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Compatible 4-Holes in Point Sets
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Abstract

Counting interior-disjoint empty convex polygons in a
point set is a typical Erdős-Szekeres-type problem. We
study this problem for convex 4-gons. Let P be a set of
n points in the plane and in general position. A subset
Q of P , with four points, is called a 4-hole in P if Q is
in convex position and its convex hull does not contain
any point of P in its interior. Two 4-holes in P are
compatible if their interiors are disjoint. We show that
P contains at least b5n/11c−1 pairwise compatible 4-
holes. This improves the lower bound of 2b(n − 2)/5c
which is implied by a result of Sakai and Urrutia (2007).

1 Introduction

Throughout this paper, an n-set is a set of n points in
the plane and in general position, i.e., no three points
are collinear. Let P be an n-set. A hole in P is a subset
Q of P , with at least three elements, such that Q is in
convex position and no element of P lies in the interior
of the convex hull of Q. A k-hole in P is a hole with k
elements. By this definition, a 3-hole in P is an empty
triangle with vertices in P , and a 4-hole in P is an empty
convex quadrilateral with vertices in P .

The problem of finding and counting holes in point
sets has a long history in discrete combinatorial geome-
try, and has been an active research area since Erdős and
Szekeres [14, 15] asked about the existence of k-holes in
a point set. In 1931, Esther Klein showed that any 5-
set contains a convex quadrilateral [15]; it is easy to see
that it also contains a 4-hole. In 1978, Harborth [17]
proved that any 10-set contains a 5-hole. In 1983, Hor-
ton [18] exhibited arbitrarily large point sets with no 7-
hole. The existence of a 6-hole in sufficiently large point
sets has been proved by Nicolás [22] and Gerken [16]; a
shorter proof of this result is given by Valtr [26].

Two holes Q1 and Q2 are disjoint if their convex hulls
are disjoint, i.e., they do not share any vertex and do
not overlap. We say sat Q1 and Q2 are compatible if the
interiors of their convex hulls are disjoint, that is, they
can share vertices but do not overlap. A set of holes
is called disjoint (resp. compatible) if its elements are
pairwise disjoint (resp. compatible). See Figure 1.
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Figure 1: Two disjoint 4-holes (left), and five compatible
4-holes (right).

Since every three points form the vertices of a trian-
gle, by repeatedly creating a triangle with the three left-
most points of an n-set we obtain exactly bn/3c disjoint
3-holes. However, this does not generalize to 4-holes,
because the four leftmost points may not be in con-
vex position. Obviously, the number of disjoint 4-holes
in an n-set is at most bn/4c. Hosono and Urabe [19]
proved that the number of disjoint 4-holes is at least
b5n/22c; they improved this bound to (3n−1)/13 when
n = 13 ·2k−4 for some k > 0. A variant of this problem
where the 4-holes are vertex-disjoint, but can overlap,
is considered in [29]. As for compatible holes, it is easy
to verify that the number of compatible 3-holes in any
n-set is at least n−2 and at most 2n−5; these bounds
are obtained by triangulating the point set: we get n−2
triangles, when the point set is in convex position, and
2n−5 triangles, when the convex hull of the point set is
a triangle. Sakai and Urrutia [24] proved among other
results that any 7-set contains at least two compatible
4-holes. In this paper we study the problem of finding
the maximum number of compatible 4-holes in an n-set.

Devillers et al. [13] considered some colored variants
of this problem. They proved among other results that
any bichromatic n-set has at least dn/4e−2 compatible
monochromatic 3-holes; they also provided a matching
upper bound. As for 4-holes, they conjectured that a
sufficiently large bichromatic point set has a monochro-
matic 4-hole. Observe that any point set that disproves
this conjecture does not have a 7-hole (regardless of col-
ors). For a bichromatic point set R ∪ B in the plane,
Sakai and Urrutia [24] proved that if |R| > 2|B|+5, then
there exists a monochromatic 4-hole. They also studied
the problem of blocking 4-holes in a given point set R;
the goal in this problem is to find a smallest point set
B such that any 4-hole in R has a point of B in its inte-
rior. The problem of blocking 5-holes has been studied
by Cano et al. [12].
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Figure 2: The point p is the attack point of h(a:b→c) (left). The radial ordering of points around p0 (middle). A
10-set with at most three compatible 4-holes (right).

Aichholzer et al. [3] proved that every 11-set contains
either a 6-hole, or a 5-hole and a disjoint 4-hole. Bhat-
tacharya and Das [6] proved that every 12-set contains
a 5-hole and a disjoint 4-hole. They also proved the
existence of two disjoint 5-holes in every 19-set [7]. For
more results on the number of k-holes in small point sets
and other variations, see the paper by Aichholzer and
Krasser [4], a summary of recent results by Aichholzer et
al. [5], and B. Vogtenhuber’s doctoral thesis [27]. Re-
searchers also have studied the problem of counting the
number of (not necessarily empty nor compatible) con-
vex quadrilaterals in a point set; see, e.g., [2, 11, 21, 28].

A quadrangulation of a point set P in the plane is
a planar subdivision whose vertices are the points of
P , whose outer face is the convex hull of P , and ev-
ery internal face is a quadrilateral; in fact the quadri-
laterals are empty and pairwise compatible. Similar
to triangulations, quadrangulations have applications
in finite element mesh generation, Geographic Informa-
tion Systems (GIS), scattered data interpolation, etc.;
see [9, 10, 23, 25]. Most of these applications look for
a quadrangulation that has the maximum number of
convex quadrilaterals. To maximize the number of con-
vex quadrilaterals, various heuristics and experimental
results are presented in [9, 10]. This raises another moti-
vation to study theoretical aspects of compatible empty
convex quadrilaterals in a planar point set.

In this paper we study lower and upper bounds for
the number of compatible 4-holes in point sets in the
plane. A trivial upper bound is bn/2c − 1 which comes
from n points in convex position. The b5n/22c lower
bound on the number of disjoint 4-holes that is proved
by Hosono and Urabe [19], simply carries over to the
number of compatible 4-holes. Also, as we will see in
Section 2, the lower bound of 2b(n− 2)/5c on the num-
ber of compatible 4-holes is implied by a result of Sakai
and Urrutia [24]. After some new results for small point
sets, we prove non-trivial lower bounds on the number of
compatible 4-holes in an n-set. We prove that every 9-
set (resp. 11-set) contains three (resp. four) compatible
4-holes. Using these results, we prove that every n-set
contains at least b5n/11c−1 compatible 4-holes. Our

proof of this lower bound is constructive, and imme-
diately yields an O(n log2 n)-time algorithm for finding
this many compatible 4-holes.

Since the initial presentation of this work [8], the
problem has attracted further attention. Most promi-
nently, the lower bound on the number of compatible
4-holes has been improved to dn−32 e by Cravioto-Lagos,
González-Mart́ınez, Sakai, and Urrutia [1]. The same
bound is claimed in an abstract by Lomeli-Haro, Sakai,
and Urrutia in Kyoto International Conference on Com-
putational Geometry and Graph Theory (CGGT2007)
[20]. However, this result has not been published yet.

2 Preliminaries

First we introduce some notation from [19]. We define
the convex cone C(a:b, c) to be the region of the angular
domain in the plane that is determined by three non-
collinear points a, b, and c, where a is the apex, b and c
are on the boundary of the domain, and ∠bac is acute
(less than π/2). We denote by h(a:b→c) the rotated
half-line that is anchored at a and rotates, in C(a:b, c),
from the half-line ab to the half-line ac. If the interior of
C(a:b, c) contains some points of a given point set, then
we call the first point that h(a:b→c) meets the attack
point of h(a:b→c); see Figure 2-left.

Let P be an n-set. We denote by CH(P ) the convex
hull of P . Let p0 be the bottommost vertex on CH(P ).
Without loss of generality assume that p0 is the origin.
Label the other points of P by p1, . . . , pn−1 in clockwise
order around p0, starting from the negative x-axis; see
Figure 2-middle. We refer to the sequence p1, . . . , pn−1
as the radial ordering of the points of P \{p0} around p0.
We denote by li,j the straight line through two points
with indexed labels pi and pj .

It is easy to verify that the number of 4-holes in an
n-set in convex position is exactly bn/2c−1. Figure 2-
right, that is borrowed from [19], shows an example of
a 10-set that contains at most three compatible 4-holes;
by removing a vertex from the convex hull, we obtain
a 9-set with the same number of 4-holes. This example
can be extended to larger point sets, and thus, to the
following proposition.
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Proposition 1 For every n > 3, there exists an n-set
that has at most dn/2e−2 compatible 4-holes.

Proposition 2 The number of compatible 4-holes in an
n-set is at most n− 3.

Proof. Let P be an n-set. Consider the maximum
number of compatible 4-holes in P . The point set P to-
gether with an edge set, that is the union of the bound-
ary edges of these 4-holes, introduces a planar graph G.
Every 4-hole in P corresponds to a 4-face (a face with
four edges) in G, and vice versa. Using Euler formula
for planar graphs one can verify that the number of in-
ternal 4-faces of G is at most n − 3. This implies that
the number of 4-holes in P is also at most n− 3. �

Theorem 1 (Klein [15]) Every 5-set has a 4-hole.

Theorem 2 (Sakai and Urrutia [24]) Every 7-set
has at least two compatible 4-holes.

As a warm-up, we show that the number of 4-holes in
an n-set P is at least b(n−2)/3c. Let p0 be the bottom-
most point of P and let p1, . . . , pn−1 be the radial order-
ing of the other points of P around p0. Consider b(n−
2)/3c cones C(p0:p1, p4), C(p0:p4, p7), C(p0:p7, p10), . . .
where each cone has three points of P (including p0)
on its boundary and two other points in its interior.
See Figure 2-middle. Each cone contains five points
(including the three points on its boundary), and by
Theorem 1 these five points introduce a 4-hole. Since
the interiors of these cones are pairwise disjoint, we
get b(n − 2)/3c compatible 4-holes in P . We can im-
prove this bound as follows. By defining the cones
as C(p0:p1, p6), C(p0:p6, p11), C(p0:p11, p16), . . . , we get
b(n− 2)/5c cones, each of which contains seven points.
By Theorem 2, the seven points in each cone introduce
two compatible 4-holes, and thus, we get 2 · b(n− 2)/5c
compatible 4-holes in total. Intuitively, any improve-
ment on the lower bound for small point sets carries
over to large point sets.

3 Compatible 4-holes in small point sets

In this section we provide lower bounds on the number
of compatible 4-holes in 9-sets and 11-sets. In Subsec-
tion 3.2 we prove that every 9-set contains at least three
compatible 4-holes and every 11-set contains at least
four compatible 4-holes. Both of these lower bounds
match the upper bounds given in Proposition 1. Due to
the nature of this type of problems, our proofs involve
case analysis. The case analysis gets more complicated
as the number of points increases. To simplify the case
analysis, we use two observations and a lemma that are
given in Subsection 3.1. To simplify the case analysis
further, we prove our claim for 9-sets first, then we use

this result to obtain the proof for 11-sets. In this section
we may use the term “quadrilateral” instead of 4-hole.

Let P be an n-set. Let p0 be the bottommost
point of P and let p1, . . . , pn−1 be the radial order-
ing of the other points of P around p0. For each
point pi, with i ∈ {2, . . . , n − 2}, we define the sig-
nature s(pi) of pi to be “+” if, in the quadrilateral
p0pi−1pipi+1, the inner angle at pi is greater than π,
and “−” otherwise; see Figure 2-middle. We refer to
s(p2)s(p3) . . . s(pn−2) as the signature sequence of P
with respect to p0. We refer to s(pn−2) . . . s(p3)s(p2)
as the reverse of s(p2)s(p3) . . . s(pn−2). A minus sub-
sequence is a subsequence of − signs in a signature se-
quence. A plus subsequence is defined analogously. For
a given signature sequence δ, we denote by m(δ), the
number of minus signs in δ.

3.1 Two observations and a lemma

In this section we introduce two observations and a
lemma to simplify some case analysis in our proofs,
which come later. Notice that if s(pi) . . . s(pj) is a
plus subsequence, then the points pi−1, pi, . . . , pj , pj+1

are in convex position and the interior of their con-
vex hull does not contain any point of P . Also, if
s(pi) . . . s(pj) is a minus subsequence, then the points
p0, pi−1, pi, . . . , pj , pj+1 are in convex position and the
interior of their convex hull does not contain any point of
P . Therefore, the following two observations are valid.

Observation 1 Let s(pi) . . . s(pj) be a plus subse-
quence of length 2k, with k > 1. Then, the convex hull
of pi−1, . . . , pj+1 can be partitioned into k compatible
4-holes. See Figure 3(a).

Observation 2 Let s(pi) . . . s(pj) be a minus subse-
quence of length 2k + 1, with k > 0. Then, the convex
hull of p0, pi−1, . . . , pj+1 can be partitioned into k + 1
compatible 4-holes. See Figure 3(b).

Lemma 3 Let s(pi+1)s(pi+2) . . . s(pi+2k) be a minus
subsequence of length 2k, with k > 1, and let pi and
pi+2k+1 have + signatures. Then, one can find k + 1
compatible 4-holes in the convex hull of p0, pi−1, . . . ,
pi+2k+2.

Proof. Refer to Figures 3(c) and 3(d). For every
j ∈ {0, . . . , k} let li+j be the line through pi+j and
pi+2k+1−j . These lines might intersect each other, but,
for a better understanding of this proof, we visualized
them as parallel lines in Figures 3(c) and 3(d).

Notice that the points p0, pi, . . . , pi+2k+1 are in con-
vex position. If pi−1 is below li, then we get a 4-hole
p0pi−1pipi+2k+1 and k other compatible 4-holes in the
convex hull of the points pi, . . . , pi+2k+1; see Figure 3(c).
Assume pi−1 is above li. If pi−1 is below some lines in
the sequence li+1, . . . , li+k, then let li+j be the first one
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Figure 3: (a) Plus subsequence s(p4)s(p5)s(p6)s(p7) of length four. (b) Minus subsequences s(p2) and s(p5) . . . s(p9)
of lengths one and five. The point pi−1 is (c) below li, and (d) below li+j and above all lines li, . . . , li+j−1.

in this sequence, that is, pi−1 is below li+j but above
all lines li, . . . , li+j−1. Notice that in this case pi−1
is also above the line through pi+j−1 and pi+2k+1−j .
In this case we get a 4-hole pi−1pi+jpi+2k+1−jpi+j−1,
and k − j compatible 4-holes in the convex hull of
pi+j . . . , pi+2k+1−j , and j compatible 4-holes in the con-
vex hull of p0, pi, . . . , pi+j−1, pi+2k+1−j , . . . , pi+2k+1; see
Figure 3(d). Thus, we get k + 1 compatible 4-holes in
total. Similarly, if pi+2k+2 is below one of the lines
li+j for j ∈ {0, . . . , k} we get k + 1 compatible 4-
holes. Thus, assume that both pi−1 and pi+2k+2 are
above all lines li, . . . , li+k. In this case we get a 4-hole
pi−1pi+2k+2pi+k+1pi+k and k other compatible 4-holes
in the convex hull of pi, . . . , pi+2k+1. Thus, we get k+ 1
compatible 4-holes in total. �

Quadrilaterals obtained by Observations 1 and 2 do
not overlap because quadrilaterals obtained by Observa-
tion 1 lie above the chain p1, . . . , pn−1 while quadrilat-
erals obtained by Observation 2 lie below this chain.
However, the quadrilaterals obtained in the proof of
Lemma 3 might lie above and/or below this chain. The
quadrilaterals obtained by this lemma can overlap the
quadrilaterals obtained by Observations 1 or 2 in the
following two cases:

• Consider the first case in the proof of Lemma 3 when
pi−1 lies below li and we create the quadrilateral
p0pi−1pipi+2k+1. If s(pi−1) belongs to a minus sub-
sequence, and we apply Observation 2 on it, then
the quadrilateral p0pi−2pi−1pi obtained by this ob-
servation overlaps the quadrilateral p0pi−1pipi+2k+1.
Similar issue may arise when s(pi+2k+2) belongs to a
minus subsequence.

• Consider the last two cases in the proof of Lemma 3
when pi−1 lies above li. If s(pi−1) belongs
to a plus subsequence, and we apply Observa-
tion 1 on it, then the quadrilaterals obtained by
this observation might overlap either the quadri-
lateral pi−1pi+jpi+2k+1−jpi+j−1 or the quadrilateral
pi−1pi+2k+2pi+k+1pi+k that is obtained by Lemma 3.
Similar issue may arise when s(pi+2k+2) belongs to a
plus subsequence.

As such, in our proofs, we keep track of the follow-
ing two assertions when applying Lemma 3 on a subse-
quence s(pi+1)s(pi+2) . . . s(pi+2k):

Assertion 1. Do not apply Observation 1 on a plus
subsequence that contains s(pi−1) or s(pi+2k+2).

Assertion 2. Do not apply Observation 2 on a minus
subsequence that contains s(pi−1) or s(pi+2k+2).

3.2 Compatible 4-holes in 9-sets and 11-sets

Here we count compatible 4-holes in 9-sets and 11-sets.

Theorem 4 Every 9-set contains at least three compat-
ible 4-holes.

Theorem 5 Every 11-set contains at least four com-
patible 4-holes.

In the rest of this section we prove Theorem 4. The
proof of Theorem 5, which is given in the full version of
our paper [8], has the same structure as of Theorem 4,
and make more use of Observations 1-2 and Lemma 3.

Let P be a 9-set. Let p0 be the bottommost point of
P and let p1, . . . , p8 be the radial ordering of the other
points of P around p0. Let δ be the signature sequence
of P with respect to p0, i.e., δ = s(p2) . . . s(p6)s(p7).
Depending on the value of m(δ), i.e., the number of mi-
nus signs in δ, we consider the following seven cases.
Notice that any proof of this theorem for δ carries over
to the reverse of δ as well. So, in the proof of this theo-
rem, if we describe a solution for a signature sequence,
we skip the description for its reverse.

• m(δ) = 0: In this case δ is a plus subsequence of
length six. Our result follows by Observation 1.

• m(δ) = 1: In this case δ has five plus signs. By Ob-
servation 2, we get a quadrilateral by the point with
− signature. If four of the plus signs are consecu-
tive, then by Observation 1 we get two more quadri-
laterals. Otherwise, δ has two disjoint subsequences
of plus signs, each of length at least two. Again,
by Observation 1 we get a quadrilateral for each of
these subsequences. Therefore, in total we get three
4-holes; these 4-holes are pairwise non-overlapping.
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• m(δ) = 2: Notice that δ has a plus subsequence of
length at least two. If the two minus signs are non-
consecutive, then we get two quadrilaterals by Ob-
servation 2 and one by Observation 1. Assume the
two minus signs are consecutive. If the four plus signs
are consecutive or partitioned into two subsequences
of lengths two, then we get two quadrilaterals by Ob-
servation 1 and one by Observation 2. The remaining
sequences are +−−+++ and +++−−+, where the
second one is the reverse of the first one. By splitting
the first sequence as +−−+ |++ we get two quadri-
laterals for the subsequence +−−+, by Lemma 3. If
in this lemma we land up in the last case where both
pi−1 and pi+2k+2 are above li+k, then we get a third
compatible quadrilateral p1p6p7p8, otherwise we get
p4p6p7p8. Notice that Assertion 1 holds here.

• m(δ) = 3: If the three minus signs are pairwise non-
consecutive, then we get three quadrilaterals by Ob-
servation 2. If the three minus signs are consecu-
tive, then δ has a plus subsequence of length at least
two. Thus, we get two quadrilaterals by Observa-
tion 2 and one by Observation 1. Assume the minus
signs are partitioned into two disjoint subsequences
of lengths one and two. Then, we get two quadrilat-
erals for the minus signs. If δ has a plus subsequence
of length at least two, then we get a third quadrilat-
eral by this subsequence. The remaining sequences
are +−−+−+ and its reverse.

We show how to get three compatible 4-holes with the
sequence + − − + −+. See Figure 4. First we look
at p1. If p1 is below l2,5 then the three quadrilater-
als p0p1p2p5, p2p3p4p5, and p0p5p6p7 are compatible.
Assume p1 is above l2,5. If p1 is below l3,4 then the
quadrilaterals p1p3p4p2, p0p2p4p5, and p0p5p6p7 are
compatible. Assume p1 is above l3,4. Now, we look
at p6. If p6 is above l3,4 then p1p6p4p3, p2p3p4p5, and
p0p5p6p7 are compatible. If p6 is below l3,4 and above
l2,5 as in Figure 4-left, then p0p2p3p5, p3p4p6p5, and
p0p5p6p7 are compatible. Assume p6 is below l2,5 as
in Figure 4-right; consequently p7 is also below l2,5
because p6 has − signature. Since p5 has + signature,
p4 is above l5,6. Now, we look at p8. If p8 is above l5,6,
then p4p8p6p5, p2p3p4p5, and p0p5p6p7 are compati-
ble. If p8 is below l5,6 and above l5,7, then p5p6p8p7,
p2p3p4p5, and p0p2p5p7 are compatible. Assume p8 is
below l5,7 as in Figure 4-right. In this case p2p3p4p5,
p2p5p6p7, and p0p2p7p8 are compatible.

• m(δ) = 4: If the two plus signs in δ are consecutive,
then we get one quadrilateral by Observation 1 and
two by Observation 2. Assume the two plus signs
are non-consecutive. If the minus signs are parti-
tioned into three subsequences or two subsequences
of lengths one and three, then we get three compatible
4-holes by Observation 2. The remaining sequences
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Figure 4: Signature sequence + − − + −+. Left: p1 is
above l3,4, and p6 is below l3,4 and above l2,5. Right:
p1 is above l3,4, p6 is below l2,5, and p8 is below l5,7.

are +−−−−+, +−−+−− and its reverse. For the
sequence +−−−−+ we get three quadrilaterals by
Lemma 3. The sequence +−−+−− can be handled
by splitting as +−−+|−|−, where we get two quadri-
laterals for the subsequence + − −+, by Lemma 3,
and one quadrilateral for the last minus sign, by Ob-
servation 1. Notice that Assertion 2 holds here as we
apply Observation 1 on the last minus sign.

• m(δ) = 5: If the five minus signs are consecutive, then
we get three compatible quadrilaterals by Observa-
tion 2. Otherwise, δ has two minus subsequences, one
of which has size at least three. By Observation 2 we
get three quadrilaterals with these two subsequences.

• m(δ) = 6: The six minus signs are consecutive and
our result follows by Observation 2.

4 Compatible 4-holes in n-sets

In this section we prove our main claim for large point
sets, that is, every n-set contains at least b5n/11c − 1
compatible 4-holes. As in Section 2, by combining Theo-
rems 4 and 5 with the idea of partitioning the points into
some cones with respect to their radial ordering about a
point p0, we can improve the lower bound on the num-
ber of compatible 4-holes in an n-set to 3·b(n−2)/7c and
4 · b(n − 2)/9c, respectively. In the rest of this section,
we first prove a lemma, that can be used to improve
these bounds further. We denote by ab the straight-line
through two points a and b. We say that a 4-hole Q
is compatible with a point set A if the interior of Q is
disjoint from the interior of the convex hull of A.

Lemma 6 For every (r+s)-set, with r, s > 4, we can
divide the plane into two internally disjoint convex re-
gions such that one region contains a set A of at least
s points, the other region contains a set B of at least r
points, and there exists a 4-hole that is compatible with
A and B.

Before proving this lemma, we note that a similar
lemma has been proved by Hosono and Urabe (Lemma
3 in [19]) for disjoint 4-holes, where they obtain a set A′

of s−2 points, a set B′ of r−2 points, and a 4-hole Q
that is disjoint from A′ and B′. However, their lemma
does not imply our Lemma 6, because it might not be
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possible to add two points of Q to A′ to obtain a set A
of s points such that Q is compatible with A.

a2

b1

b2

a1

a2

a3

b1

b2

b3

a1

a2

a3
b1

b2

b3
a1

a2

a3
b1

b2

b3

a1

a2

a3
b1

b2

b3 a4

a1 a1

a2

a3
b1

b2
b3

a4

b4

Figure 5: Illustration of Lemma 6. The convex regions
with r and s points are shown in light purple and light
orange, respectively. The compatible 4-holes with these
regions are in blue color. The gray regions are empty.

In the following proof, if there exist two internally
disjoint convex regions such that one of them contains
a set A of s points, the other contains a set B of r points,
and there exists a 4-hole that is compatible with A and
B, then we say that A and B are good.

Proof of Lemma 6. Consider an (r+s)-set. In this
proof a “point” refers to a point from this set. Also
when we say a convex shape is “empty” we mean that
its interior does not contain any point from this set.

Let a1 be a point on the convex hull of this set, and
without loss of generality assume that a1 is the lowest
point. Let a2 be the point such that s−2 points are to
the right side of the line a1a2. Let A be the set of points
that are on or to the right side of a1a2, and let B be
the set of other points. Notice that A contains s points
and B contains r points. Let b1 be the point of B such
that the interior of C(a1:a2, b1) does not contain any
point. Let b2 be the point of B such that the interior of
C(a1:a2, b2) contains only b1. See Figure 5(top-left).

If b1 is not in the interior of the triangle 4a1a2b2,

then a1a2b1b2 is a 4-hole that is compatible with A and
(B \ {b1}) ∪ {a1}. As shown in Figure 5(top-left), the
interiors of the convex hulls of these two sets are dis-
joint, and thus, these two sets are good. Assume that
b1 is in the interior of 4a1a2b2. We consider two cases
depending on whether or not C(b1:b2, a2) is empty.

• C(b1:b2, a2) is not empty. If C(b1:b2, a2) contains a
point of A, then let a3 be such a point that is the
neighbor of a2 on CH(A); see Figure 5(top-right).
Then b1b2a3a2 is a 4-hole, and A and (B \ {b1}) ∪
{a1} are good. If C(b1:b2, a2) contains a point of B,
then let b3 be such a point that is the neighbor of
b2 on CH(B). Then b1b2b3a2 is a 4-hole, and A and
(B \ {b1}) ∪ {a1} are good.

• C(b1:b2, a2) is empty. Let a3 be the attack point of
h(b1:a1→a2), i.e., the first point that h(b1:a1→a2)
meets. If the attack point of h(b1:a1→b2) is below
b1a3, then let b3 be that point; Figure 5(middle-left).
In this case b1a3a1b3 is a 4-hole, and (A\{a1})∪{b1}
and B are good. Assume that the attack point of
h(b1:a1→b2) is above b1a3. We consider the following
two cases depending on whether or not there is a
point of B above the line a2b2.

– No point of B is above a2b2. Let b3 be the attack
point of h(b1:b2→a1) as in Figure 5(middle-right).
Then b1b3b2a2 is a 4-hole, and A ∪ {b1} and (B \
{b2}) ∪ {a1} are good.

– Some point of B is above a2b2. Let b3 be such
a point that is the neighbor of b2 on CH(B). If
some point of A is above a2b2, then let a4 be such
a point that is the neighbor of a2 on CH(A); see
Figure 5(bottom-left). Then a2b2b3a4 is a 4-hole,
and A∪{b1} and B ∪{a1} are good. Assume that
no point of A is above a2b2. Let a4 be the attack
point of h(b1:a2→a3) and b4 be the attack point of
h(a2:b1→b2) as in Figure 5(bottom-right). Notice
that it might be the case that b4 = b2. In either
case, b1b4a2a4 is a 4-hole, and (A\{a2})∪{b1} and
(B \ {b1}) ∪ {a2} are good. �

Theorem 7 Every n-set contains at least b5n/11c − 1
compatible 4-holes.

Proof. Let P be an n-set. Our proof is by induction
on the number of points in P . The base cases happen
when |P | 6 14. If |P | 6 13, then our claim follows from
one of Theorems 1, 2, 4, or 5. If |P | = 14, then by
applying Lemma 6 on P with r = s = 7 we get a 4-hole
together with two sets A and B each containing at least
7 points. By Theorem 2 we get two 4-holes in each of
A and B. Thus, we get five compatible 4-holes in total.
This finishes our proof for the base cases.

Assume that |P | > 15. By applying Lemma 6 on P
with r = n−11 and s = 11 (notice that r is at least four
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as required by this lemma) we get a 4-hole together with
two sets A and B such that the interiors of their convex
hulls are disjoint, A contains at least 11 points, and B
contains at least n−11 points. By Theorem 5 we get
four compatible 4-holes in CH(A). By induction, we
get b5(n − 11)/11c − 1 compatible 4-holes in CH(B).
Therefore, in total, we get

1 + 4 +

(⌊
5(n− 11)

11

⌋
− 1

)
=

⌊
5n

11

⌋
− 1

compatible 4-holes in P . �

An O(n log2 n)-time algorithm for computing this
many 4-holes follows from the proofs, by using a dy-
namic convex hull data structure for computing the sets
A and B in Lemma 6.
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