited node v, we identify the predecessor c(v)
of c in Y1(v) using fractional cascading [4]. Then, we use
the corresponding entry in the array v.children to find
the leftmost child of v that contains an element that is
larger than a (resp. the rightmost child that contains an
element smaller than b). We can identify the relevant
child of v in O(1) time because each node has O(1)
children at any time.

When the leaves `(a) and `(b) and all nodes on the
paths from the root to `(a) and from the root to `(b)
are found, we can identify the lowest common ancestor
q of `(a) and `(b). Let π be the set of all nodes that lie
on the path from `(a) to q or on the path from `(b) to
q when the sweepline h passes c.

We can find nodes vi such that S ∩ Q =
⋃

i Svi and
each vi is the child of some node in π. We can find
the predecessors c(vi) of c in Y (vi) for all nodes vi in
O(log n) time using fractional cascading [4]. Consider
the coreset C(Svi

, ε) associated with the y-coordinate
c(vi). Then we obtain the coreset C(S ∩Q, ε) from the
coresets C(Svi , ε) for all vi ∈ π. Thus, we can construct
the coreset C(S ∩Q, ε) in O(f(ε) log n) time. The total
space usage of the data structure is O(f(ε)n log n).

If the x-coordinates of the points are integers, we
can reduce the query time to O(f(ε) log n/ log log n)
by slightly increasing the space usage. All points are
stored in a one-dimensional range tree with node de-
gree logδ/2 n, for any constant δ > 0. The data struc-
ture is constructed in the same way as above, but
for every node v we maintain coresets for the sets
Sui

∪ Sui+1 ∪ . . . ∪ Suj
for all 1 ≤ i ≤ j ≤ logδ/2 n. Ad-

ditionally, we store a data structure Nu for every node
u that enables us to navigate from u to an appropriate
child of u in constant time. The data structure Nu con-
tains the values of ui.min and ui.max for each child ui

of u and supports predecessor queries; a new version of
Du is created every time when a new point is inserted
into the range of u. We implement Du with q-heaps [5],
so that predecessor queries are supported in O(1) time.

Every inserted point leads to the construction of
O(log1+δ n) new coresets. Hence, the space usage of
the improved data structure is O(f(ε)n log1+δ n).

We can extend the result for three-sided rectangles to
the case of general rectangles using the technique that
was previously used for range reporting queries [4, 8];
this technique will be described in the full version.

We thus obtain two data structures that allow to
compute, for an arbitrary query rectangle Q, the
coreset C(S ∩ Q, ε). The first structure has size
O(f(ε)n log2 n) and query time O(f(ε) log n). The sec-
ond structure has size O(f(ε)n log2+δ n) and query time
O(f(ε) log n/ log log n), if all point coordinates are inte-
gers.

3 Coreset Range Queries in Rd

Consider a set S of n points in Rd, where d ≥ 3. We
will denote point coordinates by x, y, z1, . . . , zd−2. A
two-dimensional query Q2 = [a, b] × [c, d] × Rd−2 can
be answered in the same way as in Section 2.2. We can
answer three-dimensional queries Q3 = [a, b] × [c, d] ×
[e1, f1]× Rd−3 by constructing a constant-degree range
tree T3 on the coordinate z1. In every node v of T3, we
store a data structure Dv that answers two-dimensional
queries of the form Q2 = [a, b]×[c, d]×Rd−2 for all points
whose z1-coordinates belong to the range of v. Given
the interval [e1, f1], we can compute O(log n) canonical
nodes v1, . . . , vm in T3 such that {p ∈ S : e1 ≤ p1 ≤ f1}
is equal to

⋃m
i=1 Svi . Hence, we can compute the coreset

for S ∩ Q3, by first computing, for all 1 ≤ i ≤ m, the
coresets for Svi ∩Q2 using the data structure Dvi , and
then combining them using Definition 2. This can be
done in O(f(ε) log2 n) time. The total space used by all
data structures of T3 is O(f(ε)n log3 n).

Alternatively, we can use the range tree T3 with node
degree logδ′

n for δ′ = δ/3. We can assume w.l.o.g. that
all point coordinates are integers by applying a standard
reduction to rank space. For any 1 ≤ i ≤ j ≤ logδ′

n
and each node u, we store the data structure Dfg

u

that contains all points whose z-coordinates belong to
rng(uf ) ∪ . . . ∪ rng(ug) and answers two-dimensional
queries in O(f(ε)(log n/ log log n)) time. Given the in-
terval [e1, f1], we can compute O(log n/ log log n) canon-
ical nodes v1, . . . , vm in T3 such that {p ∈ S : e1 ≤ p1 ≤
f1} is equal to

⋃m
i=1

⋃gi

j=fi
Svij , where vij denotes the

j-th child of node vi. We can find the coreset for each
set Svij ∩ Q2 using the data structure Dfigi

vi
, and then

combine them using Definition 2. This can be done in
O(f(ε)(log n/ log log n)2) time. As shown in Section 2.2,
each Dij

u needs O(mf(ε) log2+δ′
m) space, where m is

the number of points in Dij
u . Since every point is stored

in O(log1+2δ′
n) data structures, the total space usage

increases to O(nf(ε) log3+δ n).
By repeating the construction described above d − 2
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times, we obtain the following result:

Theorem 1 Let S be a set of n points in Rd, d ≥ 3,
and let ε > 0 be a real number.

1. There exists a data structure of size O(f(ε)n logd n)
such that, for any query rectangle Q, the coreset
C(S ∩ Q, ε) can be computed in O(f(ε) logd−1 n)
time.

2. For any δ > 0, there exists a data structure of size
O(f(ε)n logd+δ n) such that, for any query rectan-
gle Q, the coreset C(S ∩ Q, ε) can be computed in
O(f(ε)(log n/ log log n)d−1) time.

4 Dynamic Data Structures

We can support one-dimensional queries Q1 = [a, b] ×
R× . . .×R by constructing a dynamic range tree T on
the first coordinates of the points. Each leaf contains
Θ(f(ε) log n) points and every internal node has O(1)
children. For every node v of T , we maintain the coreset
for all points in the range of v. When a new point p is
inserted (deleted), we traverse the path from the leaf
that contains p to the root of T and re-build the coreset
in each node. We can re-build the coreset for a leaf in
O(f(ε) log n) time; by Definition 2, we can construct
the coreset for an internal node from the coresets of its
children in O(f(ε)) time. The tree can be re-balanced
using standard techniques. A coreset for an arbitrary
interval [a, b] can be constructed as shown in Section 2.1.
We can extend this result to d-dimensional queries using
the same techniques as described above. Thus we obtain
the following theorem:

Theorem 2 Let S be a set of n points in Rd, d ≥ 2,
and let ε > 0 be a real number.

1. There exists a data structure of size O(n logd−1 n)
such that, for any query rectangle Q, the coreset
C(S∩Q, ε) can be computed in O(f(ε) logd n) time.
Updates are supported in O(f(ε) logd n) time.

2. For any δ > 0, there exists a data structure of size
O(n logd−1+δ n) such that, for any query rectan-
gle Q, the coreset C(S ∩ Q, ε) can be computed in
O(f(ε)(log n/ log log n)d) time. Updates are sup-
ported in O(f(ε) logd+δ n) time.

5 Applications

Let S be a set of n points in Rd and let ε > 0 be a real
number. To approximate µ(S ∩Q) for any given query
rectangle Q, we first use the results from the previous
sections to compute the coreset S′ = C(S ∩Q, ε). Then
we use a brute-force or more sophisticated algorithm to
compute µ(S′). By Definition 1, this gives a (1 − ε)-
approximation to µ(S ∩Q). Observe that S′ has size at

most f(ε). As a result, the time to compute µ(S′) does
not depend on n.

Thus, in order to apply our results, we need a decom-
posable coreset function C for the measure µ. Consider a
collection D of O(1/εd−1) directions in Rd such that any
two of them make an angle of O(ε). Let C(S, ε) be the
subset of S that contains, for each direction in D, the
extreme point of S in this direction. Then C(S, ε) is a
decomposable coreset function of size f(ε) = O(1/εd−1)
for measures µ such as the diameter and radius of the
smallest enclosing ball. (See Janardan [7] for the case
when µ is the diameter.)

We can also define a coreset C to be decomposable
if the following condition is satisfied: For any sets S1

and S2 with ε-coresets C(S1, ε) and C(S2, ε), C(S1, ε) ∪
C(S2, ε) is an ε-coreset for S1∪S2. We can obtain results
that are very similar to Theorems 1 and 2. The only
major difference is that the coreset for the points inside
a query rectangle Q is of poly-logarithmic size.
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