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Threadable Curves®
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Abstract

We define a plane curve to be threadable if it can rigidly
pass through a point-hole in a line L without otherwise
touching L. Threadable curves are in a sense gener-
alizations of monotone curves. We have two main re-
sults. The first is a linear-time algorithm for decid-
ing whether a polygonal curve is threadable—O(n) for
a curve of n vertices—and if threadable, finding a se-
quence of rigid motions to thread it through a hole. We
also sketch an argument that shows that the threadabil-
ity of algebraic curves can be decided in time polynomial
in the degree of the curve. The second main result is
an O(npolylogn)-time algorithm for deciding whether
a 3D polygonal curve can thread through a hole in a
plane in R3, and if so, providing a description of the
rigid motions that achieve the threading.

1 Introduction

We define a simple (non-self-intersecting) open planar
curve C' to be threadable if there exists a continuous
sequence of rigid motions that allows C' to pass through
a point-hole o in an infinite line L without any other
point of C' ever touching L. For fixed L, we will take
L to be the z-axis and o to be the origin; equivalently
we can view C as fixed and L moving (Lemma 1). C
could be a polygonal chain or a smooth curve. C is
open in the sense that it is not closed to a cycle. An
example is shown in Fig. 1; animations are available at
http://cs.smith.edu/~jorourke/Threadable/.

Note that our definition requires “strict threadabil-
ity” in the sense that no other point of C' touches L.
So, for example, the curve illustrated in Fig. 2 is not
threadable.

This notion has appeared in the literature in another
guise. In particular, a threadable curve C corresponds
to a “generalized self-approaching curve” with width 7
in both directions, as defined in [AATT01]. However,
those authors do not explore that concept, and in any
case, our explorations focus on different properties of C.
Nevertheless, our algorithms are quite similar to those
for recognizing self-approaching curves and increasing-
chord paths in [ACGT12].!
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Figure 1: Two snapshots of a 10-segment polygonal
chain passing through a point-hole in the z-axis.
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Figure 2: A curve that is not threadable. To pass com-
pletely through o, an edge would have to lie on L.
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One could view our topic as a specialized motion-
planning problem, but it seems not directly addressed
in the literature. Work of Yap [Yap87], discussed in
Section 7, can be viewed as a higher dimensional ver-
sion. Research examining the fabrication of hydraulic
tubes [AFMO03], as well as work on “producible protein
chains” [DLOO06], lead to workspace-clearance concerns,
to which we return in Section 8. We will see that classi-
cal computational geometry tools suffice to address our
problems, but some interesting questions are raised.

1.1 Definition Consequences

We now explore a few consequences of the definition.

Lemma 1 If a curve C is threadable, then through ev-
ery point p € C there is a line L that meets C in exactly
p: LNC ={p}, and L properly crosses C at p.

Note that L tangent to C is insufficient for thread-
ability, for then C would locally lie on one side of L.
This is why the lemma insists on proper crossings.

What is perhaps not immediate is the implication in
the other direction to Lemma 1:

Lemma 2 If a curve C has the property that through
every point p € C there is a line L that meets C' in ex-
actly p, and L properly crosses C at p, then C is thread-
able.

The reason this is not immediate, is that it is conceivable
that the orientation of the line changes discontinuously
at some point p € C, requiring an instantaneous rigid
“jump” motion of C' to pass through L, rather than a
continuous rigid motion. A proof is deferred until we
can rule out this discontinuity (Section 3).

1.2 Monotone Curves

A monotone curve C is defined as one that meets all
lines parallel to some line L in a single point (if strictly
monotone), or which intersects every such line in either
a point or a segment (if non-strictly monotone). Ev-
ery strictly monotone curve is threadable, and one can
view threadability as a generalization of monotonicity,
allowing the orientation of L to vary.

2 Butterflies

Define the butterfly bf(p) for p € C to be the set of
all lines L satisfying the threadability condition at p:
those lines that meet C' in exactly p and properly cross
C at p. Let L be one line in bf(p), and view C' as pass-
ing through L at p. Then the convex hull H* of the
chain from p upward is above L and meets L exactly
at p, and the hull H~ of the chain from p downward
is below L and again meets L exactly at p. (Here “up-
ward” and “downward” are not meant literally, but just

convenient shorthand for the two portions of the curve
delimited by a roughly horizontal L.) If either hull met
L in more than just p, then strict threadability would be
violated at L. Now rotate L counterclockwise about p
until it hits C' at some point other than p, and similarly
clockwise. The stopping points determine the butterfly
wing-lines. See Fig. 3.

Figure 3: Here C is fixed, and two bf(p)’s are shown.
Note the hulls H and H~ meet at exactly p. (a) The
stopping point ccw is vertex 6 and cw it is vertices 4, 5.

Thus bf(p) is an open double wedge. Its two boundary
wing-lines w™ and w™ (which are not part of bf(p)) must
both be externally supported by points of C' distinct
from p. Each wing must touch C on at least one of
its two halves with respect to p. Note by our definition,
bf(p) can never be a line; rather it becomes empty when
the wing-lines merge to one line.

3 Upper and Lower Hulls

It is not difficult to see that the upper convex hull
HT changes continuously (say, under the Hausdorff dis-
tance measure) as p moves along C, and similarly for
H~. This has long been known in the work on com-
puting “kinetic” convex hulls of continuously moving
points (although we have not found an explicit state-
ment). Roughly, because each point in the convex hull
of a finite set of points is a convex combination of those
points, moving one point p a small amount ¢ changes
the hull by at most a small amount ¢. For more detail,
see [Niel7].

Because the hulls change continuously, the butter-
flies change continuously as well. So we have finally
established Lemma 2: If there is a line through every
p € C meeting the threadability criteria, then indeed C'
is threadable: there are continuous rigid motions that
move C' through a point-hole in a line.

And now this is an immediate consequence of
Lemma 2 and our definition of bf(p):

Lemma 3 A curve C is threadable if and only if bf(p)
is never empty for any p € C.

We can also now see the following characterization,
which is the basis of the algorithm in the next section:
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Lemma 4 A curve C is threadable iff, for everyp € C,
the upper and lower hulls intersect in exactly p, i.e.,
HYNnH™ ={p}.

Proof. (=:) Suppose C is threadable, but HT N H~ #
{p}. We then show C could not be threadable.

e Case 1: Ht N H™ is a 2D region (Fig. 4(a)). Then
p is strictly interior to one of H* or H~. So, the
butterfly = @. Therefore C' is not threadable by
Lemma 3.

e Case 22 HY N H™ is a segment (Fig. 4(b)). Note
the intersection could not consist of > 2 segments,
for that would violate the convexity of convex hulls.
So, the butterfly wings reduce to a line; so the but-
terfly is empty. And again, C is not threadable by
Lemma 3.

(«<:) Assume HT N H~ = {p} for every p. Then, by
the definition of bf(p), for every p the butterfly is non-
empty, because one could rotate a line through p until it
hits H*. So Lemma 3 implies that C' is threadable. O

HT
HT

H-
H-

(a) (b)

Figure 4: (a) An example of Case 1: HT N H™ is a
2D region. (b) An example of Case 2: Ht N H™ is a
segment.

4 Algorithm for Threadability

In light of Lemma 4, we can detect whether a polygonal
chain is threadable by computing H™ and H~ for all
p along C, and verifying that p never falls inside either
hull, i.e., ceases to be a nonflat vertex of either hull.
Let p be a point on C = (v1,vs,...,v,), which we view
as moving “vertically downward” from v; (top) to vy,
(bottom). Let the edges of C be e; = (v;—1v;). We con-
centrate on constructing H = H' as p moves downward
along C. Clearly the same process can be repeated to
construct H ™.

As p moves down along C, H = hull{vy,...v;—1,p}
grows in the sense that the hulls form a nested sequence.
Thus once a vertex of C' leaves 0H, it never returns to
OH (where OH is the boundary of H.) At any one
time, p is a vertex of H. Let a1, as be the vertices of H

right-adjacent to p, and by, by the vertices left-adjacent,
so that (ba, b1,p, a1,az2) are consecutive vertices of H.
Finally, let A and B be the lines through ajas and bbso
respectively. See Fig. 5.

Figure 5: Algorithm snapshots. (a) H grows without
combinatorial change until p reaches v. (b) p = v event.
(¢) a1, a2 updated. e; crosses B. (d) by, be updated.

We now walk through the algorithm, whose pseu-
docode is displayed in the full version. Let p be on
the interior of an edge e¢; = (v;—1v;). The portion of e;
already passed by p must lie inside H, and the remain-
ing portion outside H. As long as p remains within the
wedge region delimited by A, B, and 0H, the combi-
natorial structure of H remains fixed (Fig. 5a). If p
crosses A or B—say A—then ay leaves H and aj,as
become the next two vertices counterclockwise around
OH. If p reaches the endpoint v; of e;, then if e;11 an-
gles outside H, v; becomes a new a; or b; depending on
the direction of e; 1. If instead, e;y1 turns inside H,
advancing p would enter H and we have detected that
C' is not threadable by Lemma 4.

All the updates just discussed are constant-time up-
dates: detecting if e; crosses A or B, updating aj,as
and by, be, and detecting if e; 1 turns inside H, enter-
ing Abjv;ay.

At the end of the algorithm, H is the hull of C. It
may seem surprising that we can compute the hull of
C' in linear time (rather than O(nlogn)), but Melkman
showed long ago that the hull of any simple polygonal
chain can be computed in linear time [Mel87]. The chain
C' acts almost as a pre-sorting of the points, leading to
an O(n) algorithm for threadability.

4.1 Rigid Motions

At any stage where the butterfly bf(p) is non-empty,
we could choose the line L to bisect bf(p). This choice
was used to produce the online animations cited in Sec-
tion 1. To prepare for an analogous 3D-computation
in Section 6, we explain the bisection choice in terms
of vectors normal to L. Fig. 6(a) shows the possible
L choices through p dictated by the two incident edges
of HT and the two incident edges of H~, illustrated
by rightward rays from p along L. Rotating these 90°
in (b) of the figure yields the possible vectors normal
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to L. The intersection of the H™ and H™~ constraints
yields an interval corresponding to bf(p), which is then
bisected to select a particular N and therefore L. (The
intersection always yields an interval [rather than two
intervals] because each of the H' and H™ constraints
is < a semicircle.)

(b)

Figure 6: (a) Rightward rays along possible L’s.
(b) Normal vector N to L (black).

Let HJ'|r and H;", j = 1,...,m be the sequence of hulls
at the points at which there is a combinatorial change
in either. Let r; C e be the range of p along edge e
of C between {H;F,HJ} and {H;g_l,ijH}. Then as
p moves along r;, the wings of the butterfly bf(p) have
the same set of tangency points on the hulls. With L
chosen as the bisector of bf(p), translation of p along r;
leads to translation and rotation of L. It is not difficult
to see that the rotation implied by p moving along r;
reverses at most once, from clockwise to counterclock-
wise or vice versa. This is evident in Fig. 7, where the
butterfly angle 6 bisected to yield L has at most one
local maximum. Thus each slide of p along r; leads to
at most two monotonic rotations. We call a slide and
a simultaneous monotonic rotation an elementary rigid
motion. But note that, although “elementary,” these
motions are not pure rotations and pure translations,
but rather the particular mix determined by the slide
and the butterfly bisection. We leave these elementary
motions as the output rigid motions, not further ana-
lyzed into explicit analytical expressions.

2o 0 p=(x.0) 1 p 10 05 05 10 15 20

(a) (b)
Figure 7: (a) p slides along edge e from pg to p1, r; =
(po,p1) € e. (b) The butterfly angle § has at most one

local maximum throughout the range.

Thus the sequence of O(n) hulls provides a set of O(n)

elementary rigid motions to thread C, which we used to
produce the online animations.

4.2 Difficult-to-Thread Curves

One easy consequence of our analysis is that a thread-
able curve need never “back-up” while threading
through a hole, because p never enters H* as it pro-
gresses along the chain. However, one could define the
“difficulty” of threading by, say, integrating the abso-
lute value of the back-and-forth rotations necessary to
thread. Then variations on the curve shown in Fig. 8
are difficult to thread in this sense. For each pair of
adjacent spikes require a rotation by €, and with many
short spikes, there is no bound on ) |0] even for a fixed-
length chain.?

X/ N\

Figure 8: A threadable curve that requires re-
peated rotations. Animation: http://cs.smith.edu/
~jorourke/Threadable/, Example 2.

5 Algebraic Curves

In the full version, we sketch an argument that shows
detection of threadability for algebraic curves is achiev-
able in time O(d*), where d is the degree of the curve.

6 Threadable Curves in 3D

The results in Section 4 can be extended to R3, asking
whether a 3D polygonal chain C' can pass through a
point-hole in a plane. First we roughly sketch an algo-
rithm. We claim without proof that the natural gener-
alization of the 2D lemmas hold in 3D as well.

Again Lemma 4 is the key: we need that HTNH~ =
{p} holds for all p on C. Again computing H+ and H~
will suffice to answer all questions; see Fig. 9. But now
what was the simple wedge region between hull sup-
porting lines A, B, and 0H, becomes a more complex
region R bounded by O(n) hull-supporting planes, and
the portion of H formed by the faces incident to p,
i.e., what is called star(p) in simplicial-complex theory
(which has size O(n)). Setting aside complexity issues
temporarily, the next edge e;+; on which p will travel

2Thanks to Anna Lubiw for this observation.
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Figure 9: Upper and lower hulls for a 3D polygonal
chain. Animation: http://cs.smith.edu/~jorourke/
Threadable/, Example 6.

must be intersected with the planes bounding this re-
gion R, to determine whether R changes combinatori-
ally, and if so, which supporting plane is first pierced by
€it1-

The planes bounding R that are not determined by
faces in star(p) are the planes incident to an edge of
link(p), i.e., the edges of star(p) not incident to p, which
form a topological circle. See Fig. 10. When e; 1 pierces
a plane A supporting face Aabc of H, with ab an edge of
link(p), then ab is deleted from the link, and ac and cb
added, and the planes incident to these new link edges
are added to those defining R.

Figure 10: Faces sharing an edge with link(p) are ex-
tended to form the lower part of R. H' does not change
combinatorially until p crosses one of those planes.

This allows H to be maintained throughout the move-
ment of p along C. Asin 2D, C is threadable if and only
if p never enters either hull.

If C is threadable, selecting planes in the more com-
plex bf(p) regions and determining rigid motions that
achieve the threading are more complicated tasks than
in 2D.

6.1 Updating the hull H quickly

Timothy Chan’s powerful dynamic data structure for
updating 3D convex hulls [ChalO] provides the tools
needed to update the hull H quickly. Here “quickly”
means in amortized expected O(polylogn) time. His
“nonvertical ray shooting” queries permit determining
if the next edge e;11 intersects a supporting plane of
the region R described above, and if so, which one.
Then that plane can be deleted, and new planes in-
serted according to the new link(p), as identified above.
Thus the computation of the hulls H+ and H~—and
therefore threadability detection—can be achieved in
O(npolylogn) time.

6.2 Butterfly “bisecting” planes

The equivalent of the butterfly bf(p) in 3D is a more
complicated region than in 2D, and choosing a plane P
through p separating H+ and H~ (the analog of L) is
correspondingly more complicated. As in 2D, we iden-
tify P by its normal vector N, say, pointing toward H ™.
The outward normals to the faces of H~ incident to p
form a convex geodesic polygon on the Gaussian sphere,
with each node a face normal, and each geodesic arc cor-
responding to the dihedral angle along the edge shared
by two adjacent faces. See, e.g., [BLS07]. Any point
within this geodesic polygon corresponds to a normal
vector whose plane supports H~ at p. Repeating this
for HT yields another geodesic polygon corresponding
to the faces of H incident to p. Using outward face
normals leads to normals pointing toward H ~; reflect-
ing this geodesic polygon through the origin then orients
the normals for H+ and H~ consistently. See Fig. 11.
Then the butterfly region bf(p) is determined by the
intersection I of these two geodesic polygons.

15 T=73)

H*—p

Figure 11: Gaussian sphere. The blue polygon repre-
sents the faces of H~ incident to p, and the red polygon
the faces of HT incident to p. Any point in the (yellow)
intersection I is the normal vector N of a plane P in
bf(p).

The equivalent of bisecting bf(p) in 2D would be
choosing the centroid of the intersection region I on
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the Gaussian sphere; of course any point in the interior
of I would suffice. In 2D we argued that, as p slides
along an edge e between combinatorial changes in ei-
ther H+ or H~, the rigid rotation reverses direction at
most once, which led to a linear-size description of the
rigid motions. In 3D, even with p on one edge e between
combinatorial changes, it seems that the intersection re-
gion I on the Gaussian sphere might change 2(n) times,
requiring recalculation of N € I. This complicates de-
scribing the rigid motions in a concise manner. We leave
finding a clean notion of what should constitute a “el-
ementary rigid motion” in 3D to future work, but we
note that the rigid motions for threading are analyti-
cally determined and could be detailed to any precision
desired.

7 Higher Dimensional Generalizations

There are two natural generalizations to higher dimen-
sions, but neither seems a fruitful line of future inquiry.
The first retains the curve as a 1-dimensional object
which must pass through a hole in a hyperplane in R,

The second generalization replaces the curve with a
polygon P, which must pass through a slit in L. This
topic has been explored previously, in two versions. We
cite [Yap87] and [BVKO05] and leave further discussion
to the full version.

8 Open Problems

1. In R3, can finding a plane P separating H+ and
H~, as sketched in Section 6, be achieved in
O(npolylogn) time? In other words, can the in-
tersection I of the two geodesic polygons be main-
tained in amortized expected O(polylogn) time?

2. Is there a natural definition of what constitutes an
“elementary rigid motion” in R? and how many
such motions are needed to thread a polygonal
curve of n segments?

3. If C were a hydraulic tube, it would be neces-
sary to ensure clearance regions above and/or be-
low L are empty of other objects to avoid colli-
sions [AFMO3]. If C represents a polygonal protein
chain, clearance within a cone is important in some
models [DLO06]. Finding minimum clearance re-
gions requires more careful selection of L in bf(p),
rather than just using the bisector as we suggest in
Section 4.1. The question is most relevant in R3.

4. Suppose instead of C' passing through a line, C were
to pass through a point hole in a polygonal k-chain.
What is the complexity of finding a threading mo-
tion as a function of n and k7

5. If C is not threadable, what is the shortest slit in L
through which C could pass? Or, in R3, the small-

est radius hole in a plane? Likely Yap’s door width
algorithm [Yap87] could apply to the 2D problem,
but it would be attractive to find a hull-based ap-
proach in 2D and 3D.
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