
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Geometric Fingerprint Recognition via Oriented Point-Set Pattern Matching

David Eppstein ∗ Michael T. Goodrich∗ Jordan Jorgensen∗ Manuel R. Torres †

Abstract

Motivated by the problem of fingerprint matching, we
present geometric approximation algorithms for match-
ing a pattern point set against a background point set,
where the points have angular orientations in addition
to their positions.

1 Introduction

Fingerprint recognition typically involves a three-step
process: (1) digitizing fingerprint images, (2) identifying
minutiae, which are points where ridges begin, end,
split, or join, and (3) matching corresponding minutiae
points between the two images. An important con-
sideration is that the minutiae are not pure geometric
points: besides having geometric positions, defined
by (x, y) coordinates in the respective images, each
minutiae point also has an orientation (the direction
of the associated ridges), and these orientations should
be taken into consideration in the comparison, e.g.,
see [13, 9, 16, 19, 10, 11, 17, 15, 12] and Figure 1.

Figure 1: Screenshot of the display of fingerprint minu-
tiae in NIST’s Fingerprint Minutiae Viewer (FpMV).

In this paper, we consider computational geometry
problems inspired by this fingerprint matching problem.
The problems we consider are all instances of point-
set pattern matching problems, where we are given a
“pattern” set, P , of m points in R2 and a “background”
set, B, of n points in R2, and we are asked to find a
transformation of P that best aligns the points of P
with a subset of the points in B, e.g., see [3, 4, 5, 6, 7].

∗University of California, Irvine
†University of Illinois

A natural choice of a distance measure to use in this
case, between a transformed copy, P ′, of the pattern,
P , against the background, B, is the directed Hausdorff
distance, defined as h(P ′, B) = maxp∈P ′ minq∈B ρ(p, q),
where ρ is an underlying distance metric for points, such
as the Euclidean metric. In other words, the problem is
to find a transformation of P that minimizes the farthest
any point in P is from its nearest neighbor in B. Rather
than only considering the positions of the points in P
and B, however, in this paper we consider instances in
which each point in P and B also has an associated
orientation defined by an angle, as in the fingerprint
matching application.

It is important in such oriented point-set pattern
matching problems to use an underlying distance that
combines information about both the locations and the
orientations of the points, and to use this distance in
finding a good transformation. Our goal is to design
efficient algorithms that can find a transformation that
is a good match between P and B taking both positions
and orientations into consideration.

Previous Work. In the domain of fingerprint match-
ing, past work tends to focus on matching fingerprints
heuristically or as pixelated images, taking into con-
sideration both the positions and orientation of the
minutiae or other features, e.g., see [13, 9, 16, 19,
10, 11, 17, 15, 12]. We are not aware of past work
on studying fingerprint matching as a computational
geometry problem, however.

Geometric pattern matching for point sets without
orientations, on the other hand, has been well studied
from a computational geometry viewpoint, e.g., see [1,
4, 6, 18]. For such unoriented point sets, existing
algorithms can find an optimal solution minimizing
Hausdorff distance, but they generally have high poly-
nomial running times. Several existing algorithms give
approximate solutions to geometric pattern matching
problems [3, 5, 7, 8], but we are not aware of previous
approximation algorithms for oriented point-set pattern
matching. Goodrich et al. [7] present approximation
algorithms for geometric pattern matching in multiple
spaces under different types of motion, achieving ap-
proximation ratios ranging from 2 to 8 + ε, for constant
ε > 0. Cho and Mount [5] show how to achieve improved
approximation ratios for such matching problems, at
the expense of making the analysis more complicated.

30th Canadian Conference on Computational Geometry, 2018

Other algorithms give approximation ratios of 1 + ε,
allowing the user to define the degree of certainty they
want. Indyk et al. [8] give a (1 + ε)-approximation
algorithm whose running time is defined in terms of both
the number of points in the set as well as ∆, which is
defined as the the distance between the farthest and the
closest pair of points. Cardoze and Schulman [3] offer
a randomized (1 + ε)-approximation algorithm for Rd
whose running time is also defined in terms of ∆. These
algorithms are fast when ∆ is relatively small, which is
true on average for many application areas, but these
algorithms are much less efficient in domains where ∆
is likely to be arbitrarily large.

Our Results. In this paper, we present a family
of simple algorithms for approximate oriented point-
set pattern matching problems, that is, computational
geometry problems motivated by fingerprint matching.
Each of our algorithms uses as a subroutine a base algo-
rithm that selects certain points of the pattern, P , and
“pins” them into certain positions with respect to the
background, B. This choice determines a transformed
copy P ′ of the whole point set P . We then compute
the directed Hausdorff distance for this transform by
querying the nearest neighbor in B for each point of
P ′. To find nearest neighbors for a suitably-defined
metric on oriented points that combines straight-line
distance with rotation amounts, we adapt balanced box
decomposition (BBD) trees [2] to oriented point sets,
which may be of independent interest. The general idea
of this adaptation is to insert two copies of each point
such that, for any query point, if we find its nearest
neighbor using the L1/L2-norm, we will either find the
nearest neighbor based on µ1/µ2 or we will find one of
its copies. The full details of this approach are described
in Appendix B. The output of the base algorithm is the
transformed copy P ′ that minimizes this distance. We
refer to our base algorithms as pin-and-query methods.

These base algorithms are all simple and effective, but
their approximation factors are larger than 2, whereas
we seek (1 + ε)-approximation schemes for any constant
ε > 0. To achieve such results, our approximation
schemes call the base algorithm twice. The first
call determines an approximate scale of the solution.
Next, our schemes apply a grid-refinement strategy that
expands the set of background points by convolving it
with a fine grid at that scale, in order to provide more
candidate motions. Finally, they call the base algorithm
a second time on the expanded input. This allows us to
leverage the speed and simplicity of the base algorithms,
gaining greater accuracy while losing only a constant
factor in our running times.

The resulting approximation algorithms run in the
same asymptotic time bound as the base algorithm
(with some dependence on ε in the constants) and

achieve approximations that are a (1 + ε) factor close
to optimal, for any constant ε > 0. For instance, one
of our approximation schemes, designed in this way,
guarantees a worst case running time of O(n2m log n)
for rigid motions defined by translations and rotations.
Thus, our approach results in polynomial-time approx-
imation schemes (PTASs), where their running times
depend only on combinatorial parameters. Specifically,
we give the runtimes and approximations ratios for our
algorithms in Table 1.

Algorithm Running Time Approx. Ratio

T O(nm log n) 1 + ε
TR O(n2m log n) 1 + ε
TRS O(n2m log n) 1 + ε

Table 1: Running times and approximation ratios for
our approximation algorithms.

The primary challenge in the design of our algo-
rithms is to come up with methods that achieve an
approximation factor of 1 + ε, for any small constant
ε > 0, without resulting in a running time that is
dependent on a geometric parameter like ∆. The main
idea that we use to overcome this challenge is for our
base algorithms in some cases to use two different
pinning schemes, one for large diameters and one for
small diameters, We show that one of these pinning
schemes always finds a good match, so choosing the
best transformation found by either of them allows us
to avoid a dependence on geometric parameters in our
running times. As mentioned above, all of our base
algorithms are simple, as are our (1 + ε)-approximation
algorithms. Moreover, proving each of our algorithms
achieves a good approximation ratio is also simple,
involving no more than “high school” geometry. Still,
for the sake of our presentation, we postpone some
proofs and simple cases to appendices.

2 Formal Problem Definition

Let us formally define the oriented point-set pattern
matching problem. We define an oriented point set in
R2 to be a finite subset of the set O of all oriented points,
defined as

O =
{

(x, y, a) | x, y, a ∈ R, a ∈ [0, 2π)
}
.

We consider three sets of transformations on oriented
point sets, corresponding to the usual translations,
rotations, and scalings on R2. In particular, we define
the set of translations, T , as the set of functions Tv :
O → O of the form

Tv(x, y, a) = (x+ vx, y + vy, a),

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

where v = (vx, vy) ∈ R2 is referred to as the translation
vector.

Let Rp,θ be a rotation in R2 where p and θ are the
center and angle of rotation, respectively. We extend
the action of Rp,θ from unoriented points to oriented
points by defining

Rp,θ(x, y, a) =
(
Rp,θ(x, y), (a+ θ) mod 2π

)
,

and we let R denote the set of rotation transformations
from O to O defined in this way.

Finally, we define the set of scaling operations on
an oriented point set. Each such operation Sp,s is
determined by a point p = (xp, yp, ap) at the center
of the scaling and by a scale factor, s. If a point q
is Euclidean distance d away from p before scaling, the
distance between q and p should become sd after scaling.
In particular, this determines Sp,s : O → O to be the
function

Sp,s(x, y, a) =
(
xp + s(x− xp), yp + s(y − yp), a

)
.

We let S denote the set of scaling functions defined in
this way.

As in the unoriented point-set pattern matching prob-
lems, we use a directed Hausdorff distance to measure
how well a transformed patten set of points, P , matches
a background set of points, B. That is, we use

h(P,B) = max
p∈P

min
q∈B

µ(p, q),

where µ(p, q) is a distance metric for oriented points in
R2. Our approach works for various types of metrics,
µ, for pairs of points, but, for the sake of concreteness,
we focus on two specific distance measures for elements
of O, which are based on the L1-norm and L2-norm,
respectively. In particular, for (x1, y1, a1), (x2, y2, a2) ∈
O, let

µ1((x1, y1, a1), (x2, y2, a2)) =

|x1 − x2|+ |y1 − y2|+ min(|a1 − a2|, 2π − |a1 − a2|),

and let

µ2((x1, y1, a1), (x2, y2, a2)) =√
(x1 − x2)2 + (y1 − y2)2 + min(|a1 − a2|, 2π − |a1 − a2|)2.

Intuitively, one can interpret these distance metrics to
be analogous to the L1-norm and L2-norm in a cylin-
drical 3-dimensional space where the third dimension
wraps back around to 0 at 2π. Thus, for i ∈ {1, 2},
and B,P ⊆ O, we use the following directed Hausdorff
distance:

hi(P,B) = max
p∈P

min
b∈B

µi(p, b).

Therefore, for some subset E of T ∪ R ∪ S, the
oriented point-set pattern matching problem is to find
a composition E of one or more functions in E that
minimizes hi(E(P), B).

3 Translations and Rotations

In this section, we present our base algorithm and
approximation algorithm for approximately solving the
oriented point-set pattern matching problem where we
allow translations and rotations. Given two subsets of
O, P and B, with |P | = m and |B| = n, our goal here
is to minimize hi(E(P), B) where E is a composition of
functions in T ∪ R. In the case of translations and
rotations, we actually give two sets of algorithms—
one set that works for point sets with large diameter
and one that works for point sets with small diameter.
Deciding which of these to use is based on a simple
calculation (which we postpone to the analysis below),
which amounts to a normalization decision to determine
how much influence orientations have on matches versus
coordinates.

Base Algorithm Under Translation and Rotation
with Large Diameter. In this subsection, we present
an algorithm for solving the approximate oriented point-
set pattern matching problem where we allow transla-
tions and rotations. This algorithm provides a good
approximation ratio when the diameter of our pattern
set is large. Given two subsets P and B of O, with
|P | = m and |B| = n, we wish to minimize hi(E(P), B)
over all compositions E of one or more functions in
T ∪ R. Our algorithm is as follows (see Figure 2).

Algorithm BaseTranslateRotateLarge(P,B):

Find p and q in P having the maximum value of
‖(xp, yp)− (xq, yq)‖2.
for every pair of points b, b′ ∈ B do

Pin step: Apply the translation, Tv ∈ T , that takes
p to b, and apply the rotation, Rp,θ, that makes p,
b′, and q collinear.
Let P ′ denote the transformed pattern set, P .
for every q ∈ P ′ do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest distance, hi(Rp,θ(Tv(P)), B).

end for

The points p and q can be found in O(m logm)
time [14]. The pin step iterates over O(n2) translations
and rotations, respectively, and, for each one of these
transformations, we perform m BBD queries, each of
which takes O(log n) time. Therefore, our total running
time is O(n2m log n). Our analysis for this algorithm’s
approximation factor uses the following simple lemma.

30th Canadian Conference on Computational Geometry, 2018

pb

q

b′

p
b

q
b′

p
b

q

b′

Translate Rotate

Result

Figure 2: Illustration of the translation and rotation
steps of the base approximation algorithm for transla-
tion and rotation in O when diameter is large.

Lemma 1 Let P be a finite subset of O. Consider the
rotation Rc,θ in R. Let q = (xq, yq, aq) be the element
in P such that ‖(xq, yq)− (xc, yc)‖2 = D is maximized.
For any p = (xp, yp, ap) ∈ P , denote Rc,θ(xp, yp, ap)
as p′ = (xp′ , yp′ , ap′). Let i ∈ {1, 2}. Then for all
p ∈ P , µi(p, p

′) ≤ ‖(xq, yq) − (xq′ , yq′)‖i + π‖(xq, yq) −
(xq′ , yq′)‖2/(2D).

Theorem 2 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi, for i ∈ {1, 2}. The algorithm above runs
in time O(n2m log n) and produces an approximation to
hopt that is at most (A1 + ε)hopt for h1 and at most
(A2 + ε)hopt for h2, where ε > is a fixed constant,
A1 = 6 +

√
2π/D, and A2 = 2 +

√
2(2 + π/D).

Grid Refinement. In this subsection, we describe
our grid refinement process, which allows us to use
a base algorithm to obtain an approximation ratio
of 1 + ε. To achieve this result, we take advantage
of an important property of the fact that we are
approximating a Hausdorff distance by a pin-and-query
algorithm. Our base algorithm approximates hopt by
pinning a reference pattern point, p, to a background
point, b. Reasoning backwards, if we have a pattern in
an optimal position, where every pattern point, p, is at
distance d ≤ hopt from its associated nearest neighbor in
the background, then one of the transformations tested
by the base pin-and-query algorithm moves each pattern
point by a distance of at most (Ai− 1)d away from this
optimal location when it performs its pinning operation.

Suppose we could define a constant-sized “cloud” of
points with respect to each background point, such that
one of these points is guaranteed to be very close to the
optimal pinning location, much closer than the distance
d from the above argument. Then, if we use these
cloud points to define the transformations checked by
the base algorithm, one of these transformations will
move each point from its optimal position by a much
smaller distance.

To aid us in defining such a cloud of points, consider
the set of points G(p, l, k) ⊂ R2 (where p = (xp, yp) is
some point in R2, l is some positive real value, and k is
some positive integer) defined by the following formula:

G(p, l, k) =
{
q ∈ R2 |

q = (xp + il, yp + jl), i, j ∈ Z,−k ≤ i, j ≤ k
}
.

Then G(p, l, k) is a grid of (2k + 1)2 points within
a square of side length 2kl centered at p, where the
coordinates of each point are offset from the coordinates
of p by a multiple of l. An example is shown in Figure 3.

p

l

3l

Figure 3: An example of G(p, l, 3).

Now consider any point q whose Euclidean distance
is no more than kl from p. This small distance forces
point q to lie within the square convex hull of G(p, l, k).
This implies that there is a point of G(p, l, k) that is
even closer to q:

Lemma 3 Let i ∈ {1, 2}. Given two points p, q ∈ R2,
if ‖p− q‖i ≤ kl, then ‖q− s‖1 ≤ l and ‖q− s‖2 ≤ l/

√
2,

where s is q’s closest neighbor in G(p, l, k).

A (1+ε)-Approximation Algorithm Under Trans-
lation and Rotation with Large Diameter. Here,
achieve a (1 + ε)-approximation ratio when we allow
translations and rotations. Again, given two subsets of
O, P and B, with |P | = m and |B| = n, our goal is
to minimize hi(E(P), B) over all compositions E of one
or more functions in T ∪ R. We perform the following
steps.

1. Run algorithm, BaseTranslateRotateLarge(P,B),
from Section 3 to obtain an approximation hapr ≤
A · hopt, where A = A1 + ε or A = A2 + ε, for a
constant ε > 0.

2. For every b ∈ B, generate the grid of points

Gb = G(b,
haprε
A2−A , d

A2−A
ε e) for h1 or the grid Gb =

G(b,
√
2haprε
A2−A , dA

2−A√
2ε
e) for h2. Let B′ denote the

resulting point set, which is of size O(A4n), i.e.,
|B′| is O(n) when A is a constant.

3. Run algorithm, BaseTranslateRotateLarge(P,B′),
except use the original set, B, for nearest-neighbor
queries in the query step.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

It is easy to see that this simple algorithm runs in
O(A8n2m log n), which is O(n2m log n) when A is a
constant (i.e., when the points in P have a large enough
diameter).

Theorem 4 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A8n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Base Algorithm Under Translation and Rotation
with Small Diameter. In this subsection, we present
an alternative algorithm for solving the approximate
oriented point-set pattern matching problem where we
allow translations and rotations. Compared to the
algorithm given in Section 3, this algorithm instead
provides a good approximation ratio when the diameter
of our pattern set is small. Once again, given two
subsets of O, P and B, with |P | = m and |B| = n,
we wish to minimize hi(E(P), B) over all compositions
E of one or more functions in T ∪ R. We perform the
following algorithm (see Figure 4).

Algorithm BaseTranslateRotateSmall(P,B):

Choose some p ∈ P arbitrarily.
for every points b ∈ B do

Pin step: Apply the translation, Tv ∈ T , that
takes p to b, and then apply the rotation, Rp,θ,
that makes p and b have the same orientation.
Let P ′ denote the transformed pattern set, P .
for every q ∈ P ′ do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest distance, hi(Rp,θ(Tv(P)), B).

end for

Theorem 5 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(nm log n) and produces an approximation to hopt that
is at most (Ai + ε)hopt for hi, where i = {1, 2}, ε > 0 is
a fixed constant, A1 = 2 +

√
2D, and A2 = 2 +D.

A (1+ε)-Approximation Algorithm Under Trans-
lation and Rotation with Small Diameter. In
this subsection, we utilize the algorithm from Section 3
to achieve a (1 + ε)-approximation ratio when we allow
translations and rotations. Again, given two subsets of

p

b
p

b

p
b

Translate Rotate

Result

Figure 4: Illustration of the translation and rotation
steps of the base approximation algorithm for transla-
tion and rotation in O when diameter is small.

O, P and B, with |P | = m and |B| = n, our goal is
to minimize hi(E(P), B) over all compositions E of one
or more functions in T ∪ R. We begin by describing
another type of grid refinement we use in this case.

In particular, let us consider a set of points C(p, k) ⊂
O where p = (xp, yp, ap) is some point inO and k is some
positive integer. We define the set in the following way
(see Figure 5):

C(p, k) = {q ∈ O|
q = (xp, yp, a+ 2πi/k mod 2π), i ∈ Z, 1 ≤ i ≤ k}.

2π
k

p

Figure 5: An example of C(p, 8).

From this definition, we can see that C(p, k) is a set
of points that share the same position as p but have
different orientations that are equally spaced out, with
each point’s orientation being an angle of 2π

k away from
the previous point. Therefore, it is easy to see that,
for any point q ∈ O, there is a point in C(p, k) whose
orientation is at most an angle of π

k away from the
orientation of q. Given this definition, our algorithm
is as follows.

1. Run algorithm, BaseTranslateRotateSmall(P,B),
from Section 3, to obtain hapr ≤ A · hopt.

2. For every b ∈ B, generate the point set

Gb = G

(
b,

haprε

2(A2 −A)
,

⌈
2(A2 −A)

ε

⌉)

30th Canadian Conference on Computational Geometry, 2018

for h1 or

Gb = G

(
b,

haprε

A2 −A
,

⌈
A2 −A

ε

⌉)
for h2. Let B′ denote the resulting set of points,
i.e., B′ =

⋃
b∈B Gb.

3. For every b′ ∈ B′, generate the point set

Cb′ = C

(
b′,

2(A2 −A)

πhaprε

)
for h1 or

Cb′ = C

(
b′,

√
2(A2 −A)

πhaprε

)

for h2. Let B′′ denote the resulting set of points.

4. Run algorithm, BaseTranslateRotateSmall(P,B′′),
but continue to use the points in B for nearest-
neighbor queries.

Intuitively, this algorithm uses the base algorithm to
give us an indication of what the optimal solution might
be. We then use this approximation to generate a larger
set of points from which to derive transformations to
test, but this time we also generate a number of different
orientations for those points as well. We then use this
point set in the base algorithm when deciding which
transformations to iterate over, while still using B to
compute nearest neighbors.

The first step of this algorithm runs in time
O(nm log n), as we showed. The second step takes time
proportional to the number of points which have to be
generated, which is determined by n, our choice of the
constant ε, and the approximation ratio, A, of our base
algorithm. The time needed to complete the second
step is O(A4n). The third step generates even more
points based on points generated in step two, which
increases the size of B′′ to be O(A6n). The last step
runs in time O(A6nm log n), which is also the running
time for the full algorithm.

Theorem 6 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A6nm log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Combining the Algorithms for Large and Small
Diameters. For the two cases above, we provided two
base algorithms that each had a corresponding (1 + ε)-
approximation algorithm. As mentioned above, we clas-
sified the two by whether the algorithm achieved a good
approximation when the diameter of the pattern set
was large or small. This is because the large diameter

base algorithm has an approximation ratio with terms
that are inversely proportional to the diameter, and the
small diameter base algorithm has an approximation
ratio with terms that are directly proportional to the
diameter.

Both of the resulting (1+ε)-approximation algorithms
have running times which are affected by the approxi-
mation ratio of their base algorithm, meaning their run
times are dependent upon the diameter of the pattern
set. We can easily see, however, that the approximation
ratios of the large and small diameter base algorithms
intersect at some fixed constant diameter, D∗. For
h1, if we compare the expressions 6 +

√
2π/D and

2 +
√

2D, we find that the two expressions are equal
at D∗ =

√
2 +
√

2 + π ≈ 3.68. For h2, we compare
2 +
√

2(2 + π/D) and 2 +D to find that they are equal

at D∗ =
√

2 +
√

2 +
√

2π ≈ 3.95. For diameters larger
than D∗, the approximation ratio of the large diameter
algorithm is smaller than at D∗, and for diameters
smaller than D∗, the approximation ratio of the small
diameter algorithm is smaller than at D∗. Thus, if we
choose to use the small diameter algorithms when the
diameter is less than D∗ and we use the large diameter
algorithms when the diameter is greater or equal to D∗,
we ensure that the approximation ratio is no more than
the constant value that depends on the constant D∗.
Thus, based on the diameter of the pattern set, we
can decide a priori if we should use our algorithms for
large diameters or small diameters and just go with that
set of algorithms. This implies that we are guaranteed
that our approximation factor, A, in our base algorithm
is always bounded above by a constant; hence, our
running time for the translation-and-rotation case is
O(n2m log n).

4 Conclusion

We present distance metrics that can be used to measure
the similarity between two point sets with orientations
and we also provided fast algorithms that guarantee
close approximations of an optimal transformation. In
the appendices, we provide additional algorithms for
other types of transformations and we also provide
results of experiments.

Acknowledgments

This work was supported in by the NSF under grants
1526631, 1618301, and 1616248, and by DARPA under
agreement no. AFRL FA8750-15-2-0092. The views
expressed are those of the authors and do not reflect the
official policy or position of the Department of Defense
or the U.S. Government.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] H. Alt and L. J. Guibas. Discrete geometric
shapes: Matching, interpolation, and approxima-
tion. Handbook of computational geometry, 1:121–
153, 1999.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Y. Wu. An optimal algorithm for
approximate nearest neighbor searching fixed di-
mensions. Journal of the ACM (JACM), 45(6):891–
923, 1998.

[3] D. E. Cardoze and L. J. Schulman. Pattern
matching for spatial point sets. In Foundations of
Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 156–165. IEEE, 1998.

[4] L. P. Chew, M. T. Goodrich, D. P. Huttenlocher,
K. Kedem, J. M. Kleinberg, and D. Kravets. Ge-
ometric pattern matching under euclidean motion.
Computational Geometry, 7(1):113–124, 1997.

[5] M. Cho and D. M. Mount. Improved approximation
bounds for planar point pattern matching. Algo-
rithmica, 50(2):175–207, 2008.

[6] M. Gavrilov, P. Indyk, R. Motwani, and
S. Venkatasubramanian. Geometric pattern match-
ing: A performance study. In Proceedings of
the fifteenth annual symposium on Computational
geometry, pages 79–85. ACM, 1999.

[7] M. T. Goodrich, J. S. Mitchell, and M. W. Orlet-
sky. Approximate geometric pattern matching un-
der rigid motions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(4):371–379,
1999.

[8] P. Indyk, R. Motwani, and S. Venkatasubramanian.
Geometric matching under noise: Combinatorial
bounds and algorithms. In SODA, pages 457–465,
1999.

[9] A. K. Jain, L. Hong, S. Pankanti, and R. Bolle. An
identity-authentication system using fingerprints.
Proceedings of the IEEE, 85(9):1365–1388, 1997.

[10] T.-Y. Jea and V. Govindaraju. A minutia-based
partial fingerprint recognition system. Pattern
Recognition, 38(10):1672–1684, 2005.

[11] X. Jiang and W.-Y. Yau. Fingerprint minutiae
matching based on the local and global structures.
In Proceedings 15th International Conference on
Pattern Recognition. ICPR-2000, volume 2, pages
1038–1041, 2000.

[12] J. V. Kulkarni, B. D. Patil, and R. S. Holambe.
Orientation feature for fingerprint matching. Pat-
tern Recognition, 39(8):1551–1554, 2006.

[13] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar.
Handbook of Fingerprint Recognition. Springer
Science & Business Media, 2009.

[14] F. P. Preparata and M. I. Shamos. Computational
geometry: an introduction. Springer-Verlag, New
York, NY, 1985.

[15] J. Qi, S. Yang, and Y. Wang. Fingerprint matching
combining the global orientation field with minu-
tia. Pattern Recognition Letters, 26(15):2424–2430,
2005.

[16] N. Ratha and R. Bolle. Automatic Fingerprint
Recognition Systems. Springer Science & Business
Media, 2007.

[17] M. Tico and P. Kuosmanen. Fingerprint match-
ing using an orientation-based minutia descriptor.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 25(8):1009–1014, 2003.

[18] R. C. Veltkamp. Shape matching: similarity
measures and algorithms. In Shape Modeling and
Applications, SMI 2001 International Conference
on., pages 188–197. IEEE, 2001.

[19] H. Xu, R. N. J. Veldhuis, T. A. M. Kevenaar, and
T. A. H. M. Akkermans. A fast minutiae-based
fingerprint recognition system. IEEE Systems
Journal, 3(4):418–427, Dec 2009.

30th Canadian Conference on Computational Geometry, 2018

A Postponed Proofs

In this appendix, we present proofs that were postponed
from the body of our paper.

Lemma 3. Let i ∈ {1, 2}. Given two points p, q ∈ R2, if
‖p − q‖i ≤ kl, then ‖q − s‖1 ≤ l and ‖q − s‖2 ≤ l/

√
2,

where s is q’s closest neighbor in G(p, l, k).

Proof. Because ‖p − q‖i ≤ kl, we know that q exists
within the square of side length 2kl which encompasses
G(p, l, k) (which we will refer to as G for the remainder
of this proof). This square can be divided into (2k)2

non-overlapping squares of side length l. It is easy to
see that the vertices of these squares are all points in
G and that q exists within (or on the edge of) at least
one of these squares. The point inside of a square that
maximizes the distance to the square’s closest vertex
is the exact center of the square. If the side length
is l, simple geometry shows us that at this point, the
distance to any vertex is l with respect to the L1-norm
and l/

√
2 with respect to the L2-norm. Thus, because q

exists within a square of side length l whose vertices are
points in G, the furthest that q can be from its nearest
neighbor in G is l for the L1-norm and l/

√
2 for the

L2-norm. �

Lemma 1. Let P be a finite subset of O. Consider the
rotation Rc,θ in R. Let q = (xq, yq, aq) be the element
in P such that ‖(xq, yq)− (xc, yc)‖2 = D is maximized.
For any p = (xp, yp, ap) ∈ P , denote Rc,θ(xp, yp, ap)
as p′ = (xp′ , yp′ , ap′). Let i ∈ {1, 2}. Then for all
p ∈ P , µi(p, p

′) ≤ ‖(xq, yq) − (xq′ , yq′)‖i + π‖(xq, yq) −
(xq′ , yq′)‖2/(2D).

D

D

c
q

q′

2D sin θ
2

θ

Figure 6: The rotation of q to q′ about c

Proof. After applying the rotation Rc,θ, we know q has
moved at least as far than any other point because it is
the farthest from the center of rotation. Without loss
of generality, 0 ≤ θ ≤ π. Then it is easily verifiable
that θ/π ≤ sin(θ/2). As 2D sin(θ/2) is the Euclidean
distance q moves under Rc,θ, it follows that

2Dθ

π
≤ 2D sin(θ/2) = ‖(xq, yq)− (xq′ , yq′)‖2.

This scenario is illustrated in Figure 6. Thus, θ ≤
(π‖(xq, yq)− (xq′ , yq′)‖2)/(2D), which implies that Rc,θ
moves the position of q by at most ‖(xq, yq)−(xq′ , yq′)‖i

and changes the orientation of q by at most π‖(xq, yq)−
(xq′ , yq′)‖2/(2D). Therefore, because q moves farther
than any other point in P , any point p ∈ P has moved
a distance of at most ‖(xq, yq)−(xq′ , yq′)‖i+π‖(xq, yq)−
(xq′ , yq′)‖2/(2D) with respect to the distance function
µi. �

Theorem 2. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi, for i ∈ {1, 2}. The algorithm above runs
in time O(n2m log n) and produces an approximation to
hopt that is at most (A1 + ε)hopt for h1 and at most
(A2 + ε)hopt for h2, where ε > 0 is a fixed constant,
A1 = 6 +

√
2π/D, and A2 = 2 +

√
2(2 + π/D).

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries (defining BBD
trees so they return (1 + ε/Ai)-approximate nearest
neighbors, for i ∈ {1, 2}). So it is sufficient for us to
prove approximation bounds that are Ai · hopt.

The first step is argued similarly to that of the proof
of Theorem 8. Let E be the composition of functions
in T ∪ R that attains the minimum of h(E(P), B) and
let P ′ be E(P). Then for all p in P ′, there exists b
in B such that µi(p, b) ≤ hopt. Let p′, q′ ∈ B be the
closest background points to optimal positions of p and
q respectively, where p and q are the diametric points
we choose in the first step of the algorithm. Thus,

‖(xp, yp)− (xp′ , yp′)‖i ≤ µi(p, p′) ≤ hopt.

Apply the translation Tv on P ′ so that p coincides with
p′, which is equivalent to moving every point ‖(xp, yp)−
(xp′ , yp′)‖i with respect to position. Lemma 7, then,
implies that all points have moved at most hopt.

Next, apply the rotation Rp,θ to P ′ that makes p, q,
and q′ co-linear. With respect to position, q moves at
most a Euclidean distance of 2D sin(θ/2) away from q′

where D is the Euclidean distance between p and q.
As all points were already at most 2hopt away from
their original background point in B, this implies that
2D sin(θ/2) ≤ 2

√
2hopt. Thus, ‖(xq, yq) − (xq′ , yq′)‖2

is at most 2
√

2hopt. Then by Lemma 1, as q is the
furthest point from p, the rotation moves all points at
most 2

√
2hopt +

√
2πhopt/D with respect to h2 and at

most 4hopt +
√

2πhopt/D for h1.
Since each point in the pattern set started out at

most hopt away from a point in the background set,
we combine this with the translation and rotation
movements to find that every point ends up at most
(6 +

√
2π/D)hopt away from a background point for

h1 and at most (2 +
√

2(2 + π/D))hopt away from a
background point for h2. As our algorithm checks this
combination of Tv and Rp,θ, our algorithm guarantees
at least this solution. Note that we assume p′ and q′

are not the same point. However if this is the case, then

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

we know that D ≤ 2hopt thus when we translate p to p′

every point is within (
√

5 + 2π/D)hopt of p′, which is a
better approximation than the case where p′ 6= q′ under
our assumption that D is large. �

Theorem 4. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A8n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪R
that attains the minimum of h(E(P), B). Let P ′ be
E(P). Then every point q ∈ P ′ is at most hopt from
the closest background point in B. By running the base
algorithm, we find hapr ≤ A · hopt, where A is the ap-
proximation ratio of the base algorithm. Now consider
the point b′ ∈ B which is the closest background to some
pattern point p ∈ P . The square which encompasses Gb′

has a side length of 2hapr. This guarantees that p, which
is at most hopt away from b′, lies within this square. As
we saw from Lemma 3, this means that p is at most
εhapr

A2−A away from its nearest neighbor in Gb′ . Thus, if a
transformation defined by the nearest points in B would
move our pattern points at most (A− 1)hopt from their
optimal position, then using the nearest points in Gb′

to define our transformation will move our points at
most (A− 1)

εhapr

A2−A =
εhapr

A ≤ εhopt. Thus, the modified
algorithm gives a solution that is at most (1+ε)hopt. �

Theorem 5. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(nm log n) and produces an approximation to hopt that
is at most (Ai + ε)hopt for hi, where i = {1, 2}, ε > 0 is
a fixed constant, A1 = 2 +

√
2D, and A2 = 2 +D.

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the ε
term using exact nearest neighbor queries (defining the
BBD tree so that it returns points that are (1 + ε/Ai)-
approximate nearest neighbors). Particularly, we will
prove a bound of (2 +

√
2D)hopt for h1 and a bound of

(2 +D)hopt for h2.
Let E be the composition of functions in T ∪R that

attains the minimum of h(E(P), B). Let P ′ be E(P).
Then every point p ∈ P ′ is at most hopt from the closest
background point in B. That is, for all p in P ′, there
exists b in B such that µi(p, b) ≤ hopt. Let p′ ∈ B be
the closest background point to the optimal position of
p where p is the point we chose in the first step of the
algorithm. Thus,

µi(p, p
′) ≤ hopt.

Apply the translation Tv and rotation Rp,θ on P ′ so
that p coincides with p′ and both points have the same
orientation. It is easy to see that p has moved from
its optimal position by exactly µi(p, p

′) ≤ hopt. Using
Lemma 7 and the fact that a rotation on P causes the
orientation of each point in P to change by the same
amount, we find that every point q ∈ P has moved at
most µi(p, p

′) + d from its original position, where d is
the change in the position of q caused by the rotation.

We know that the angle rotated, θ, must be less than
hopt and, without loss of generality, we assume 0 ≤ θ ≤
π. Therefore it is easily verifiable that sin(θ/2) ≤ θ/2.
If D is the diameter of P , then regardless of our choice
of p, each point in P is displaced at most 2D sin(θ/2)
by the rotation. Thus each point is displaced at most
Dθ ≤ Dhopt.

Since each point in the pattern set started out at
most hopt away from a point in the background set,
we combine this with the translation and rotation
movements to find that every point ends up at most
(2+
√

2D)hopt away from a background point for h1 and
at most (2 +D)hopt away from a background point for
h2. As our algorithm checks this combination of Tv and
Rp,θ, our algorithm guarantees at least this solution. �

Theorem 6. Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A6nm log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪R
that attains the minimum of hi(E(P), B). Let P ′

be E(P). Then every point q ∈ P ′ is at most hopt
from the closest background point in B. By running
the base algorithm, we find hapr ≤ A · hopt where
A is the approximation ratio of the base algorithm.
Now consider the point b′ ∈ B which is the closest
background to some pattern point p ∈ P . The square
which encompasses Gb′ has a side length of 2hapr. This
guarantees that p, which is at most hopt away from
b′, lies within this square. As we saw from Lemma 3,
this means that p is at most

εhapr

2(A2−A) away from its

nearest neighbor g in Gb′ with respect to the L1-norm,
and at most

εhapr√
2(A2−A)

with respect to the L2-norm.

For this point, g, there are a number of points in
Cg which are at the same position but with different
orientation. For some point c in Cg, the orientation of

point p is within an angle of at most
haprε

2(A2−A) for h1

and at most
haprε√
2(A2−A)

for h2. If we combine together

the maximum difference in position between p and c,
and the maximum difference in orientation between
p and c, then we see that for both µ1 and µ2, the
distance between p and c is at most

haprε
A2−A . Thus, if a

transformation defined by the nearest point in B would

30th Canadian Conference on Computational Geometry, 2018

move our pattern points at most (A− 1)hopt from their
optimal position, then using the nearest point in Cg
to define our transformation will move our points at
most (A− 1)

εhapr

A2−A =
εhapr

A ≤ εhopt. Thus, the modified
algorithm gives a solution that is at most (1+ε)hopt. �

B Translations Only

In this section, we present our base algorithm and
approximation algorithm for approximately solving the
oriented point-set pattern matching problem where we
allow only translations. In this way, we present the basic
template and data structures that we will also use for
the more interesting case of translations and rotations
(T ∪ R).

Our methods for handling translations, rotations, and
scaling is an adaptation of our methods for T ∪R; hence,
we give our methods for T ∪ R ∪ S in an appendix.

Given two subsets of O, P and B, with |P | = m and
|B| = n, our goal here is to minimize hi(E(P), B) where
E is a transformation function in T .

Base Algorithm Under Translation Only. Our
base pin-and-query algorithm is as follows.

Algorithm BaseTranslate(P,B):

Choose some p ∈ P arbitrarily.
for every b ∈ B do

Pin step: Apply the translation, Tv ∈ T , that takes
p to b.
for every q ∈ Tv(P) do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance for Tv accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest distance, hi(Tv(P), B).

end for

This algorithm uses a similar approach to an algo-
rithm of Goodrich et al. [7], but it is, of course, different
in how it computes nearest neighbors, since we must
use an oriented distance metric rather than unoriented
distance metric. One additional difference is that rather
than find an exact nearest neighbor, as described above,
we instead find an approximate nearest neighbor of
each point, q, since we are ultimately designing an
approximation algorithm anyway. This allows us to
achieve a faster running time.

In particular, in the query step of the algorithm, for
any point q ∈ Tv(P), we find a neighbor, b ∈ B, whose
distance to q is at most a (1 + ε)-factor more than the
distance from q to its true nearest neighbor. To achieve

this result, we adapt the balanced box-decomposition
(BBD) tree of Arya et al. [2] to oriented point sets.
Specifically, we insert into the BBD tree the following
set of 3n points in R3:{

b, b′, b′′ |b ∈ B,
b′ = (xp, yb, ab + 2π),

b′′ = (xb, yb, ab − 2π)
}
.

This takes O(n log n) preprocessing and it allows the
BBD tree to respond to nearest neighbor queries with
an approximation factor of (1 + ε) while using the L1-
norm or L2-norm as the distance metric, since the BBD
is effective as an approximate nearest-neighbor data
structure for these metrics. Indeed, this is the main
reason why we are using these norms as our concrete
examples of µi metrics. Each query takes O(log n)
time, so computing a candidate Hausdorff distance for a
given transformation takes O(m log n) time. Therefore,
since we perform the pin step over n translations, the
algorithm overall takes time O(nm log n). To analyze
the correctness of this algorithm, we start with a simple
observation that if we translate a point using a vector
whose Li-norm is d, then the distance between the
translated point and its old position is d.

Lemma 7 Let (x, y, a) be an element of O. Consider a
transformation Tv in T where v is a translation vector.
Let Tv(x, y, a) = (x′, y′, a). If the Li-norm of v is ‖v‖i =
d, then µi

(
(x, y, a), (x′, y′, a)

)
= d, where i ∈ {1, 2}.

Proof. First consider the case where i = 1. By
definition of µ1 and Tv,

µ1

(
(x, y, a), (x′, y′, a)

)
= |x− x′|+ |y − y′|+ min(|a− a|, 2π − |a− a|)
= |vx|+ |vy|
= d.

Now consider the case where i = 2:

µ2

(
(x, y, a), (x′, y′, a)

)
=
√

(x− x′)2 + (y − y′)2 + min(a− a, 2π − |a− a|)2

=
√
v2x + v2y

= d.

Thus, for either case, the lemma holds. �

Theorem 8 Let hopt be hi(E(P), B) where E is the
translation in T that attains the minimum of hi. The
algorithm above runs in time O(nm log n) and produces
an approximation to hopt that is at most (2+ ε)hopt, for
either h1 and h2, for any fixed constant ε > 0.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Proof. The ε term comes from the approximate nearest
neighbor queries using the BBD tree, and expanding
B to a set of size 3n by making a copy of each point
in B to have an angle that is 2π greater and less
than its original value. So it is sufficient to prove a
2-approximation using exact nearest neighbor queries
(while building the BBD tree to return (1 + ε/2)-
approximate nearest neighbors). We prove this claim by
a type of “backwards” analysis. Let E be a translation
in T that attains the minimum of hi(E(P), B), and let
P ′ = E(P). Then every point q ∈ P ′ is at most hopt
from its closest background point in B. That is, for all
q in P ′, there exists b in B such that µi(q, b) ≤ hopt. Let
b′ ∈ B be the closest background point to the optimal
position of p, where p is the point we choose in the first
step of the algorithm. Thus,

‖(xp, yp)− (xb′ , yb′)‖i ≤ µi(p, b′) ≤ hopt.

Apply the translation Tv on P ′ so that p coincides with
b′, which is equivalent to moving every point’s position
by ‖(xp, yp)−(xb′ , yb′)‖i. Hence, by Lemma 7, all points
have moved at most hopt.

As all points in the pattern started at most hopt away
from a point in the background set and the translation
Tv moves all points at most hopt, all points in Tv(P

′)
are at most 2hopt from a point in the background set B.
Since our algorithm checks Tv as one of the translations
in the second step of the algorithm, it will find a
translation that is at least as good as Tv. Therefore,
our algorithm guarantees an approximation of at most
2hopt, for either h1 and h2. �

A (1 + ε)-Approximation Algorithm Under
Translations Only. In this subsection, we utilize
the algorithm from Appendix B to achieve a (1 + ε)-
approximation when we only allow translations.
Suppose, then, that we are given two subsets of O, P
and B, with |P | = m and |B| = n, and our goal is to
minimize hi(E(P), B) over translations E in T . Our
algorithm is as follows:

1. Run the base algorithm, BaseTranslate(P,B), from
Appendix B, to obtain an approximation, hapr ≤
A · hopt.

2. For every b ∈ B, generate the point set

Gb = G

(
b,

ε hapr
A2 −A

,

⌈
A2 −A

ε

⌉)
for h1 or

Gb = G

(
b,
ε
√

2hapr
A2 −A

,

⌈
A2 −A
ε
√

2

⌉)
for h2. Let B′ denote this expanded set of back-
ground points, i.e., B′ =

⋃
b∈B Gb, and note that if

A is a constant, then |B′| is O(n).

3. Return the result from calling BaseTranslate(P,B′),
but restricting the query step to finding nearest
neighbors in B rather than in B′.

Intuitively, this algorithm uses the base algorithm to
give us a first approximation for the optimal solution.
We then use this approximation to generate a larger set
of points from which to derive transformations to test.
We then use this point set again in the base algorithm
when deciding which transformations to iterate over,
while still using B to compute nearest neighbors. The
first step of this algorithm runs in time O(nm log n), as
we showed. The second step takes time proportional
to the number of points which have to be generated,
which is determined by n, our choice of the constant ε,
and the approximation ratio of our base algorithm A,
which we proved is the constant 2 + ε. The time needed
to complete the second step is O(n). In the last step,
we essentially call the base algorithm again on sets of
size m and O(n), respectively; hence, this step requires
O(nm log n) time.

Theorem 9 Let hopt be hi(E(P), B) where E is the
translation in T that attains the minimum of hi, for i ∈
{1, 2}. The algorithm above runs in time O(nm log n)
and produces an approximation to hopt that is at most
(1 + ε)hopt, for either h1 and h2.

Proof. Let E be the translation in T that attains the
minimum of hi(E(P), B). Let P ′ be E(P). Then every
point q ∈ P ′ is at most hopt from the closest background
point inB. By running the base algorithm the first time,
we find hapr ≤ A · hopt, where A is the approximation
ratio of the base algorithm. Now consider the point,
b′ ∈ B, that is the closest background to some pattern
point p ∈ P . The square which encompasses Gb′ has a
side length of 2hapr. This guarantees that p, which is
at most hopt away from b′, lies within this square. As
we saw from Lemma 3, this means that p is at most
εhapr

A2−A away from its nearest neighbor in Gb′ . Thus, if a
transformation defined by the nearest point in B would
move our pattern points at most (A− 1)hopt from their
optimal position, then using the nearest point in Gb′

to define our transformation will move our points at
most (A − 1)

εhapr

A2−A =
εhapr

A ≤ εhopt. Therefore, our
algorithm gives a solution that is at most (1 + ε)hopt
from optimal. �

C Translation, Rotation, and Scaling

In this appendix, we show how to adapt our algorithm
for translations and rotations so that it works for
translations, rotations, and scaling. The running times
are the same as for the translation-and-rotation cases.

30th Canadian Conference on Computational Geometry, 2018

Base Algorithm Under Translation, Rotation
and Scaling with Large Diameter. In this section
we present an algorithm for solving the approximate
oriented point-set pattern matching problem where we
allow translations, rotations and scaling. This algo-
rithm is an extension of the algorithm from Section 3
and similarly provides a good approximation ratio when
the diameter of our pattern set is large. Given two
subsets P and B of O, with |P | = m and |B| = n,
we wish to minimize hi(E(P), B) over all compositions
E of one or more functions in T ∪ R ∪ S. We perform
the following algorithm:

Algorithm BaseTranslateRotateScaleLarge(P,B):

Find p and q in P having the maximum value of
‖(xp, yp)− (xq, yq)‖2.
for every pair of points b, b′ ∈ B do

Pin step: Apply the translation, Tv ∈ T , that takes
p to b, and apply the rotation, Rp,θ, that makes p,
b′, and q collinear. Then apply the scaling, Sp,s,
that makes q and b′ share the same position.
Let P ′ denote the transformed pattern set, P .
for every q ∈ P ′ do

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
return the smallest candidate Hausdorff distance
found as the smallest Hausdorff distance,
hi(Sp,s(Rp,θ(Tv(P))), B).

end for

This algorithm extends the algorithm presented in
Section 3 so that after translating and rotating, we
also scale the point set such that, after scaling, p and
b have the same x and y coordinates, and q and b′

have the same x and y coordinates. As with the
algorithm presented in Section 3, this algorithm runs
in O(n2m log n) time.

Theorem 10 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R ∪ S that attains the
minimum of hi. The algorithm above runs in time
O(n2m log n) and produces an approximation to hopt
that is at most (6 +

√
2(2 + π/D) + ε)hopt for h1 and at

most (4 +
√

2(2 + π/D) + ε)hopt for h2.

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the ε term
using exact nearest neighbor queries. Particularly, we
will prove a bound of (6 +

√
2(2 +π/D))hopt for h1 and

a bound of (4 +
√

2(2 + π/D))hopt for h2.

pb

q

b′

p
b

q
b′

p
b

q

b′

p
b

q b′

Translate Rotate

Scale Result

Figure 7: Illustration of the translation, rotation and
scaling steps of the base approximation algorithm for
translation, rotation and scaling in O when diameter is
large.

Let E be the composition of functions in T ∪ R ∪
S that attains the minimum of hi(E(P), B). Let P ′

be E(P). Because this algorithm is only an extension
of the algorithm in Section 3 we can follow the same
logic as the proof of Theorem 2 to see that after the
translation and rotation steps, each point p ∈ P ′ is at
most Ahopt away from a background point b ∈ B where
A = 6+

√
2π/D for h1 and A = 2+

√
2(2+π/D) for h2.

Now we need only look at how much scaling increases
the distance our points have moved.

If p, q ∈ P ′ are our diametric points after translation
and rotation, and p′, q′ ∈ B are the closest background
points to the optimal position of p and q respectively,
then let us define the point qt as the position of q after
translation, but prior to the rotation step. Now it is
important to see that the points q, q′ and qt are three
vertices of an isosceles trapezoid where the line segment
qtq
′ is a diagonal of the trapezoid and the line segment

qqt is a base of the trapezoid. This situation is depicted
in Figure 8. The length of the line segment qq′ is equal
to the distance that q will move when we scale P ′ so
that q and q′ share the same position. Because qq′ is
a leg of the trapezoid, the length of that leg can be no
more than the length of the diagonal qtq

′. In the proof
of Theorem 2, we showed that qt is at most 2hopt away
from q′ so this implies that the distance q moves from
scaling is at most 2hopt.

Point q is the farthest point away from the point p
that is the center for scaling. Thus, no point moved
farther as a result of the scaling than q did, with respect
to µ2. For µ1 it is possible that, if q moved a distance d,
another point could have moved up to a distance

√
2d.

Thus, we find that after scaling, any point in P ′ is at
most (A + 2

√
2)hopt and (A + 2)hopt from its nearest

background point for µ1 and µ2 respectively. Because

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

this is a transformation that the algorithm checks, we
are guaranteed at least this solution. Note that we
assume p′ and q′ are not the same point. However if
this is the case, then we know that D ≤ 2hopt thus
when we translate p to p′ and scale q down to p′ every
point is within (2π/D)hopt of p′, which is a better
approximation than the case where p′ 6= q′ under our
assumption that D is large. �

p qt

q q′

≤ 2hopt

Figure 8: Illustration of the points q, q′, and qt
forming three of the corners of an isosceles trapezoid,
as described in the proof of Theorem 10

A (1+ε)-Approximation Algorithm Under Trans-
lation, Rotation and Scaling with Large Di-
ameter. In this subsection, we utilize the algorithm
from Appendix C to achieve a (1 + ε)-approximation
ratio when we allow translations, rotations, and scaling.
Again, given two subsets of O, P and B, with |P | = m
and |B| = n, our goal is to minimize hi(E(P), B) over
all compositions E of one or more functions in T ∪R∪S.
We perform the following steps.

1. Run BaseTranslateRotateScaleLarge(P,B), from
Appendix C, to obtain an approximation hapr ≤
A · hopt.

2. For every b ∈ B, generate the point

set Gb = G(b,
haprε
A2−A , d

A2−A
ε e) for h1 or

Gb = G(b,
√
2haprε
A2−A , dA

2−A√
2ε
e) for h2. Let B′

denote the resulting set.

3. Run BaseTranslateRotateScaleLarge(P,B′), from
Appendix C, but use the set B for the nearest-
neighbor queries.

This algorithm uses the base algorithm to give us
an indication of what the optimal solution might be.
We then use this approximation to generate a larger
set of points from which to derive transformations to
test. We next use this point set in the base algorithm
when deciding which transformations to iterate over,
while still using B to compute nearest neighbors. The
running time is O(A8n2m log n), which is O(n2m log n)
for constant A.

Theorem 11 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R ∪ S that attains the

minimum of hi. The algorithm above runs in time
O(A8n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪
R ∪ S that attains the minimum of hi(E(P), B). Let
P ′ be E(P). Then every point q ∈ P ′ is at most
hopt from the closest background point in B. By
running the base algorithm, we find hapr ≤ Ahopt where
A is the approximation ratio of the base algorithm.
Now consider the point b′ ∈ B which is the closest
background to some pattern point p ∈ P . The square
which encompasses Gb′ has a side length of 2hapr. This
guarantees that p, which is at most hopt away from b′,
lies within this square. As we saw from Lemma 3,
this means that p is at most

εhapr

A2−A away from its
nearest neighbor in Gb′ . Thus, if a transformation
defined by the nearest points in B would move our
pattern points at most (A − 1)hopt from their optimal
position, then using the nearest points in Gb′ to define
our transformation will move our points at most

(A− 1)
εhapr
A2 −A

=
εhapr
A
≤ εhopt.

Thus, the modified algorithm gives a solution that is at
most (1 + ε)hopt. �

Base Algorithm Under Translation, Rotation
and Scaling with Small Diameter. In this subsec-
tion, we present an alternative algorithm for solving the
approximate oriented point-set pattern matching prob-
lem where we allow translations, rotations and scaling.
This algorithm is an extension of the algorithm from
Section 3 and similarly provides a good approximation
ratio when the diameter of our pattern set is small.
Once again, given two subsets of O, P and B, with
|P | = m and |B| = n, we wish to minimize hi(E(P), B)
over all compositions E of one or more functions in
T ∪ R. We perform the following algorithm:

Algorithm BaseTranslateRotateSmall(P,B):

Find p and q in P having the maximum value of
‖(xp, yp)− (xq, yq)‖2.
for every point b ∈ B do

1st Pin: Apply the translation, Tv ∈ T , that takes
p to b, and then apply the rotation, Rp,θ, that
makes p, b have the same orientation.
Let P ′ denote the transformed pattern set, P .
for each point p in P ′ and each b′ ∈ B do

2nd pin: Apply the scaling, Sp,s, so that
‖(xp, yp)− (xq, yq)‖2 = ‖(xb, yb)− (xb′ , yb′)‖2
Let P ′′ denote the transformed pattern set.
for every q ∈ P ′′ do

30th Canadian Conference on Computational Geometry, 2018

Query step: Find a nearest-neighbor of q in B
using the µi metric, and update a candidate
Hausdorff distance accordingly.

end for
end for
return the smallest candidate Hausdorff distance
found as the smallest Hausdorff distance,
hi(Sp,s(Rp,θ(Tv(P))), B).

end for

This algorithm extends the algorithm from Section 3
by scaling the point set for so that p, q, and b′ form the
vertices of an isosceles triangle. This requires a factor
of n more transformations to be computed. Thus, the
running time of this algorithm is O(n2m log n).

p

b
p

b

p
b

q
q

q

b′ b′

b′
p

b

q

b′

Translate Rotate

Scale Result

Figure 9: Illustration of the translation, rotation and
scaling steps of the base approximation algorithm for
translation, rotation and scaling in O when diameter is
small.

Theorem 12 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R ∪ S that attains the
minimum of hi. The algorithm above runs in time
O(n2m log n) and produces an approximation to hopt
that is at most ((2 + 2

√
2)(1 +D) + ε)hopt for h1 and at

most (4 + 2D + ε)hopt for h2.

Proof. The additional ε terms come entirely from using
approximate nearest neighbor queries, so it is sufficient
to prove approximations which do not include the ε term
using exact nearest neighbor queries. Particularly, we
will prove a bound of (6 +

√
2(2 +π/D))hopt for h1 and

a bound of (4 +
√

2(2 + π/D))hopt for h2.
Let E be the composition of functions in T ∪ R ∪

S that attains the minimum of hi(E(P), B). Let P ′

be E(P). Because this algorithm is only an extension

of the algorithm in Section 3 we can follow the same
logic as the proof of Theorem 5 to see that after the
translation and rotation steps, each point p ∈ P ′ is at
most Ahopt away from a background point b ∈ B where
A = 2+

√
2D for h1 and A = 2+D for h2. Now we need

only look at how much scaling increases the distance our
points have moved.

If p, q ∈ P ′ are our diametric points after translation
and rotation, and p′, q′ ∈ B are the closest background
points to the optimal position of p and q respectively,
then let us define the point qs as the position of q after
scaling. The points q, q′ and qs are three vertices of
an isosceles trapezoid where the line segment qq′ is a
diagonal of the trapezoid and the line segment qsq

′ is a
base of the trapezoid. The length of the line segment qqs
is equal to the distance that q will move when we scale
P ′. Because qqs is a leg of the trapezoid, the length of
that leg can be no more than the length of the diagonal
qq′. In the proof of Theorem 5, we showed that q is
at most Ahopt away from q′ so this implies that the
distance q moves from scaling is at most Ahopt.

Point q is the farthest point away from the point
p which is the center of our scaling. Thus, no point
moves farther as a result of the scaling than q does,
with respect to µ2. For µ1 it is possible that, if q moved
a distance d, another point could have moved up to
a distance

√
2d. Thus we find that after scaling, any

point in P ′ is at most (1 +
√

2)Ahopt and 2Ahopt from
its nearest background point for µ1 and µ2 respectively.
Because this is a transformation that the algorithm
checks, we are guaranteed at least this solution. �

A (1+ε)-Approximation Algorithm Under Trans-
lation, Rotation and Scaling with Small Diame-
ter. In this subsection, we utilize the algorithm from
Appendix C to achieve a (1 + ε)-approximation ratio
when we allow translations, rotations, and scalings.
Again, given two subsets of O, P and B, with |P | = m
and |B| = n, our goal is to minimize hi(E(P), B) over
all compositions E of one or more functions in T ∪R∪S.
We perform the following steps.

1. Run BaseTranslateRotateScaleSmall(P,B), from
Appendix C to obtain an approximation hapr ≤
A · hopt.

2. For every b ∈ B, generate the point set

Gb = G(b,
haprε

2(A2−A) , d
2(A2−A)

ε e) for h1 or

Gb = G(b,
haprε
A2−A , d

A2−A
ε e) for h2. Let

B′ =
⋃
b∈B Gb denote the resulting set of

points.

3. For every b′ ∈ B′, generate the point set Cb′ =

C(b′, 2(A
2−A)

πhaprε
) for h1 or Cb′ = C(b′,

√
2(A2−A)
πhaprε

) for

h2. Let B′′ denote the resulting set of points.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

4. Run BaseTranslateRotateScaleSmall(P,B′′), but
use the points in B for nearest-neighbor queries.

This algorithm uses the base algorithm to give us
an indication of what the optimal solution might be.
We use this approximation to generate a larger set of
points from which to derive transformations to test,
but this time we also generate a number of different
orientations for those points as well. We then use this
point set in the base algorithm when deciding which
transformations to iterate over, while still using B to
compute nearest neighbors. The running time of this
algorithm is O(A12n2m log n).

Theorem 13 Let hopt be hi(E(P), B) where E is the
composition of functions in T ∪ R that attains the
minimum of hi. The algorithm above runs in time
O(A12n2m log n) and produces an approximation to hopt
that is at most (1 + ε)hopt for both h1 and h2.

Proof. Let E be the composition of functions in T ∪
R∪S that attains the minimum of hi(E(P), B). Let P ′

be E(P). Then every point q ∈ P ′ is at most hopt from
the closest background point in B. By running the base
algorithm, we find hapr ≤ Ahopt where A is the approx-
imation ratio of the base algorithm. Now consider the
point b′ ∈ B which is the closest background to some
pattern point p ∈ P . The square which encompasses
Gb′ has a side length of 2hapr. This guarantees that
p, which is at most hopt away from b′, lies within this
square. As we saw from Lemma 3, this means that p
is at most

εhapr

2(A2−A) away from its nearest neighbor g in

Gb′ with respect to the L1-norm, and at most
εhapr√
2(A2−A)

with respect to the L2-norm. For this point g, there
are a number of points in Cg which are at the same
position but with different orientation. For some point
c in Cg, the orientation of point p is within an angle

of at most
haprε

2(A2−A) for h1 and at most
haprε√
2(A2−A)

for

h2. If we combine together the maximum difference in
position between p and c, and the maximum difference
in orientation between p and c, then we see that for
both µ1 and µ2, the distance between p and c is at most
haprε
A2−A . As we explain at the beginning of this section,
if a transformation defined by the nearest points in B
would move our pattern points at most (A−1)hopt from
their optimal position, then using the nearest points in
Cg to define our transformation will move our points at

most (A− 1)
εhapr

A2−A =
εhapr

A ≤ εhopt. Thus the modified
algorithm gives a solution that is at most (1+ε)hopt. �

As with our methods for translation and rotation,
we can compute in advance whether we should run our
algorithm for large diameter point sets or our algorithm
for small diameter point sets. For h1, we compare the
expressions 6 +

√
2(2 +π/D) and (2 + 2

√
2)(1 +D), and

we find that the two expressions are equal at D∗ ≈ 1.46.

For h2, we compare 4+
√

2(2+π/D) and 4+2D to find
that they are equal at D∗ ≈ 2.36. Using D∗ as the
deciding value allows us to then find a transformation
in T ∪R∪ S that achieves a (1 + ε)-approximation, for
any constant ε > 0, in O(n2m log n) time.

D Experiments

In reporting the results of our experiements, we use the
following labels for the algorithms:

• GR: the non-oriented translation and rotation al-
gorithm from Goodrich et al. [7],

• LDh1/h2
: the base version of the large diameter

algorithm using either the h1 or h2 distance metric,

• SDh1/h2
: the base version of the small diameter

algorithm using either the h1 or h2 distance metric.

These algorithms were implemented in C++ (g++
version 4.8.5) and run on a Quad-core Intel Xeon
3.0GHz CPU E5450 with 32GB of RAM on 64-bit
CentOS Linux 6.6.

Accuracy Comparison. We tested the ability of
each algorithm to identify the orginal point set after
it had been slightly perturbed. From set of randomly
generated oriented background point sets, one was se-
lected and a random subset of the points in the set were
shifted and rotated by a small amount. Each algorithm
was used to match this modified pattern against each
of the background point sets and it was considered a
success if the background set from which the pattern
was derived had the smallest distance (as determined
by each algorithm’s distance metric). Figure 10 shows
the results of this experiment under two variables: the
number of background sets from which the algorithms
could choose, and the size of the background sets. Each
data point is the percentage of successes across 1000
different pattern sets.

In every case, the oriented algorithms are more
successful at identifying the origin of the pattern than
GR. LD was also more successful for each distance
metric than SD.

Performance Comparison. We also compared the
performance of the LD and SD algorithms against GR
as we increased the pattern size and the background
size. The most significant impact of increasing the
background size is that the number of nearest neighbor
queries increase, and thus the performance in this case
is dictated by quality of the nearest neighbor data
structure used. Therefore in Figure 11 we use the
number of nearest neighbor queries as the basis for
comparing performance. As the FD and GR algorithms
only differ in how the nearest neighbor is calculated,

30th Canadian Conference on Computational Geometry, 2018

%
 C

or
re

ct
ly

 M
at

ch
ed

0

0.2

0.4

0.6

0.8

1

Number of Points per Set
0 20 40 60 80 100

LDh2

LDh1

SDh2

SDh1

GR

%
 C

or
re

ct
ly

 M
at

ch
ed

40

50

60

70

80

90

100

Number of Point Sets
0 20 40 60 80 100

Figure 10: Results of Accuracy Comparison

they both perform the same number of queries while
the SD algorithm performs significantly fewer nearest
neighbor queries.

For pattern size, we compared running time and the
results are shown in Figure 12. In this case, LD is slower
than GR, while SD is signifcantly faster than either of
the others.

LD/GR
SD

N
ea

re
st

 N
ei

gh
bo

r Q
ue

rie
s

100

1000

104

105

106

107

Size of Background Set
0 200 400 600 800 1000

Figure 11: Comparison of nearest neighbor queries as
function of background size

LD
SD
GR

Ti
m

e
(m

s)

1

10

100

1000

Size of Pattern Set
0 200 400 600 800 1000

Figure 12: Comparison of running time as a function of
pattern size

