Ladder-Lottery Realization

Katsuhisa Yamanaka* Takashi Horiyama ${ }^{\dagger}$ Takeaki Uno ${ }^{\ddagger} \quad$ Kunihiro Wasa ${ }^{\S}$

Abstract

A ladder lottery of a permutation $\pi=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is a network with n vertical lines and zero or more horizontal lines each of which connects exactly two consecutive vertical lines. The top ends and the bottom ends of the vertical lines correspond to the identity permutation and π, respectively. Each horizontal line corresponds to an intersection of two vertical lines. Suppose that we are given a permutation π of $[n]=\{1,2, \ldots, n\}$ and a multi-set S of intersections each of which is a pair of elements in n]. Then Ladder-Lottery Realization problem asks whether or not there is a ladder-lottery of π in which each intersection in S appears exactly once. We show that Ladder-Lottery Realization problem is NP-complete. We also present some positive results of Ladder-Lottery Realization and its variant.

1 Introduction

A ladder lottery, known as the "Amidakuji" in Japan, is a very common way to obtain a "random" assignment. Japanese kids often use ladder lotteries to determine an assignment in a group. Let us show an example of how to use ladder lotteries. Suppose that, in an elementary school, we have to determine a group leader among n classmates. First, a teacher draws n vertical lines in a notebook and ticks off one of the bottom ends of the vertical lines so that any student cannot predict where the tick-mark is. See Figure 1(a). Second, the teacher covers the bottom ends of all vertical lines, then the teacher draws some horizontal lines connecting adjacent vertical lines (Figure 1(b)). Third, each student chooses the top end of a vertical line (Figure 1(c)). Finally, the teacher takes off the cover. The obtained figure gives an assignment (Figure 1(d)).
Formally, for a permutation $\pi=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of $[n]=\{1,2, \ldots, n\}$, a ladder lottery is a network with n vertical lines (lines for short) and zero or more horizontal lines (bars for short) each of which connects exactly two consecutive vertical lines. The top ends of lines correspond to the identity permutation $(1,2, \ldots, n)$. The bottom ends of lines correspond to π. See Figure 2(a).

[^0]
(a)

(b)

(c)

(d)

Figure 1: An example of how to use a ladder lottery. Imagine the situation that we choose a leader among four students A, B, C, and D. (a) four vertical lines and a tick-mark. (b) The tick-mark is hided and six horizontal lines are drawn by a teacher according to his or her intuition. (c) Each student chooses a top end of a vertical line. (d) The result of the obtained assignment. In this assignment, D is a leader.

Figure 2: (a) A ladder lottery of (4,1,6,3,5,2) and (b) its pseudoline drawing.

Each element i in $[n]$ starts from the top end of i th line from the left, and goes down along the line, then whenever i comes to an end of a bar, i goes horizontally along the bar to the other end, then goes down again. Finally, i reaches the bottom end of j th line from the left such that $i=p_{j}$. We can regard a bar as a modification of the current permutation, and a sequence of such modifications in a ladder lottery always results in the identity permutation.

Ladder lotteries of the reverse permutations have a one-to-one correspondence to pseudoline arrangements [12]. The route of an element from a top end to a bottom end corresponds to a pseudoline and a bar corresponds to an intersection of two pseudolines. To calculate the number of pseudoline arrangements, some enumeration and counting algorithms of ladder lotteries
were presented in $[5,12]$. The history of the counting results is shown in the Online Encyclopedia of Integer Sequences [7]. In the area of algebra, a ladder lottery is regarded as a decomposition of a permutation into adjacent transpositions. The top ends of lines correspond to the identity permutation. The bottom ends of lines correspond to a permutation. Each bar corresponds to an adjacent transposition. From these viewpoints, ladder lotteries have been studied as mathematically attractive objects. In recent years, from the viewpoint of theoretical computer science, some problems on ladder lotteries are considered: counting [11], random generation [11], enumeration $[5,12,10,11]$, reconfiguration [3].

A few years ago, Yamanaka et al. [8] proposed the puzzle, called Token Swapping problem: We are given a permutation and a set of allowable transpositions. The Token Swapping problem asks to find a minimum-length decomposition using only transpositions in the set. ${ }^{1}$ Recently, this puzzle and its variants have been actively studied $[1,4,6,9]$.

In this paper, we propose a new puzzle regarding ladder lotteries. The purpose of Token Swapping problem is to find a shortest decomposition of a permutation. On the other hand, we consider the problem, called Ladder-Lottery Realization, of constructing a target permutation using compositions of designated transpositions. Let us describe our problem more formally. We are given a target permutation π of and a multi-set S of transpositions. The problem asks whether one can construct the target permutation by composing each transposition in the set exactly once. In this paper, we investigate the computational complexity of Ladder-Lottery Realization problem. We show the NP-completeness of the problem and give some positive results for the problem and its variant.

Due to page limitation, all proofs are omitted.

2 Preliminaries

A ladder lottery of a permutation $\pi=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is a network with n vertical lines (lines for short) and zero or more horizontal lines (bars for short) each of which connects two consecutive vertical lines. The top ends of the n lines correspond to the identity permutation. The bottom ends of the n lines correspond to π. See Figure 2(a). Each element i in the identity permutation starts the top end of i th line from the left, and goes down along the line, then whenever i comes to an end of a bar, i goes to the other end and goes down again, then finally i reaches the bottom end of j th line such

[^1]that $i=p_{j}$. By representing the route for each element i as a pseudoline and each bar as an intersection of two pseudolines, one can represent a ladder lottery as a drawing of pseudolines. In this paper, for convenience of descriptions, we use the pseudoline drawing to represent a ladder lottery. For example, Figure 2(b) is the pseudoline drawing of the ladder lottery in Figure 2(a). From now on, if it is clear from the context, we call the route of an element as a pseudoline. Clearly, we can regard that a pseudoline in the pseudoline drawing of a ladder lottery forms a y-monotone curve. Hence, in the following, we assume that any pseudoline is y-monotone.

Now, let us define Ladder-Lottery Realization problem. Suppose that we are given a permutation $\pi=$ $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of $[n]$ and a multi-set S of intersections each of which is a pair of elements in $[n]$. Then LadderLottery Realization asks whether or not there is a ladder-lottery of π in which each intersection in S appears exactly once. For example, suppose that we are given the permutation ($4,1,6,3,5,2$) and the multi-set

$$
\begin{aligned}
& \left\{\{1,3\}^{2},\{1,4\},\{2,3\},\{2,4\}^{3},\{2,5\}^{3},\{2,6\},\{3,4\}\right. \\
& \left.\quad\{3,6\},\{5,6\}^{3}\right\}
\end{aligned}
$$

of intersections, where $\{i, j\}^{k}$ means $k\{i, j\} \mathrm{s}$. Then, the answer is yes, since the ladder lottery in Figure 2(a) is a solution.

3 Hardness of ladder-lottery realization

We give a reduction from a well-known NP-complete problem One-In-Three 3SAT:

Problem: One-In-Three 3SAT [2]
Instance: Set X of variables, collection C of clauses over X such that each clause in C contains exactly three literals.
Question: Is there a truth assignment for X such that each clause in C has exactly one true literal?

Let $I_{S}=(X, C)$ be an instance of One-in-Three 3SAT, where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a set of variables and $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ is a collection of clauses. We may assume without loss of generality that any clause $C_{i} \in C$ does not contain both the positive and the negative literals of any variable in X. We denote by n and m the numbers of variables and clauses, respectively. We are going to construct an instance $I_{R}=(\pi, S)$ of Ladder-Lottery Realization from I_{S}, where π is a permutation and S is a multi-set of intersections.

To reduce I_{S} to I_{R}, we prepare the gadgets: a room gadget, a drawer gadget, a variable gadget, a clause gadget, and an assignment gadget. Let us explain these gadgets one by one.

Figure 3: Room gadget with 4 rooms.

Room gadget

First, we define a room gadget. The room gadget consists of two pseudolines s_{ℓ}, s_{r} and a multi-set $S_{R}\left(I_{S}\right)$ of intersections. The top ends of the two pseudolines appear in the order s_{ℓ}, s_{r} and their bottom ends appear in the reverse order. We define the multi-set of intersections so that the two pseudolines form $4 n$ regions:

$$
S_{R}\left(I_{S}\right):=\left\{s_{l}, s_{r}\right\}^{4 n-1}
$$

Then the two pseudolines intersect $4 n-2$ closed regions and the top and bottom regions enclosed by s_{ℓ} and s_{r}. See Figure 3. We call the i th region from the top the ith room.
Later, we use two rooms to represent an assignment of each variable. More precisely, we use the $(4 i-3)$ rd and $(4 i-1)$ th rooms to represent the assignment of the variable x_{i} for $i=1,2, \ldots, n$.

Drawer gadget

We next define a drawer gadget, which consists of $4 n$ pseudolines $d_{1}, d_{1}^{\prime}, d_{2}, d_{2}^{\prime}, \ldots, d_{2 n}, d_{2 n}^{\prime}$ and a multi-set $S_{D}\left(I_{S}\right)$ of intersections. The top ends of the pseudolines are arranged in the order $d_{2 n}^{\prime}, d_{2 n}, d_{2 n-1}^{\prime}, d_{2 n-1}, \ldots, d_{1}^{\prime}, d_{1}$ in the left region of the pseudolines of the room gadget and their bottom ends are arranged in the reverse order, namely $d_{1}, d_{1}^{\prime}, d_{2}, d_{2}^{\prime}, \ldots, d_{2 n}, d_{2 n}^{\prime}$ (see Figure 4).

We define $S_{D}\left(I_{S}\right)$ such that d_{i} and d_{i}^{\prime} for each $i=$ $1,2, \ldots, 2 n$ come to the $(2 i-1)$ th and $(2 i)$ th rooms and leave the rooms, respectively. Besides, every pseudoline in the drawer gadget crosses with all other pseudolines except itself in the gadget exactly once. The formal definition of $S_{D}\left(I_{S}\right)$ is as follows:

$$
\begin{aligned}
& S_{D}\left(I_{S}\right):= \\
& \quad\left\{\left\{d_{i}, d_{i^{\prime}}\right\},\left\{d_{i}, d_{i^{\prime}}^{\prime}\right\} \mid i, i^{\prime}=1,2, \ldots, 2 n \text { and } i<i^{\prime}\right\} \\
& \quad \cup\left\{\left\{d_{i}, d_{i}^{\prime}\right\} \mid i=1,2, \ldots, 2 n\right\} \\
& \quad \cup\left\{\left\{d_{i}^{\prime}, d_{i^{\prime}}\right\},\left\{d_{i}^{\prime}, d_{i^{\prime}}^{\prime}\right\} \mid i, i^{\prime}=1,2, \ldots, 2 n \text { and } i<i^{\prime}\right\} \\
& \quad \cup\left\{\left\{d_{i}, s_{\ell}\right\}^{2} \mid i=1,2, \ldots, 2 n\right\} . \\
& \quad \cup\left\{\left\{d_{i}^{\prime}, s_{r}\right\}^{2} \mid i=1,2, \ldots, 2 n\right\} .
\end{aligned}
$$

Figure 4: Drawer gadget.

Figure 4 shows an example of pseudolines of a drawer gadget and a room gadget. From the definition of $S_{D}\left(I_{S}\right)$, one can observe the form of a pseudoline in the drawer gadget, as follows. First, d_{i} for each $i=$ $1,2, \ldots, 2 n$ crosses with every $d_{i^{\prime}}$ and $d_{i^{\prime}}^{\prime}$ with $i^{\prime}<i$. Then d_{i} crosses with s_{ℓ} two times. That is, d_{i} comes to $(2 i-1)$ th room and leaves it. Then d_{i} crosses with every $d_{i^{\prime}}$ with $i^{\prime}>i$ and every $d_{i^{\prime \prime}}^{\prime}$ with $i^{\prime \prime} \geq i$. As a result, the bottom end of d_{i} is $(2 i-1)$ th one from the left among the pseudolines of the drawer gadget. The shape of d_{i}^{\prime} for each $i=1,2, \ldots, 2 n$ is similar.

Now, we explain why d_{i} and d_{i}^{\prime} for $i=1,2, \ldots, 2 n$ form the above shape more formally. For any y coordinate, a pseudoline d_{i} (and d_{i}^{\prime}) is rightmost if, in the y-coordinate, the x-coordinate of d_{i} (and d_{i}^{\prime}) is the largest among all the pseudolines in a drawer gadget. The rightmost y-coordinate set of d_{i} (and d_{i}^{\prime}) is the set of the y-coordinates in which d_{i} (and d_{i}^{\prime}) is rightmost. From the definition of a drawer gadget, the pseudolines in the drawer gadget cross each other exactly once and the order of the bottom ends of the pseudolines is the reverse order of their top ends. Hence, it can be observed that a rightmost y-coordinate set of a pseudoline always forms an open interval. Since s_{ℓ} crosses with $d_{1}, d_{2}, \ldots, d_{2 n}$ and does not cross with $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{2 n}^{\prime}$, s_{ℓ} crosses with d_{i} in a y-coordinate in the rightmost y-coordinate set of d_{i}. Similarly, s_{r} crosses with d_{i}^{\prime} in a y-coordinate in the rightmost y-coordinate set of d_{i}^{\prime}. Therefore, the drawing of the pseudolines of a drawer gadget and a room gadget is unique, as shown in Figure 4.

Variable gadget

Here, let us define a variable gadget consisting of n pseudolines and a multi-set $S_{X}\left(I_{S}\right)$ of intersections. We create a pseudoline $p\left(x_{i}\right)$ for each variable x_{i}, and arrange their top ends in the order $p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{n}\right)$, and all the top ends appear in the right of s_{r}. We also define the order of their bottom ends as the same one.
Let us explain the outline of the form of $p\left(x_{i}\right)$ (Figure 5). $p\left(x_{i}\right)$ crosses with $d_{2 i-1}$ and $d_{2 i}$ but does not cross with s_{ℓ}. Hence, $p\left(x_{i}\right)$ crosses the two pseudolines in only the coresponding rooms. First, the pseudoline $p\left(x_{i}\right)$ crosses with other pseudolines to approach the room gadget. Then, $p\left(x_{i}\right)$ comes to and leaves two rooms one by one. In the rooms, $p\left(x_{i}\right)$ crosses with $d_{2 i-1}$ and $d_{2 i}$. Finally, $p\left(x_{i}\right)$ crosses with other pseudolines to go back to its the original position. Now, we define the multi-set $S\left(p\left(x_{i}\right)\right)$ of intersections for $p\left(x_{i}\right)$ as follows:

$$
\begin{aligned}
S\left(p\left(x_{i}\right)\right):= & \left\{p\left(x_{i}\right), s_{r}\right\}^{4} \cup\left\{p\left(x_{i}\right), d_{2 i-1}\right\}^{2} \cup\left\{p\left(x_{i}\right), d_{2 i}\right\}^{2} \\
& \cup \bigcup_{i^{\prime}=1}^{i-1}\left\{p\left(x_{i}\right), p\left(x_{i^{\prime}}\right)\right\}^{2} .
\end{aligned}
$$

Let us explain the shape of $p\left(x_{i}\right)$ more carefully. The multi-set $S\left(p\left(x_{i}\right)\right)$ does not include $\left\{p\left(x_{i}\right), s_{\ell}\right\}$, and hence $p\left(x_{i}\right)$ cannot enter the left region of s_{ℓ}. However, $S\left(p\left(x_{i}\right)\right)$ includes both $\left\{p\left(x_{i}\right), d_{2 i-1}\right\}^{2}$ and $\left\{p\left(x_{i}\right), d_{2 i}\right\}^{2}$. Hence, $p\left(x_{i}\right)$ comes to the $(4 i-3)$ rd and $(4 i-1)$ th rooms to cross with $d_{2 i-1}$ and $d_{2 i}$, respectively. To approach the rooms, $p\left(x_{i}\right)$ crosses with $p\left(x_{i-1}\right), p\left(x_{i-2}\right)$, $\ldots, p\left(x_{1}\right)$. Then, $p\left(x_{i}\right)$ arrives at the region next to the target rooms. First, $p\left(x_{i}\right)$ comes to the $(4 i-3)$ rd room, crosses with $d_{2 i-1}$ two times in the room, and leaves the room. Next, $p\left(x_{i}\right)$ comes to the $(4 i-1)$ th room, crosses with $d_{2 i}$ two times in the room, and leaves the room. Then, to go back to the original position, $p\left(x_{i}\right)$ crosses with $p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{i-1}\right)$ again.
We show an example in Figure 5. Note that, since $p\left(x_{i}\right)$ does not cross with s_{ℓ}, it has to cross with pseudolines of a drawer gadget only in the rooms to which the pseudolines come.
Now, let us define the multi-set of intersections of a variable gadget:

$$
S_{X}\left(I_{S}\right):=\bigcup_{i=1}^{n} S\left(p\left(x_{i}\right)\right)
$$

Clause gadget

A clause gadget consists of m pseudolines corresponding to the clauses in C and a multi-set $S_{C}\left(I_{S}\right)$ of intersections. We create a pseudoline $p\left(C_{j}\right)$ for each clause $C_{j} \in C$. The order of the top ends of the pseudolines is $p\left(C_{1}\right), p\left(C_{2}\right), \ldots, p\left(C_{m}\right)$ between the top ends of s_{r} and $p\left(x_{1}\right)$ (See Figure 6). The order of the bottom ends of

Figure 5: An example of a variable gadget for $n=2$.
the pseudolines is the same as the top ends. The bottom ends are arranged between the bottom ends of s_{r} and $p\left(x_{1}\right)$ (See Figure 6).

We design a multi-set of intersections for $p\left(C_{j}\right)$ for $j=1,2, \ldots, m$ so that $p\left(C_{j}\right)$ forms the shape below. If C_{j} includes a positive literal of x_{i}, then $p\left(C_{j}\right)$ comes to and leaves the $(4 i-3) \mathrm{rd}$ room. If C_{j} includes a negative literal of $x_{i}, p\left(C_{j}\right)$ comes to and leaves the $(4 i-1)$ th room. Otherwise, C_{j} includes neither the positive nor negative literals of $x_{i}, p\left(C_{j}\right)$ comes to neither the $(4 i-3)$ rd nor $(4 i-1)$ th rooms. To force $p\left(C_{j}\right)$ to be such a shape, we define a multi-set of intersections, as follows. We denote by $L\left(C_{j}\right)$ the set of literals in C_{j}. Let $L\left(C_{j}\right)=\left\{\ell_{j, 1}, \ell_{j, 2}, \ell_{j, 3}\right\}$. For each literal $\ell_{j, p}, p \in\{1,2,3\}$, we define the following multi-set of intersections.

$$
\begin{aligned}
S\left(\ell_{j, p}, C_{j}\right):= & \left\{\left\{p\left(C_{j}\right), p\left(C_{j^{\prime}}\right)\right\}^{2} \mid j^{\prime}<j \wedge \ell_{j, p} \notin L\left(C_{j^{\prime}}\right)\right\} \\
& \cup\left\{\left\{p\left(C_{j}\right), d_{2 i-1}\right\}^{2} \mid \ell_{j, p}=x_{i}\right\} \\
& \cup\left\{\left\{p\left(C_{j}\right), d_{2 i}\right\}^{2} \mid \ell_{j, p}=\overline{x_{i}}\right\} \\
& \cup\left\{\left\{p\left(C_{j}\right), s_{r}\right\}^{2}\right\}
\end{aligned}
$$

The intersections in the first set of $S\left(\ell_{j, p}, C_{j}\right)$ are used to approach the room gadget corresponding to $\ell_{j, p}$. If $\ell_{j, p} \in L\left(C_{j^{\prime}}\right)$ holds, $p\left(C_{j}\right)$ and $p\left(C_{j^{\prime}}\right)$ has no intersection. The intersections in the second and third sets are used to force $p\left(C_{j}\right)$ to come to the rooms corresponding to the literals of x_{i}.
Besides, we define the following multi-set of intersections for $p\left(C_{j}\right)$ and $p\left(x_{i}\right)$:

$$
\begin{aligned}
& S\left(\ell_{j, p}, C_{j}, x_{i}\right):= \\
& \quad\left\{\left\{p\left(C_{j}\right), p\left(x_{i}\right)\right\}^{4} \mid \ell_{j, p} \neq x_{i} \wedge \ell_{j, p} \neq \overline{x_{i}}\right\} \\
& \quad \cup\left\{\left\{p\left(C_{j}\right), p\left(x_{i}\right)\right\}^{2} \mid \ell_{j, p}=x_{i} \vee \ell_{j, p}=\overline{x_{i}}\right\}
\end{aligned}
$$

The intersections above are used so that $p\left(x_{i}\right)$ comes to the corresponding the room gadget.

Now we define the set of intersections for clauses, as follows:

$$
\begin{aligned}
& S_{C}\left(I_{S}\right):= \\
& \quad\left(\bigcup_{j=1}^{m} \bigcup_{p=1}^{3} S\left(\ell_{j, p}, C_{j}\right)\right) \cup\left(\bigcup_{i=1}^{n} \bigcup_{j=1}^{m} \bigcup_{p=1}^{3} S\left(\ell_{j, p}, C_{j}, x_{i}\right)\right)
\end{aligned}
$$

We give an example shown in Figure 6. The example shows an reduced instance from the One-in-Three 3 SAT instance (X, C), where $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, C=$ $\left\{C_{1}, C_{2}\right\}, C_{1}=\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$, and $C_{2}=\left(x_{2} \vee x_{3} \vee x_{4}\right)$.

Assignment gadget

The last gadget is the one for representing a truth-false assignment of variables. We define an assignment gadget consisting of a pseudoline a and a set of intersections for a. The top and bottom ends of a are respectively located in the left of $d_{2 n}^{\prime}$ and d_{1} (see Figure 6). We define that a crosses with each $p\left(x_{i}\right)$ twice for $i=1,2, \ldots, n$ and a crosses with $s_{\ell} 2 n$ times but does not cross with s_{r} to make a cross with each $p\left(x_{i}\right)$ in either $(4 i-3)$ th or $(4 i-1)$ th room. If a crosses with $p\left(x_{i}\right)$ in $(4 i-3)$ rd room, then it means that x_{i} is assigned true. Otherwise, if a crosses with $p\left(x_{i}\right)$ in $(4 i-1)$ th room, then it means that x_{i} is assigned false. Besides, we force that a crosses with each $p\left(C_{j}\right)$ two times. This corresponds to make the clause C_{j} true. The pseudoline a touches each C_{j} exactly once, and hence this assignment corresponds to a solution of an instance of One-In-Three 3SAT. We can define the multi-set of intersections which implements such shape of a :

$$
\begin{aligned}
S_{A}\left(I_{S}\right):= & \left(\bigcup_{i=1}^{n}\left\{a, p\left(x_{i}\right)\right\}^{2}\right) \cup\left(\bigcup_{i=1}^{2 n}\left(\left\{a, d_{i}\right\}^{2 n},\left\{a, d_{i}^{\prime}\right\}^{2 n}\right)\right) \\
& \cup\left(\bigcup_{j=1}^{m}\left\{a, C_{j}\right\}^{2}\right) \cup\left\{a, s_{\ell}\right\}^{2 n} .
\end{aligned}
$$

The first term is for the intersections with $p\left(x_{i}\right)$ for each $i=1,2, \ldots, n$. The second term is the intersections with the pseudolines in the drawer gadget to approach the rooms and to go back to the original position. Note that a does not have to go back to the leftmost region for each entrance to a room. In Figure 6, a goes back to the leftmost region immediately after each entrance to a room. This is just an example of the form of a. The third term is for the intersections with the pseudolines in the clause gadget. The last term is for the intersections with s_{ℓ} to come to rooms. The pseudoline a cannot go inside the right region of s_{ℓ} since there is no intersection
$\left\{a, s_{\ell}\right\}$. Hence, a has to cross with the pseudolines of the variables and the clauses in the rooms.

Now, we are ready to describe a reduced instance of Ladder-Lottery Realization. Given an instance $I_{S}=(X, C)$ of One-In-Three 3SAT, we construct an instance $I_{R}=\left(\pi\left(I_{S}\right), S\left(I_{S}\right)\right)$, where

$$
\begin{aligned}
& \pi\left(I_{S}\right)=\left(a, d_{1}, d_{1}^{\prime}, d_{2}, d_{2}^{\prime}, \ldots, d_{2 n}^{\prime}, d_{2 n}, s_{r}, s_{\ell}\right. \\
& \quad p\left(C_{1}\right), p\left(C_{2}\right), \ldots, p\left(C_{m}\right) \\
& \left.p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{n}\right)\right)
\end{aligned}
$$

and
$S\left(I_{S}\right)=S_{R}\left(I_{S}\right) \cup S_{D}\left(I_{S}\right) \cup S_{X}\left(I_{S}\right) \cup S_{C}\left(I_{S}\right) \cup S_{A}\left(I_{S}\right)$.
Using the reduction above, one can show NPcompleteness of Ladder-Lottery Realization.

Theorem 1 Ladder-Lottery Realization is $N P$ complete.

4 Positive results

In this section, we give positive results. Let $I_{R}=(\pi, S)$ be an instance of Ladder-Lottery Realization, where π is a permutation of $[n]$ and S is a multi-set of intersections. If $\{i, j\}^{k} \in S$, we say that the multiplicity of $\{i, j\}$ in S is k.

Theorem 2 Let $I_{R}=(\pi, S)$ be an instance of Ladder-Lottery Realization. If the multiplicity of every intersection in S is 1, one can determine whether or not I_{R} is a yes-instance in polynomial time.

Now, let us consider a variant of Ladder-Lottery Realization problem. Suppose that we are given only a multi-set S of intersections each of which is a pair of elements in $[n]$. Then, AnyPerm-Ladder-Lottery Realization asks whether or not there is a ladderlottery of a permutation in which each intersection in S appears exactly once. Note that, in this problem, we have no permutation as an input. The problem simply asks whether or not there is a ladder-lottery of "some permutation" for S.

Theorem 3 Let S be a multi-set of intersections. If the multiplicity of every intersection in S is 1, one can solve AnyPerm-Ladder-Lottery Realization for S in polynomial time.

In the case that the multiplicity of every intersection is odd, we can solve LADDER-Lottery Realization in polynomial time.

Theorem 4 Let $I_{R}=(\pi, S)$ be an instance of Ladder-Lottery Realization. If the multiplicity of every intersection in S is odd, one can determine whether I_{R} is a yes-instance in polynomial time.

Figure 6: Reduced instance from (X, C) of a One-in-Three 3SAT instance, where $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, C=$ $\left\{C_{1}, C_{2}\right\}, C_{1}=\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$, and $C_{2}=\left(x_{2} \vee x_{3} \vee x_{4}\right)$. The assignment gadget represents $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,1,0)$.

References

[1] É. Bonnet, T. Miltzow, and P. Rza̧żewski. Complexity of token swapping and its variants. Algorithmica, pages 1-27, Oct 2017.
[2] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.
[3] T. Horiyama, K. Wasa, and K. Yamanaka. Reconfiguring optimal ladder lotteries. In Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, pages 217-224, May 2017.
[4] J. Kawahara, T. Saitoh, and R. Yoshinaka. The time complexity of the token swapping problem and its parallel variants. In Proceeding of The 11th International Conference and Workshops on Algorithms and Computation, volume 10167 of Lecture Notes in Computer Science, pages 448-459, 2017.
[5] J. Kawahara, T. Saitoh, R. Yoshinaka, and S. Minato. Counting primitive sorting networks by π dds. Hokkaido University, Division of Computer Science, TCS Technical Reports, TCS-TR-A-11-54, 2011.
[6] T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, and T. Uno. Approximation and hardness of token swapping. In Proceeding of 24th Annual European Symposium on Algorithms, ESA 2016, pages 66:1-66:15, 2016.
[7] N. Sloane. The on-line encyclopedia of integer sequences. Published electronically at https://oeis. org/A006245. Accessed: 2018-05-02.
[8] K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi, Y. Okamoto, T. Saitoh, A. Suzuki, K. Uchizawa, and T. Uno. Swapping labeled tokens on graphs. Theoretical Computer Science, 586:81-94, 2015.
[9] K. Yamanaka, T. Horiyama, D. Kirkpatrick, Y. Otachi, T. Saitoh, R. Uehara, and Y. Uno. Swapping colored tokens on graphs. Theoretical Computer Science, 729:110, 2018.
[10] K. Yamanaka and S. Nakano. Efficient enumeration of all ladder lotteries with k bars. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 97-A(6):1163-1170, 2014.
[11] K. Yamanaka and S. Nakano. Enumeration, counting, and random generation of ladder lotteries. IEICE Transactions Information and Systems, 100-D(3):444451, 2017.
[12] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and K. Nakada. Efficient enumeration of all ladder lotteries and its application. Theoretical Computer Science, 411:1714-1722, 2010.

[^0]: *Iwate University, Japan. yamanaka@cis.iwate-u.ac.jp
 ${ }^{\dagger}$ Saitama University, Japan. horiyama@al.ics.saitama-u.ac.jp
 ${ }^{\ddagger}$ National Institute of Informatics, Japan. uno@nii.ac.jp
 ${ }^{\S}$ National Institute of Informatics, Japan. wasa@nii.ac.jp

[^1]: ${ }^{1}$ Actually, the Token Swapping problem is defined as a puzzle consisting of n tokens on n-vertex graph where each token has a distinct starting vertex and a distinct target vertex it wants to reach, and the only allowed transformation is to swap the tokens on adjacent vertices [8].

