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Approximating the Independent Domatic Partition Problem in Random

Geometric Graphs – An Experimental Study
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Abstract

We investigate experimentally the Domatic Partition
(DP) problem, the Independent Domatic Partition
(IDP) problem and the Idomatic partition problem in
Random Geometric Graphs (RGGs). In particular,
we model these problems as Integer Linear Programs
(ILPs), solve them optimally, and show on a large set
of samples that RGGs are independent domatically full
most likely (over 93% of the cases) and domatically full
almost certainly (100% of the cases). We empirically
confirm using two methods that RGGs are not idomatic
on any of the samples. We compare the results of the
ILP-based exact algorithms with those of known color-
ing algorithms both centralized and distributed. Color-
ing algorithms achieve a competitive performance ratio
in solving the IDP problem [12, 11]. Our results on the
high likelihood of the “independent domatic fullness”
of RGGs lead us to believe that coloring algorithms can
be specifically enhanced to achieve a better performance
ratio on the IDP size than [12, 11]. We also investigate
experimentally the extremal sizes of individual domi-
nating and independent sets of the partitions.

1 Introduction and Motivation

The domatic partition (DP) problem is a classical prob-
lem in graph theory whose goal is to partition a graph
G into disjoint dominating sets. The domatic num-
ber d(G) is the maximum number of dominating sets
in such a partition [4]. The concept has various appli-
cations such as the strategic placement of objects on
the nodes of a network (facility location) [18, 3] or the
identification of the maximum number of disjoint trans-
mitting groups in a network [7]. Recently, the DP prob-
lem found applications for efficient replica placement
in Peer-to-Peer systems and for cooperative caching be-
tween ISPs to improve video on-demand delivery strate-
gies [19, 1]. More relevant to our work is the application
to energy conservation and sleep scheduling in Wireless
Sensor Networks (WSN) [17, 16, 8, 10, 12, 11] which are
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often modeled in practice as Random Geometric graphs
(RGGs). A random geometric graph G(n, r) is defined
by n vertices uniform in the unit square with an edge be-
tween any two vertices of V within Euclidean distance
r of each other. An RGG simply induces a uniform
probability distribution on a Unit Disk Graph (UDG).
A variation of the DP problem is the Independent Do-
matic Partition (IDP) problem which seeks to partition
a graph G into disjoint independent dominating sets.
The independent domatic number dind(G) is the maxi-
mum size of such a partition.

For any graph G, dind(G) ≤ d(G) ≤ δ(G) + 1 where
δ(G) denotes the minimum degree in G. If d(G) =
δ(G) + 1 and/or dind(G) = δ(G) + 1, then G is called
domatically full and/or independent domatically full re-
spectively [4]. A graph whose vertices V can be strictly
partitioned into disjoint independent dominating sets is
termed indominable [2] or idomatic [4]. The idomatic
number id(G) is the partition’s maximum size.

The study described herein is motivated by the desire
to empirically verify the existence of the upper bound
of δ + 1 disjoint independent dominating sets in RGGs
(which model Wireless Sensor Networks). Namely, are
random geometric graphs independent domatically full
in practice?

A k − coloring of a graph G = (V,E) is a partition
Π = V1, V2, ..., Vk of the vertex set V (G) into indepen-
dent sets Vi, each of which is called a color class. A
vertex v ∈ Vi is called colorful if each color 1 ≤ i ≤ k
appears on the closed neighborhood of v. A k-coloring f
is called a fall k-coloring if every vertex in f is colorful.
Clearly, a strict partition of the vertex set V (G) into
k independent dominating sets (idomatic partition) is
equivalent to finding a fall k-coloring of G [9]. We note
that if V1, V2, ..., Vδ+1 are disjoint independent dominat-

ing sets of G, then the induced subgraph
⋃δ+1

i=1 Vi is a
maximal idomatic subgraph of G of the same minimum
degree.

Moreover, we experimentally study the “domination
chain” γ(G) ≤ i(G) ≤ β0(G) in RGGs. The “domina-
tion chain” is a relation between graph parameters that
is satisfied in any graph G [4], where γ(G) is the size of
the minimum dominating set (MDS) termed the domi-
nation number, i(G) is the size of the minimum indepen-
dent dominating set (MIDS) termed the independence
domination number and β0(G) is the size of the maxi-
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mum independent set (MaxIS) termed the independence
number. Finding these values are NP-complete prob-
lems in general graphs and Unit Disk Graphs [4, 13].

The decision version of the DP problem for k ≥ 3
is NP-complete in general graphs, circular arc graphs,
split graphs and bipartite graphs. It is in P for interval
graphs, proper circular arc graphs and strongly chordal
graphs [3, 7]. It is an open question whether the problem
is also NP-complete in Unit Disk Graphs, but it most
likely is [14]. The IDP and Idomatic partition (fall col-
oring) problems are NP-complete in general graphs and
k-regular and bipartite graphs as well [5, 9]. We know
of two constant factor approximation algorithms to the
domatic partition [17] and connected domatic partition
[16] problems in Unit Disk Graphs (UDG). In [12, 11]
we show competitive performance ratios by using graph
coloring algorithms to empirically approximate the DP
and IDP problems.

2 Our Contributions

In this paper, our main contributions are:
-We solve the IDP problem optimally and show that

over 93% of the RGG instances are independent domat-
ically full and 100% of the instances are domatically
full. The high likelihood of the existence of an opti-
mal partition of δ + 1 independent dominating sets in
typical RGGs suggests that coloring algorithms can be
fine-tuned to achieve a better performance ratio [12, 11].

-We confirm by Smallest Last (SL) coloring [15] for
a large sample of RGG instances that χ(G) ≥ ω(G) >
δ(G) + 1, hence these graphs cannot be idomatic [2].
In addition, we formulate the idomatic partition prob-
lem as an ILP and confirm through experiments that all
graphs of the sample are not idomatic.

-We experimentally study the node packing in the sets
of the IDP solution and also report on the domination
chain values and compare the results obtained by ILP
algorithms and coloring algorithms with the asymptotic
bounds based on “optimal” triangular lattice packing.

We believe this study answers relevant questions for
practitioners and also stimulates further research on the
approximability of the IDP problem in UDGs and RGGs
and on the asymptotic behavior of domination and do-
matic properties in RGGs.

3 Algorithms

IDP Formulation. Given a graph G = (V,E) and the
set K = {1, ..., δ +1}, we formulate the IDP problem as
the following Integer Linear Program (ILP):

maximize
δ+1∑

k=1

uk

s.t. xk
u+

∑

v:(u,v)∈E

xk
v ≥ uk ∀u ∈ V, k ∈ K (1)

xk
v + xk

u ≤ 1 ∀u, v ∈ V : (u, v) ∈ E, k ∈ K (2)
δ+1∑

k=1

xk
u ≤ 1 ∀u ∈ V (3)

uk ∈ {0, 1}, xk
u ∈ {0, 1} ∀u ∈ V, k ∈ K (4)

where uk=1 if dominating set Sk = {u|xk
u = 1}

is selected in the IDP and uk=0 otherwise. Constraint
(1) expresses domination, (2) independence, (3) node
disjointness, i.e. a node can be part of at most one
set, and (4) variable integrality. We also formulate
the idomatic partition problem as an ILP where we
maximize the size of the independent domatic partition
as well as the total number of packed nodes in the
sets of the partition. The exact algorithms for the
MDS, MIDS and MaxIS problems are also modeled
as ILPs. For illustrative purposes, we present the ILP
formulation of MIDS below:

minimize
∑

u∈V

xu

s.t. xu+
∑

v:(u,v)∈E

xv ≥ 1 ∀u ∈ V (1)

xu + xv ≤ 1 ∀u, v ∈ V : (u, v) ∈ E (2)

xu ∈ {0, 1} ∀u ∈ V (3)

Coloring Heuristics. In this study, in order to
experimentally approximate the IDP problem, we use
5 centralized graph coloring heuristics: Smallest Last,
Largest First, Lexicographic, Radial Sweep and Ran-
dom. These algorithms are described in detail in [12].
We also experiment with 4 distributed coloring heuris-
tics: Trivial Greedy, Largest First, Lexicographic, and
3Cliques-Last. We discuss these algorithms with ample
detail in [11] .

4 Experimental Results

In this paper, ILP models are solved optimally using
CPLEX 10.0 installed on a Dual Quad Core Intel Xeon
X5570 with 72 GB RAM running CentOS Linux 2.6.18.
Each core is clocked at 3.00 GHz. The coloring algo-
rithms are implemented in C#.Net (Microsoft Visual
Studio 2005) on an Intel Core 2 Duo E8400 processor
clocked at 3.00 GHz with 3 GB RAM running Win-
dows Vista Enterprise SP1. Our data set consists of
15 graphs generated randomly with δ ∈{5,10,20} and
n ∈{50,100,200,400,800}. Results for each (δ, n) pair
are averaged over 20 RGG instances, except for the
(δ = 20, n = 800) case where we average over 10 in-
stances, given that the running times of the ILP models
were prohibitively long. This provides a sample of 290
test RGG instances that we choose all to be connected.
An RGG instance of parameters (δ, n) is selected as fol-
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lows: First, we generate all n vertices’ (x,y) coordinates
i.u.d in the unit square then we sort in non-decreasing
order all possible n(n − 1)/2 edges by their Euclidean
distance. Following an evolutionary random graph gen-
eration paradigm [6], we add the edges to the graph
one-by-one in increasing length until the minimum de-
gree over all n vertices equals δ. The edge length that
achieves the desired δ represents r of the graph G(n, r).
The values of δ are picked to be representative of WSNs
modeled as RGGs where typical node degrees cannot
be too high. The exact ILP-based algorithms have a
running time that can be exponential in the size of the
input, whereas the coloring heuristics achieve a compet-
itive performance ratio on RGGs in polynomial time.

4.1 Domination and Independence in RGGs

Table 1 reports the exact values of the domination chain
parameters γ(G), i(G) and β0(G) by solving the ILP
models of the MDS, MIDS and MaxIS problems. For
indicative purposes, we report the average radius r cal-
culated over the set of 20 r values selected to achieve the
desired δ for each one of the 20 RGG instances represen-
tative of a given (δ, n) pair. Based on a triangular lat-
tice packing argument, we showed in [10, 12] lower and
upper bounds on the size of a maximal (dominating) in-
dependent set, which we denote respectively as itr and

βtr
0 . Namely, itr = 1

3 .[1/(r2
√

3
2 )] and βtr

0 = 1/(r2
√

3
2 ).

We also use βn(r) = (1 + 1/r)2 as the absolute upper
bound on the size of a maximum independent set in a
random geometric graph G(n, r) [10].

We observe that itr ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ βtr
0 ≤

βn(r). However, in certain cases, e.g. (δ = 10, n = 50),
we have β0(G) > βtr

0 . In other words, the computed ex-
act value of the independence number β0(G) is greater
than the expected triangular lattice-based upper bound
βtr

0 . We attribute this to a boundary effect in the unit
square which produces a value of βtr

0 smaller than if we
had an infinite unbounded lattice. Furthermore, we re-
port that in 288 cases out of 290 (99.3%), γ(G) = i(G).
By Theorem [4], if G is a graph containing no induced
subgraph isomorphic to K1,3 (i.e. G is claw-free), then
γ(G) = i(G). We verified, however, that all graphs
have, in fact, at least one claw. This is simply an em-
pirical verification that the theorem is a conditional but
not a biconditional.
Table 2 shows the extremal sizes of individual indepen-
dent dominating sets obtained in the IDP partitions.
For lack of space, we only show the results of the ILP
exact model and those of two greedy coloring heuristics:
Smallest Last (SL), a centralized topology-based algo-
rithm that first orders the vertices recursively by delet-
ing minimum degree vertices, and then assigns colors in
the reverse “smallest last” order [15]; and Distributed
Lexicographic (DLEX), a distributed geometry-aware
algorithm that assigns colors distributively respecting

the order of the vertices’ x coordinates (with ties bro-
ken according to the y coordinates) [11]. iILP , βILP ,
iSL, βSL, iDLEX and βDLEX represent the minimum
and maximum size among all independent dominat-
ing sets obtained in the IDP partition solution by the
ILP model, SL and DLEX coloring methodology respec-
tively. In Table 2, we observe that coloring heuristics
pack more vertices in any single set than ILP, i.e. βSL

and βDLEX are closer to the upper bounds β0(G) or βtr
0

than βILP is. On the other hand, in any independent
domatic partition produced by ILP, the size of the set
of minimum cardinality iILP is much closer to the in-
dependent domination number i(G) than the minimum
values iSL and iDLEX obtained by the coloring algo-
rithms.

Table 1: Domination chain values.

δ, n, r itr γ(G) i(G) β0(G) βtr
0 βn(r)

5,50,0.41 2.40 3.65 3.65 7.20 7.20 12.1
5,100,0.30 4.70 6.10 6.10 12.6 14.3 20.3
5,200,0.19 10.8 12.1 12.2 26.2 32.4 39.6
5,400,0.14 18.4 19.9 19.9 44.5 55.3 62.7
5,800,0.10 40.4 40.4 40.4 91.0 121 126

10,50,0.52 1.40 2.50 2.55 4.90 4.28 8.50
10,100,0.38 2.60 4.00 4.00 8.65 7.95 13.1
10,200,0.26 5.70 7.15 7.15 16.4 17.2 23.5
10,400,0.19 10.5 12.6 12.6 29.3 31.8 38.9
10,800,0.13 23.2 25.2 25.2 59.9 69.8 76.9

20,50,0.72 0.70 1.15 1.15 3.90 2.20 5.70
20,100,0.51 1.40 2.80 2.80 5.50 4.30 8.67
20,200,0.37 2.80 4.10 4.10 9.95 8.50 13.8
20,400,0.26 5.50 7.30 7.30 17.4 16.7 23.0
20,800,0.18 11.4 14.3 14.3 35.7 34.3 41.6

Table 2: Min/Max independent dominating sets sizes.

δ, n iILP βILP iSL βSL iDLEX βDLEX

5,50 3.90 5.10 4.55 6.10 4.40 6.45
5,100 7.20 9.05 9.50 10.9 8.85 11.8
5,200 14.5 17.7 19.7 22.0 20.5 23.4
5,400 23.1 26.5 34.7 37.2 35.7 40.4
5,800 47.1 52.4 74.8 77.3 77.3 82.5

10,50 2.60 3.90 2.80 4.35 2.80 4.65
10,100 4.20 6.10 5.45 7.40 5.40 8.05
10,200 7.90 10.2 11.6 13.7 10.8 14.8
10,400 13.6 16.6 21.4 24.5 21.2 26.5
10,800 28.7 33.1 45.9 49.6 47.0 52.6

20,50 1.15 3.00 1.15 2.95 1.15 3.25
20,100 2.85 3.95 3.10 4.85 3.15 5.35
20,200 4.15 6.30 5.85 8.45 5.85 9.30
20,400 7.65 10.2 11.7 14.9 11.5 16.2
20,800 15.7 20.4 23.1 27.5 22.4 29.3
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Table 3: Non independent domatically full instances.

(5, 100) (5, 800) (10, 50) (20, 50) (20, 100)
95%(1) 90%(1) 95%(1) 40%(1,6) 85%(1)

4.2 Independent Domatic Partitions in RGGs

We report that all 290 experimented RGG instances
were domatically full and 271 (over 93%) were in-
dependent domatically full (IDF). Namely, the cases
(5, 50), (5, 200), (5, 400), (10, 100), (10, 200), (10, 400),
(10, 800), (20, 200), (20, 400) and (20, 800) were all IDF.
Table 3 shows the (δ, n) pairs where some instances
are not IDF. For each (δ, n) pair, we report the per-
centage of random instances that are IDF, the second
value(s) between parentheses denotes the number of sets
(or min and max number of sets) that are missed com-
pared to the upper bound (δ + 1). For example, in the
(δ = 20, n = 50) case, 40% of the 20 instances were IDF,
the lowest gap from δ + 1 is one set, and the highest is
6 sets. The pattern we observe is that when δ is very
close to n (a highly dense graph), the graph has a higher
chance not to be independent domatically full.

We define the IDP packing ratio as the portion of
nodes of V in the dind(G) independent dominating sets.
Figure 1a shows the evolution of the ratio as n grows
for various δ. For a fixed δ, the ratio decreases with
increasing n, and it increases for fixed n as δ increases.
We derive from [2] that if χ(G) ≥ ω(G) > δ(G)+1 then
G is not idomatic. We use ωSL(G) as a lower bound on
the clique number obtained by Smallest Last coloring
[12] and report that in all samples, ωSL(G) > δ(G) + 1,
therefore the graphs are not idomatic. We also confirm
this observation by solving the ILP model of the Ido-
matic partition problem. We define the Idomatic gap
as the ratio of the maximal clique value ωSL over δ + 1
and conjecture that the closer the ratio is to 1, the more
likely the graph is to be idomatic. We observe that the
Idomatic gap is correlated with the IDP packing ratio.
Intuitively, the larger the Idomatic gap is, the lower is
the IDP packing ratio. Figure 1b shows the evolution
of the Idomatic gap as n grows for various δ. Figure
1c shows the performance ratio on dind(G) obtained by
SL and DLEX. We observe that the ratio decreases as n
increases and it is generally higher for the same n when
δ increases. Notice that these ratios are obtained as a
by-product of the coloring algorithms whose purpose is
unrelated to approximation of the IDP problem.

4.3 Independent Dominating Sets Properties

The main target application of this research is Wireless
Sensor Networks’ sleep scheduling. In that context, the
generated independent dominating sets constitute can-
didate virtual backbones that can be rotated through to
achieve efficient routing and data dissemination while

minimizing individual sensors’ energy expenditure and
extending the network’s lifetime. For a candidate back-
bone to be useful for routing, it has to be connected.
Therefore, every generated independent dominating set
has to be made connected [12, 11].
In any initial independent dominating set, a virtual
backbone edge (or link) between two independent back-
bone nodes u and v is constructed if the following two
rules are satisfied: there has to be at least one common
neighbor w to u and v so that w may act as a relay
node for message forwarding, and the edge has to sat-
isfy the Gabriel graph rule to avoid edge cross-over and
so that we obtain a planar connected virtual backbone
link graph [12, 11]. Note that each edge (link) has a
normalized link length αr with 1 < α < 2.

An interior edge (u, v) (denoted in light blue in Fig-
ures 3, 4, 5 and 6) is an edge that is incident to two
triangles, i.e. node u can forward data to v directly
through (u, v) and also via two alternative 2-hop paths
(u, a, v) and (u, b, v) where a and b are two backbone
nodes that are adjacent to both u and v in the back-
bone link graph. A boundary edge (u, v) (in dark blue)
is an edge incident to one triangle, i.e. the edge is in-
cident to two backbone nodes u and v that may reach
each other directly through the edge (u, v) or via a third
backbone node w that forms the triangle (u,w, v). A
bridge edge (u, v) or simply bridge is an edge that is
not incident to any triangle, i.e. node u may reach node
v only via (u, v). This classification of links is related
to the number of different alternative paths in an ideal
case that any two adjacent backbone nodes may use to
communicate, i.e. flexibility of communication between
backbone neighbors. Intuitively, an interior edge may
provide 3 possible disjoint paths (two 2-hop paths and
one 1-hop direct path), a boundary edge provides 2 and
a bridge only one direct 1-hop path.

To measure the quality of any single backbone gen-
erated by ILP or the coloring algorithms, it is relevant
to compare the resulting backbone with the triangu-
lar lattice obtained by a regular closest packing. Fig-
ure 2 shows the regular triangular lattice packing ex-
treme cases. Figure 2a has nodes placed at a normal-
ized link distance

√
3 = 1.73, which is the maximum

separation allowing for independent domination of the
plane by such a regular lattice. Figure 2b illustrates the
closest packing lattice allowing for independent domi-
nation with normalized link length between nodes just
over unity. We consider the following uniformity mea-
sures derived from the triangular lattice packing as in-
troduced in [12]: link length uniformity expressed by
the Median Edge Length, degree uniformity expressed by
the Average Degree, triangle face uniformity expressed
by the Number of Triangles and the existence of alter-
native disjoint 2-hop paths between every two backbone
nodes expressed by the Number of Interior Edges.
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Figure 1: Performance of the Independent Domatic and Idomatic Partitions for various δ.

(a) Sparsest Independent
Dominating Lattice

(b) Densest Independent
Dominating Lattice

Figure 2: Extremal Triangular Lattice cases.

In this section, we examine in more detail one sam-
ple random geometric graph G(n, r) where n = 800,
r = 0.146 and δ =10. Based on r’s value, itr =
1
3 .[1/(r2

√
3

2 )] = 18.05 and βtr
0 = 1/(r2

√
3

2 ) = 54.17.
Table 4 shows the properties of the sets obtained by
optimally solving the MDS, MIDS and MaxIS problems
with ILP as well as the asymptotic extremal cases ob-
tained by a triangular lattice packing. In this particular
sample RGG, γ(G) = 20, i(G) = 20 and β0(G) = 49.
As observed before in Table 1, itr is a lower bound on
γ(G) and i(G) and βtr

0 is an upper bound on β0. No-
tice that in the triangular lattice (both sparse and dense
packing) as the number of vertices |V | tends to infinity,
the number of edges |E| tends to 3|V | since each ver-
tex is incident to 6 edges and each edge is incident to 2
vertices. The average degree tends to 6, and the num-
ber of triangles tends to 2|V | since a vertex is incident
to 6 triangles and a triangle is incident to 3 vertices.
The number of interior edges also tends to 3|V | because
when |V | → ∞, the percentage of edges that touch the
boundary goes down. In other words, the boundary ef-
fect tends to disappear and all edges tend to become
interior edges.

Figure 3 shows that even though an MDS or MIDS-

based backbone solution provides full node domination
with the minimum number of nodes, it provides poor
quality (high median edge length, a low average degree,
very low number of triangles, no interior edges and a
lot of bridges) in terms of redundant paths for efficient
routing. Conversely, an MaxIS solution assures full node
domination with the maximum number of nodes which
may seem wasteful at first, but it offers high quality in
terms of geometric regularity (number of nodes close to
the asymptotic upper bound, high number of edges, low
median edge length, average node degree close to a pla-
nar triangular lattice-based value of 6, high number of
triangles, and a high number of interior edges). Geo-
metric regularity is a desired property that translates
in practice into a higher redundancy in terms of edge
disjoint paths and a lower routing stretch factor.

Tables 5, 6 and 7 show the contrasting results ob-
tained by the Integer Linear Program (ILP) on one hand
and Smallest Last (SL) and Distributed Lexicographic
(DLEX) colorings on the other hand. The earlier obser-
vations carry over as follows: ILP provides an optimal
IDP solution of (δ+1) independent dominating sets with
267 nodes packed in the partition. The sets however
are very sparse and close in size to the size of an MIDS.
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Table 4: Quality of Minimum Dominating Set (MDS), Minimum Independent Dominating Set (MIDS), Maximum
Independent Set (MaxIS), Sparsest Independent Dominating Lattice (SIDL) and Densest Independent Dominating
Lattice (DIDL).

Set |V | |E| Median Edge Length d #Triangles #Interior Edges
MDS 20 26 1.55 2.6 3 0
MIDS 20 29 1.63 2.9 4 0
MaxIS 49 115 1.10 4.69 62 76
SIDL 18.05 → 3|V | 1.73 → 6 → 2|V | → 3|V |
DIDL 54.17 → 3|V | 1.00 → 6 → 2|V | → 3|V |

(a) MDS nodes (b) MDS backbone (c) MIDS nodes (d) MIDS backbone

(e) MaxIS nodes (f) MaxIS backbone

Figure 3: Quality of Minimum Dominating Set (MDS), Minimum Independent Dominating Set (MIDS) and Maxi-
mum Independent Set (MaxIS), and their backbone link graphs.

In Table 5, we report the quality measures of the sets:
namely, a low number of edges |E| in the order of |V |,
a high median edge length close to

√
3r, a low average

degree, a very low number of triangles, and a a very low
number of interior edges. These results are confirmed
graphically in Figure 4, where we observe the sparseness
of the backbones and the low quality connectivity. On
the other hand, SL coloring provides a sub-optimal IDP
solution of only 6 independent dominating sets (com-
pared to the optimal 11 sets) with 234 nodes packed in
the 6 sets. However, the remaining 5 sets (among the
first (δ + 1)) are nearly dominating, and they are miss-
ing full domination by only a few nodes. In fact, the
domination percentage of all first (δ+1) sets is 99.829%
and the nearly dominating (δ + 1) partition packs 425
nodes. Furthermore, the sets obtained by SL are densely
packed and close in size to the size of an MaxIS solution.

They also offer high quality measures as reported in Ta-
ble 6: high number of edges, low median edge length,
an average degree close to the upper bound of 6, a high
number of triangles and a high number of interior edges.
This is further confirmed graphically in Figure 5 where
we observe a better geometric regularity of the back-
bone sets than in the ILP solution. Similar good qual-
ity results are observed with Distributed Lexicographic
coloring. We conclude from this study that despite the
fact ILP delivers an optimal (δ+1) solution, it lacks the
convenient feature of redundancy and geometric regu-
larity obtained by the coloring algorithms. In addition,
domination alone in this particular context may not be
sufficient for practical applications of Wireless Sensor
Networks.
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(a) Set 1 nodes (b) Set 1 backbone (c) Set 2 nodes (d) Set 2 backbone

(e) Set 3 nodes (f) Set 3 backbone (g) Set 4 nodes (h) Set 4 backbone

(i) Set 5 nodes (j) Set 5 backbone (k) Set 6 nodes (l) Set 6 backbone

(m) Set 7 nodes (n) Set 7 backbone (o) Set 8 nodes (p) Set 8 backbone

(q) Set 9 nodes (r) Set 9 backbone (s) Set 10 nodes (t) Set 10 backbone

(u) Set 11 nodes (v) Set 11 backbone

Figure 4: Quality of (δ+1) Independent Dominating Sets obtained by the Integer Linear Program, and their backbone
link graphs.
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(a) Set 1 nodes (b) Set 1 backbone (c) Set 2 nodes (d) Set 2 backbone

(e) Set 3 nodes (f) Set 3 backbone (g) Set 4 nodes (h) Set 4 backbone

(i) Set 5 nodes (j) Set 5 backbone (k) Set 6 nodes (l) Set 6 backbone

(m) Set 7 nodes (n) Set 7 backbone (o) Set 8 nodes (p) Set 8 backbone

(q) Set 9 nodes (r) Set 9 backbone (s) Set 10 nodes (t) Set 10 backbone

(u) Set 11 nodes (v) Set 11 backbone

Figure 5: Quality of (δ + 1) Independent Dominating Sets obtained by Smallest Last coloring, and their backbone
link graphs.
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(a) Set 1 nodes (b) Set 1 backbone (c) Set 2 nodes (d) Set 2 backbone

(e) Set 3 nodes (f) Set 3 backbone (g) Set 4 nodes (h) Set 4 backbone

(i) Set 5 nodes (j) Set 5 backbone (k) Set 6 nodes (l) Set 6 backbone

(m) Set 7 nodes (n) Set 7 backbone (o) Set 8 nodes (p) Set 8 backbone

(q) Set 9 nodes (r) Set 9 backbone (s) Set 10 nodes (t) Set 10 backbone

(u) Set 11 nodes (v) Set 11 backbone

Figure 6: Quality of (δ + 1) Independent Dominating Sets obtained by Distributed Lexicographic coloring, and their
backbone link graphs.
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Table 5: Quality of (δ + 1) Independent Dominating sets produced by the Integer Linear Program.

Set |V | |E| Median Edge Length d #Triangles #Interior Edges
1 24 38 1.52 3.16 9 5
2 25 44 1.50 3.52 18 16
3 23 39 1.60 3.39 11 4
4 27 43 1.51 3.18 9 2
5 24 37 1.50 3.08 10 8
6 25 39 1.55 3.12 9 4
7 23 32 1.47 2.78 8 5
8 24 36 1.60 3.00 8 5
9 24 38 1.52 3.16 9 5
10 24 39 1.57 3.25 12 6
11 24 35 1.57 2.91 6 0
Average 24.27 38.18 1.53 3.14 9.90 5.45

Table 6: Quality of (δ + 1) Independent Dominating sets produced by Smallest Last coloring.

Set |V | |E| Median Edge Length d #Triangles #Interior Edges
1 38 80 1.12 4.21 40 48
2 40 92 1.11 4.60 51 63
3 39 85 1.13 4.35 43 51
4 39 92 1.17 4.71 54 70
5 38 84 1.14 4.42 42 49
6 40 92 1.14 4.60 53 67
7 39 83 1.13 4.25 39 39
8 38 84 1.12 4.42 42 48
9 41 91 1.12 4.43 45 49
10 37 81 1.12 4.37 42 48
11 36 78 1.16 4.33 37 39
Average 38.63 85.63 1.13 4.42 44.36 51.90

5 Conclusion and Future Work

We have shown experimentally that RGGs are domat-
ically full in all instances and independent domatically
full in 93% of the instances. Strongly chordal (SC)
graphs are provably domatically full [3, 7]. Further re-
search related to this work includes the problem of de-
termining whether the experimented graphs are strongly
chordal which would explain their domatic fullness. A
more general question is are RGGs strongly chordal with
high likelihood? Another direction we are pursuing is
how do we enhance the coloring algorithms to improve
their performance ratio in solving the IDP problem.
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