
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Optimal Solutions for a Geometric Knapsack Problem
using Integer Programming∗

Rafael G. Cano† Cid C. de Souza† Pedro J. de Rezende†

Abstract

The objective of this paper is to present an experimen-
tal study of the Geometric Knapsack Problem (GKP)
with the goal of obtaining provably optimal solutions.
We introduce an Integer Linear Programming model for
the GKP and apply it to hundreds of instances of two
classes: one comprised of uniformly generated points
with randomly assigned values; and another composed
of convex layered points with value distribution biased
towards concentrating negative-valued points on the in-
nermost layers. Trial tests were used to guide the choice
of input parameters so as to avoid generating trivial in-
stances. Our experiments show that the layered class is
significantly harder to be solved to optimality, in prac-
tice, since even instances with as few as 35 points could
not be solved within 5 minutes of CPU time.

1 Introduction

Geometric knapsack problems (GKP) are extensions of
the classic knapsack problem to a geometric setting. In
the classic version, we are given a set of items with speci-
fied weights and values, together with a knapsack of lim-
ited capacity. The objective is to select a subset of items
whose combined weight does not exceed the capacity of
the knapsack and whose total value is maximum.

The geometric variants typically consist of the so-
called fence enclosure problems [1]. Here, we restrict our
study to a two-dimensional version in which items are
points in the plane. Consider a set P = {p1, p2, . . . , pn}
of n distinct points. With each point pi ∈ P there is
an associated real value vi, unrestricted in sign. The
“knapsack” (also called fence) consists of a simple poly-
gon, and the selected items are the points that it en-
closes. Unlike the classic variant, items do not have
an explicit weight. However, there is a cost associated
with the total length of the fence. The objective is to
maximize the net profit given by the total value of the

∗This work was supported by grants from Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq)
#304727/2014-8, #309627/2017-6, Fundação de Amparo à Pes-
quisa do Estado de São Paulo (FAPESP) #2014/12236-1,
#2018/11100-0, and Fundo de Apoio ao Ensino, à Pesquisa e
Extensão (FAEPEX).
†Institute of Computing, University of Campinas, Campinas –

Brazil, {rgcano,cid,rezende}@ic.unicamp.br

enclosed points minus the cost of the fence. An example
is shown in Figure 1.

Figure 1: An instance of the GKP with an optimal
fence. Positive and negative point values are repre-
sented by blue and red circles, resp., with radii pro-
portional to the magnitude of the values.

Formally, we say that a simple polygon ϕ (a fence)
strictly encloses all the points in P that lie in the in-
terior of the region bounded by ϕ. On the other hand,
among the points that lie on the polygon boundary, ϕ
also encloses those of non-negative value. The reason
for this apparent asymmetry is that, if we only take
into account the points that are strictly enclosed by the
fence, then an exact solution, such as the one shown
in Figure 1, would not be attainable. Nonetheless, our
extended definition of enclosure allows us to compute
a polygon that realizes the supremum of the net profit
function. Moreover, it is always possible to slightly alter
the given polygon in such a way that it strictly encloses
all positive-valued points lying on its boundary. This
modification would increase the length of the fence by
some ε > 0, but the resulting additional cost could be
made as small as desired.

We denote by Pϕ the set of all points enclosed by
ϕ. Let Lϕ be the total Euclidean perimeter of ϕ, and
c ≥ 0 be a construction cost per unit of length of the
fence. The GKP requires a fence ϕ to be built, which

maximizes the net profit
(∑

pi∈Pϕ
vi

)
− c · Lϕ.

30th Canadian Conference on Computational Geometry, 2018

1.1 Related Work

The GKP was proposed by Arkin et al. [1], who in-
troduced its many variants. In their work, they allow
the set of items to consist of either points, line seg-
ments or simple polygons. They also consider versions
in which there is an upper bound on the total length
of fence available. For point items, they show that the
problem is NP-hard if values are unrestricted in sign
(which is precisely the variant that we address here).
However, if all values are non-negative, they describe
two exact O(n3) algorithms. Moreover, if there is lim-
ited length of fence to use, the problem of maximizing
the total value of the enclosed points is NP-hard even
with non-negative values. For polygonal items, they
present different polynomial-time algorithms, depend-
ing on whether the fence is allowed to cross the objects.

Our version of the GKP is also related to the following
problem. Given two sets of points R (the “red points”)
and B (the “blue points”), we say that a separating
polygon for R and B is a simple polygon ϕ such that all
points of R are in the interior or on the boundary of ϕ,
and all points ofB are in the exterior or on the boundary
of ϕ (or vice-versa). The Red-Blue Separation Problem
(RBSP) consists of finding the minimum-perimeter sep-
arating polygon for the given sets of points. This prob-
lem was shown to be NP-hard by Eades and Rappaport
[5]. Approximation algorithms were proposed by Mata
and Mitchell [6] and Arora and Chang [2].

Reinbacher et al. [8] study an enclosure problem in
the context of Geographic Information Systems (GIS).
They address the problem of computing boundaries to
imprecise, verbally-defined regions, such as “Northern
Portugal” or “British Midlands”. In order to estimate
the boundary, they first extract a set of known locations
that are generally considered to be inside or outside the
desired region. Then, they compute a separating poly-
gon that encloses the inside points and obeys certain
geographic criteria.

Finally, our work also benefits from the theory de-
veloped for the Traveling Salesman Problem (TSP). In
particular, we use some results presented by Balas [3]
for the Prize Collecting TSP. In this version, a salesman
travels between pairs of cities and collects an amount of
prize money at each city that he visits. Contrary to the
classic variant, he can choose not to visit a city at the
cost of a penalty. The goal is to visit enough cities so as
to collect a minimum specified amount of prize money
while minimizing travel and penalty costs.

1.2 Our Contribution

In this work, we present a formulation of the GKP as an
Integer Linear Program (ILP). This is, to the best of our
knowledge, the first exact algorithm for this problem.
We use the ILP to obtain provably optimal solutions

for instances with up to 40 points. Based on a series of
experiments, we also devised a class of instances that
are particularly challenging to be solved in practice.

The remainder of the text is organized as follows. Sec-
tion 2 discusses some properties of optimal solutions.
Section 3 presents our ILP. Section 4 describes the in-
stances used in our tests and reports the main results
of our experimental evaluation. Some final remarks are
provided in Section 5.

2 Structure of Optimal Solutions

Given an instance of the GKP, consider an optimal fence
ϕ∗ that encloses the set of points Pϕ∗. Clearly, ϕ∗ must
be the minimum-perimeter polygon that separates Pϕ∗
and P \ Pϕ∗. Thus, properties that apply to optimal
solutions of the RBSP also apply to the GKP. In partic-
ular, for both problems, all vertices of the constructed
polygon must be points of the given set. This is il-
lustrated in Figure 2, where points of P are shown as
solid disks. Since vertices r and s are not points of P ,
a polygon of smaller perimeter can be obtained using
the chords r′r′′ and s′s′′, for the triangles (r′, r, r′′) and
(s′, s′′, s) do not contain any points of P .

r

s

r′′ r′

s′

s′′

Figure 2: A suboptimal fence with two vertices r and s
that are not points of P .

Moreover, it is easy to obtain a stronger result for
the GKP. Suppose a convex vertex r is a point of P
with negative value. By definition, r is not enclosed by
the fence. Thus, the previous perimeter-reducing con-
struction would still maintain the same set of enclosed
points and the original fence would not be optimal. Sim-
ilarly, if s ∈ P is a reflex vertex of positive value, by the
aforementioned construction, a fence of smaller perime-
ter could be built. Therefore, all convex (reflex) vertices
of an optimal fence must be points of P of positive (neg-
ative) values.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

3 Integer Programming Model

Let G = (P,A) be the complete directed graph whose
node set is the set of input points P and A = {(pi, pj) :
pi, pj ∈ P, i 6= j}. Given three points pi, pj , pk ∈ P ,
let ∆(pi, pj , pk) denote their orientation, i.e., the sign
of the signed area of the triangle pi, pj , pk. To simplify
our exposition, we assume that the points of P are in
general position. Hence, ∆(pi, pj , pk) 6= 0 for any three
points pi, pj , pk ∈ P .

In our formulation, we represent the fence as a single
directed cycle in G. For each arc (pi, pj) ∈ A we define a
binary variable xij that takes value 1 if and only if this
arc is part of the fence. Also, for each point pi we define
a binary variable yi that indicates whether pi is enclosed
by the fence. Two auxiliary expressions will be used to
simplify the description of the constraints. First, note
that a point pi is a vertex of the fence whenever there
is an arc incident to pi. Thus, we define

B(pi) =
∑

(pi,pj)∈A
xij . (1)

Since the solution must consist of a single directed cy-
cle, we include a set of constraints that limit the number
of outgoing and incoming arcs on each point to at most
one. Thus, B(pi) may take one of two values: 1 if pi is
on the fence, and 0 otherwise.

In order to model the objective function, it is also nec-
essary to determine which points are enclosed by a fence.
Ultimately, we must solve the point location problem
w.r.t. an arbitrary simple polygon built from (a sub-
set of) the input points. We apply an approach similar
to the following parity checking ray-crossing algorithm.
Denote by `i the horizontal half-line that extends from
a point pi to the positive direction of the x-axis. Given
a simple polygon ϕ, pi is interior to ϕ iff `i crosses (the
boundary of) ϕ an odd number of times.

However, parity checking in a linear model is not
a simple task. Nonetheless, arc directions are useful
to circumvent this issue. First, we adopt the con-
vention that the cycle representing the fence must be
counterclockwise-oriented (we will later show how to en-
force this in the model). Now, given a point pi not on
the border of the fence, we trace `i starting at pi, as
shown in Figure 3. Each time we cross an arc (pj , pk),
we inspect the value of ∆(pi, pj , pk). If it is positive, we
are moving from the inside to the outside of the fence,
otherwise we are moving from the outside to the inside.
Let nouti and nini be the number of times we move to
the outside and to the inside of the fence, respectively.
Clearly, pi is outside the fence iff nouti = nini .

Let Ri ⊆ A be the set of arcs crossed by `i (excluding
the intersections at pi itself, if any). We further define
R+
i = {(pj , pk) ∈ Ri : ∆(pi, pj , pk) > 0} and R−i =
{(pj , pk) ∈ Ri : ∆(pi, pj , pk) < 0}. From the previous

pi

p1

pj
`j

`i

p2

p3

p4

p5

p6p7

p9

p8

Figure 3: Illustration of the ray-crossing algorithm used
to determine which points are enclosed by the fence.

observation, we may write

nouti =
∑

(pj ,pk)∈R+
i

xjk and nini =
∑

(pj ,pk)∈R−
i

xjk.

As an example, for the point pi in Figure 3, all vari-
ables in the first summation have value 0, except for
x8,9, x2,3 and x5,6, so nouti = 3. In the second sum-
mation, the only variables with value 1 are x7,8 and
x3,4, so nini = 2. Note that `i intersects both (p3, p4)
and (p4, p5) at p4. Whenever the half-line intersects the
fence at a vertex pk, we only consider that it crosses
those arcs whose other endpoint is above pk. Thus x4,5
is not included in the summation. Finally, we define

I(pi) = nouti − nini . (2)

From the previous discussion, it follows that for any
point pi not on the border of the fence, I(pi) has value
1 when pi is inside the fence and 0 otherwise. It should
be noted that these values may differ for points lying on
the fence (e.g., in Figure 3, I(p3) = 1 and I(p5) = 0).
Even in this case I(pi) can only take values 0 or 1. As
we argue in the next section, these cases will not be of
importance for our formulation.

It remains for us to show how to enforce a counter-
clockwise orientation on the constructed cycle. In order
to do this, we make use of the observations in Section 2.
Since positive-valued points cannot be reflex vertices of
an optimal fence, we write constraints to enforce this
property. Let pi, pj , pk ∈ P be three distinct points,
with vj > 0 (recall that vj denotes the value associated
with point pj). If ∆(pi, pj , pk) < 0, then pj becomes a
reflex vertex whenever arcs (pi, pj) and (pj , pk) are used
together in a fence; thus we may write xij + xjk ≤ 1.
Analogously, if vj < 0 and ∆(pi, pj , pk) > 0, the pre-
vious inequality also prevents pj from becoming a con-
vex vertex. In general, this inequality is valid whenever
vj · ∆(pi, pj , pk) < 0 and it guarantees that all cycles
will lead to counterclockwise-oriented polygons.

Given an arc (pi, pj) ∈ A, let dij denote the Euclidean
distance between pi and pj . Also, given a set of points

30th Canadian Conference on Computational Geometry, 2018

S ⊂ P , let δ(S) denote the set of all arcs of G directed
from a point in S to a point in P \ S, i.e., δ(S) =
{(pi, pj) ∈ A : pi ∈ S and pj ∈ P \ S}.

The following ILP is a formulation of the GKP. The
objective function to be maximized is∑

pi∈P
vi · yi −

∑
(pi,pj)∈A

c · dij · xij (3)

subject to the following constraints:∑
(pi,pj)∈A

xij ≤ 1 ∀ pi ∈ P (4)

∑
(pi,pj)∈A

xij =
∑

(pj ,pi)∈A
xji ∀ pi ∈ P (5)

xij + xji ≤ 1 ∀ pi, pj ∈ P (6)

xij + xjk ≤ 1 ∀ pi, pj , pk ∈ P : (7)

vj ·∆(pi, pj , pk) < 0

yi ≤ I(pi) +B(pi) ∀ pi ∈ P : vi > 0 (8)

yi ≥ I(pi)−B(pi) ∀ pi ∈ P : vi < 0 (9)∑
(pi,pj)∈δ(S)

xij ≥ B(pk) +B(p`)− 1 ∀ S ⊂ P, (10)

2 ≤ |S| ≤ n− 2

pk ∈ S, p` ∈ P \ S.

The objective function (3) computes the sum of the
values of all enclosed points minus the sum of the costs
of all arcs in the cycle that represents the fence. Con-
straints (4) limit the number of outgoing arcs of each
node to at most one, and constraints (5) ensure that
whenever an arc enters a node, another arc must leave
it. Constraints (6) prevent two opposite arcs from being
chosen. Constraints (7) guarantee that positive-valued
points cannot become reflex vertices of the fence, and
negative-valued points cannot become convex vertices.

Constraints (8) and (9) enforce the desired meaning
of the y variables. If pi has positive value, then, due to
the maximization of the objective function, yi will be
set to 1, except if some constraint forbids it. Hence, we
must only force it to be 0 when pi is strictly outside the
fence. This is done by constraints (8). Similarly, if pi
has negative value, yi will be set to 0 since we are maxi-
mizing (3), unless it violates some constraint. Thus, we
must only force it to be 1 when pi is strictly inside the
fence. This is accomplished by constraints (9).

Finally, we must guarantee that a single cycle will
be constructed by the model. This is done by con-
straints (10). These constraints are well-known in the
literature of the TSP. The classic TSP requires that a
cycle be constructed using all nodes of the input graph
(i.e., it must be a Hamiltonian cycle). However, in our
case, points can be left out, so we use inequalities that
were originally studied by Balas [3] for the Prize Collect-
ing TSP. Those inequalities state that, given a subset

S of the input points, if points pk ∈ S and p` ∈ P \ S
are nodes on a constructed cycle, then there must be
at least one arc from S to P \ S. Although there is
an exponential number of them, we used a well-known
procedure to separate them in polynomial time using
a max-flow min-cut algorithm (see, e.g., Padberg and
Rinaldi [7]).

As a final remark, we mentioned earlier that I(pi)
might take value 0 or 1 if pi is on the fence itself. Note
that this variation does not affect the correctness of our
model, since constraints (8) and (9) are trivially satisfied
when B(pi) > 0.

4 Experiments

We now present our experimental study of the GKP,
which had two main goals. Firstly, we wanted to un-
derstand what features make an instance particularly
hard to solve in practice. This led us to create a chal-
lenging set of benchmark instances for exact methods.
Secondly, we wished to evaluate the performance of the
proposed ILP and to determine which instance sizes can
be solved in a reasonable amount of time. More details
are given in the next sections.

4.1 Instances

In order to create instances for the GKP, we must de-
cide on two major factors: the spatial distribution of
the points and the assignment of their associated val-
ues. In this work, we limit ourselves to uniformly dis-
tributed points in a square. The magnitudes of point
values are also drawn from a uniform distribution and
are restricted to a predefined range. We do, however,
vary the way in which the sign of each value is chosen,
giving rise to two classes of instances.

In the first class, each value is given an equal prob-
ability of receiving a positive or a negative sign. We
refer to these instances as uniform instances. Uniform
instances exhibit no particular structure and are useful
as a baseline to evaluate the performance of our ILP.

For the second class, we attempt to create more chal-
lenging instances based on the following idea. Since the
objective function seeks to maximize the net profit, an
optimal fence will naturally enclose as many positive-
valued points as possible, while avoiding the enclosure
of negative ones. Thus, an instance becomes more diffi-
cult when negative-valued points are hard to avoid. So,
we assign positive values to the outermost points, and
gradually increase the probability that a point receives
a negative value as we move inwards through the point
set.

More formally, to create instances for the second class,
we start by computing the convex layers of the set of
points. Given a point pi, denote by d the depth of its
layer and by D the depth of the innermost layer. The

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

probability that pi receives a negative value is set to√
d/D (we consider that the depth of the first layer – the

convex hull – is zero). Here, we apply the square root so
as to obtain a higher number of negative-valued points,
otherwise, the instance loses some of its complexity, as
we determined through some preliminary experiments.
We refer to instances of this class as layered instances.

We conclude this section by providing further details
on the creation of our instances. The square from which
the n points are drawn has side 100

√
n. The magnitude

of the values is selected in the range [50, 150]. The lower
bound of 50 is used because values with very small mag-
nitudes rarely have any significant impact on optimal
solutions, so the associated points often become irrele-
vant. The complete set of instances can be found on our
web page [4].

4.2 Computational Results

We executed the experiments on an Intel Xeon E5-
2603 1.60GHz CPU with 32GB of RAM. Integer pro-
grams were solved with a branch and cut algorithm us-
ing CPLEX 12.8 in deterministic mode using a single
thread. Our code was written in C++ and compiled
with g++ 5.4.0 with optimization flag -O3.

Initially, we ran some preliminary experiments to ob-
serve the behavior of each class of instances with differ-
ent values of the cost c per unit length of fence. Note
that if c is too high, the optimal fence will enclose a sin-
gle point of maximum value, and the instance becomes
trivial. Similarly, if c is too low, the cost of the fence
becomes negligible. In this case, the optimal fence will
enclose all (and only) positive-valued points, thus, the
problem reduces to the RBSP. To avoid both scenarios,
we chose intermediate values for c. For each class, we
ran tests with three values that were found to be the
most suitable according to the results of our prelimi-
nary experiments: {0.4, 0.6, 0.8} and {0.3, 0.4, 0.5} for
uniform and layered instances, respectively.

We created instances of five different sizes: {20, 25,
30, 35, 40}. For each size, we created 10 instances of
each class. Thus, in total, we have 50 uniform and 50
layered instances. We, then, ran our ILP on each one of
them with the three specified cost values, yielding a to-
tal of 300 test problems. The results are summarized in
Tables 1 and 2. For each size n and cost c, we report the
minimum (tmin) and maximum (tmax) running times
of the 10 instances. We also show the average running
time (tavg) together with the standard deviation. We
imposed a time limit of 5 minutes for each run, and
the last column shows the number of instances solved
to optimality within this time bound.

The results for uniform instances (Table 1) indicate
that this class does not pose difficulties to our ILP,
which was able to find optimal solutions for all in-
stances. Although the average running time is always

c n tmin tmax tavg #opt

0.4

20 0.1 0.6 0.3 ± 0.2 10
25 0.2 11.8 2.2 ± 3.6 10
30 0.2 16.6 5.4 ± 6.2 10
35 0.5 57.7 10.8 ± 17.6 10
40 1.6 201.5 52.6 ± 68.8 10

0.6

20 0.1 1.7 0.3 ± 0.5 10
25 0.1 6.0 1.0 ± 1.8 10
30 0.2 10.2 2.7 ± 3.1 10
35 0.4 43.9 10.0 ± 13.5 10
40 1.4 157.3 39.3 ± 47.9 10

0.8

20 0.1 0.3 0.1 ± 0.1 10
25 0.1 1.2 0.3 ± 0.3 10
30 0.1 1.9 0.8 ± 0.6 10
35 0.4 54.3 11.0 ± 16.4 10
40 1.0 178.9 50.7 ± 62.5 10

Table 1: Summary of the results for uniform instances.
Times are given in seconds.

c n tmin tmax tavg #opt

0.3

20 0.2 1.2 0.6 ± 0.4 10
25 0.3 52.4 13.5 ± 16.9 10
30 6.3 231.7 91.5 ± 72.6 10
35 0.6 300.0 200.0 ± 128.7 5
40 59.4 300.0 251.0 ± 89.9 3

0.4

20 0.2 3.0 0.9 ± 0.9 10
25 0.4 63.0 16.0 ± 21.8 10
30 3.1 120.6 34.4 ± 39.2 10
35 0.7 300.0 153.1 ± 116.7 8
40 14.9 300.0 235.0 ± 106.3 4

0.5

20 0.1 2.4 1.1 ± 0.9 10
25 0.3 38.3 11.0 ± 12.8 10
30 0.3 237.2 38.4 ± 72.5 10
35 1.2 300.0 119.4 ± 126.1 9
40 2.5 300.0 204.9 ± 128.1 4

Table 2: Summary of the results for layered instances.
Times are given in seconds.

below one minute, there is a very large deviation, which
is, in most cases, larger than the average itself. In sev-
eral cases, the solver took a long time to find a good
feasible solution to the ILP, which led to the processing
of a high number of nodes in the branch and bound tree
and, consequently, high running times.

As for layered instances, the results in Table 2 show
that this is, as desired, a much harder class. We were
not able to find optimal solutions for several instances
with 35 and 40 points. The average running times are
also higher in all cases. Therefore, we believe this is a
challenging set of instances to serve as a benchmark for
the GKP.

In our last experiment, we examined the behavior of
individual instances for a wide range of fence cost values.

30th Canadian Conference on Computational Geometry, 2018

Figure 4: Running time for each value of c for four
layered instances with 30 points each.

We selected four layered instances and ran our ILP on
them with values of c that range from 0.10 to 0.80 in
increments of 0.05. The running times are depicted in
Figure 4.

The graph shows that for low values of c, the instances
are harder to solve. As we mentioned earlier, when c is
too low, the problem reduces to the RBSP, which is also
NP-hard. The high variance in the running times is due
to CPLEX’s branch and bound process, which is, to a
certain extent, unpredictable. If the solver cannot find
a good solution quickly, a lot of branching is required
and the computation time increases. However, for high
values of c, the problem becomes easier. This happens
because the cost of several edges becomes prohibitive
and the solver can easily prune some nodes of the branch
and bound tree.

We observed this behavior for all test instances. Al-
though the specific value of c varies among instances,
there is always some threshold for which they become
trivial. This is illustrated in Figure 5, which shows
four optimal solutions for the instance layered-30c, ob-
tained with four different values of c. The rightmost

figure shows the shortest optimal non-degenerate fence
for that instance. If c is further increased, the opti-
mal solution becomes a degenerate polygon enclosing a
single point.

5 Conclusion

We addressed an NP-hard variant of the Geometric
Knapsack Problem and proposed an ILP formulation
for it. This is, to the best of our knowledge, the first
exact method to solve this variant. We also devised two
classes of instances to evaluate our ILP. One of them,
namely, layered instances, proved to be quite challeng-
ing for our formulation, and we propose it as a bench-
mark for this problem. As for future work, we believe
the development of effective heuristics could improve the
running times of our ILP, since in several cases, CPLEX
struggled to find feasible solutions. Finally, the study
of known optimal solutions could also lead to significant
speedups, especially if one can develop preprocessing
procedures that take advantage of the geometric prop-
erties of each instance.

References

[1] E. M. Arkin, S. Khuller, and J. S. Mitchell. Geometric
knapsack problems. Algorithmica, 10(5):399–427, 1993.

[2] S. Arora and K. Chang. Approximation schemes for
degree-restricted MST and red–blue separation prob-
lems. Algorithmica, 40(3):189–210, 2004.

[3] E. Balas. The prize collecting traveling salesman prob-
lem. Networks, 19(6):621–636, 1989.

[4] R. G. Cano, C. C. de Souza, and P. J. de Rezende. Geo-
metric knapsack – instances and experimental results,
2018. www.ic.unicamp.br/~cid/Problem-instances/

Geometric-Knapsack.

Figure 5: Optimal fences for the instance layered-30c with fence costs of 0.25, 0.40, 0.60 and 0.75, from left to right.
Positive and negative point values are represented by blue and red circles, resp., with radii proportional to the
magnitude of the values.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[5] P. Eades and D. Rappaport. The complexity of comput-
ing minimum separating polygons. Pattern Recognition
Letters, 14(9):715–718, 1993.

[6] C. S. Mata and J. S. Mitchell. Approximation algorithms
for geometric tour and network design problems. In Proc.
of the Eleventh Annual Symposium on Computational
Geometry, SCG ’95, pages 360–369. ACM, 1995.

[7] M. Padberg and G. Rinaldi. Facet identification for the
symmetric traveling salesman polytope. Mathematical
Programming, 47(1):219–257, 1990.

[8] I. Reinbacher, M. Benkert, M. van Kreveld, J. S.
Mitchell, J. Snoeyink, and A. Wolff. Delineating bound-
aries for imprecise regions. Algorithmica, 50(3):386–414,
2008.

