
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Isomorphism Elimination
by Zero-Suppressed Binary Decision Diagrams∗

Takashi Horiyama† Masahiro Miyasaka† Riku Sasaki‡

Abstract

In this paper, we focus on the isomorphism elimination.
More precisely, our problem is as follows: Given a graph
G with labeled edges and a family F of its subgraphs,
we extract all automorphisms AutG = {π1, π2, . . . , } on
the given graph, define the lexicographically largest sub-
graph for each set of the mutually isomorphic subgraphs
on each automorphism πi, and select the lexicograph-
ically largest subgraphs on any of the automorphisms.
In this paper, the families of subgraphs are manipulated
by ZDDs. We also apply our algorithms to the enumer-
ation of nonisomorphic developments of Platonic and
Archimedean solids and d-dimensional hypercubes. Ex-
perimental results show that the proposed method is
more than 300 times faster and 3,000 times less mem-
ory than the conventional method in the best case. Our
algorithms are applicable to many other enumeration
problems with eliminating isomorphic solutions.

1 Introduction

Suppose that we are given a cube. By cutting along
the set of edges {e2, e3, e4, e6, e10, e11, e12} of the cube
in Figure 1(a), we can obtain the development in Fig-
ure 1(c). When we rotate the positions of cut edges
by 90 degrees, i.e., by cutting along the set of edges
{e1, e3, e4, e7, e9, e11, e12} as depicted in Figure 1(b), we
can also obtain the development in Figure 1(c). Are
these the same? If we focus on the fact that the edges
are labeled, the positions of cut edges are different, and
thus we can say they are different. If we do not care
about the labels, i.e., the edges are unlabeled, the shape
of the developments are the same, and thus we can say
they are isomorphic.

A cube has 384 labeled developments, and they are
classified into 11 nonisomorphic developments (i.e., es-
sentially different unlabeled developments). Here, a de-
velopment and its mirror shape are regarded as isomor-
phic. As for the labeled developments, we can count
their numbers by combining the following two theorems:

∗A preliminary version was presented at AAAC2018.
†Graduate School of Science and Engineering, Saitama Uni-

versity, {horiyama,miyasaka}@al.ics.saitama-u.ac.jp
‡Faculty of Engineering, Saitama University, sasaki@al.ics

.saitama-u.ac.jp

e4

e1

e3

e5
e6

e2

e7e8

e9

e10

e11

e12

e4

e1

e3

e5
e6

e2

e7e8

e9

e10

e11

e12

(a) (b)

(c)

Figure 1: The developments of a cube by different cut
edges (a) and (b) are isomorphic.

Theorem 1 (See, e.g., [[5], Lemma 22.1.1]) The cut
edges of a development of a polyhedron form a spanning
tree of the 1-skeleton (i.e., the graph formed by the ver-
tices and the edges) of the polyhedron, and vice versa.

Theorem 2 Matrix Tree Theorem [12]: The number of
spanning trees of a graph is equal to any cofactor of the
Laplacian matrix of the graph.

By applying the theorems, Brown et al. showed
that a Buckminsterfullerene (also known as an
icosahedral C60, or a truncated icosahedron) has
375,291,866,372,898,816,000 (approximately 3.75×1020)
labeled developments [1]. The numbers of labeled devel-
opments of Handballene (truncated dodecahedral C60)
and Archimedene (truncated icosidodecahedral C120)
are given in [2].

As for counting the nonisomorphic developments,
the numbers for Platonic solids are obtained in the
1970s [7][10]. Recently, Horiyama and Shoji proposed
a technique for counting the number of nonisomorphic
developments of any polyhedron (including nonconvex
polyhedron) [9]. By applying this method, they also
listed the number of nonisomorphic (and also labeled)
developments of all regular-faced convex polyhedra (i.e.,
Platonic solids, Archimedean solids, Johnson-Zalgaller
solids, Archimedean prisms, and antiprisms), Catalan
solids, bipyramids and trapezohedra. For example, a
Buckminsterfullerene (i.e., a truncated icosahedron) has
3,127,432,220,939,473,920 (approximately 3.13 × 1018)

30th Canadian Conference on Computational Geometry, 2018

nonisomorphic developments. We here note that the
technique in [9] counts the number of nonisomorphic
developments without enumerating developments.

If we turn to the developments of polytopes in 4 (or
more) dimensions. We can apply the matrix tree theo-
rem to any polytope, and thus we can count the num-
ber of the labeled developments. As for the number
of the nonisomorphic developments, Gardner asked to
enumerate all of the nonisomorphic developments of a
4-dimensional hypercube [6], and Turney enumerated
261 nonisomorphic developments by hands [19]. He also
says “As far as I know, the only way is to exhaustively
examine the possibilities” in [19]. Later, a technique
for counting the number of the nonisomorphic develop-
ments of 4-dimensional regular convex polytopes [4] is
proposed. The technique is an extension of those for
the Platonic solids [7][10], and is further extended to
that for any 3-dimensional polyhedron [9]. These tech-
niques avoid explicitly enumerating the developments,
but count their numbers by exploiting Polya’s counting
theorem [17].

As for the enumeration of nonisomorphic develop-
ments, an efficient exhaustive search technique using
BDDs (Binary Decision Diagrams) is proposed in [8],
where a BDD [3] is a succinct data structure that rep-
resents a family of sets by a graph. In [8], a method
to construct a BDD corresponding to a family of la-
beled developments is proposed, where each develop-
ment are represented as a set of labeled edges that form
a spanning tree. Then, by omitting mutually isomorphic
developments, the nonisomorphic developments are ob-
tained.

Later, a sophisticated technique called a “frontier-
based search” [11] is proposed for constructing
BDDs/ZDDs representing all constrained subgraphs,
and we can adopt this technique to the first step of the
method in [8]. A ZDD (Zero-suppressed Binary Deci-
sion Diagram) [16] is a variant of BDDs, and also rep-
resents a family of sets. The frontier-based search is an
extension of Simpath algorithm [13] by Knuth for enu-
merating all st-paths (i.e., simple paths from vertex s to
t) in a given graph. The method can be considered as
one of DP-like algorithms, and it constructs the result-
ing BDDs/ZDDs in a top-down manner. By applying
this method to the first step in [8], we can speed-up the
construction of the BDD/ZDD representing a family of
spanning trees.

Our contribution. In this paper, we focus on the
second step of the method in [8], i.e., the isomorphism
elimination. More precisely, our problem is as fol-
lows: Given a graph G with labeled edges and a fam-
ily F of its subgraphs, we extract all automorphisms
AutG = {π1, π2, . . . , } on the given graph, define the
lexicographically largest subgraph for each set of the
mutually isomorphic subgraphs on each automorphism

πi, and select the lexicographically largest subgraphs on
any of the automorphisms. In this paper, both of the
given and resulting families of subgraphs are in the form
of ZDDs, and the computation are performed on ZDDs.
This is because (1) ZDDs can represent a family of sets
compactly, (2) the manipulation of ZDDs are faster than
the other representations in many cases.

In general, the first step for extracting all automor-
phisms on a given graph is not tractable: It is still open
whether the graph automorphism problem (i.e., the
problem deciding whether a given graph has a nontrivial
automorphism or not) is in P or in NP-complete [15].
Fortunately, however, we can solve the problem in poly-
nomial time if the degrees of vertices in a graph graph
are bounded by a constant [14].

Our main issue is to select the lexicographically
largest subgraphs on any of the automorphisms. In [8],
BDDs G1, G2, . . . are constructed so that Gi represents
a family of the lexicographically largest subgraphs on
automorphism πi, and their intersection is taken for se-
lecting a family of subgraphs that appear in all of the
families of G1, G2, . . . Unfortunately, the method was
proposed before the era of the frontier-based search al-
gorithms. Thus, similarly to the BDD/ZDD algorithms
in those days, it obtains the resulting BDD by an old-
fashioned manner, i.e., by the repetition of so-called
“apply operations.” In this paper, we renovate this
step by introducing the framework of the frontier-based
search: We propose algorithms for the top-down con-
struction of the ZDD representing a family of the lexi-
cographically largest subgraphs on πi.

2 Enumeration by Zero-Suppressed Binary Decision
Diagrams

A zero-suppressed binary decision diagram (ZDD) [16]
is directed acyclic graph that represents a family of
sets. As illustrated in Figure 2, it has the unique
source node1, called the root node, and has two sink
nodes 0 and 1, called the 0-node and the 1-node, respec-
tively (which are together called the constant nodes).
Each of the other nodes is labeled by one of the vari-
ables x1, x2, . . . , xn, and has exactly two outgoing edges,
called 0-edge and 1-edge, respectively. On every path
from the root node to a constant node in a ZDD, each
variable appears at most once in the same order. The
size of a ZDD is the number of nodes in it.

Every node v of a ZDD represents a family of sets
Fv, defined by the subgraph consisting of those edges
and nodes reachable from v. If node v is the 1-node
(respectively, 0-node), Fv equals to {{}} (respectively,
{}). Otherwise, Fv is defined as F0-succ(v) ∪ {S | S =
{var(v)} ∪ S′, S′ ∈ F1-succ(v)}, where 0-succ(v) and

1We distinguish nodes of a ZDD from vertices of a graph (or
a 1-skeleton).

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

x4

x3x3

x2x2

x1

10

0-edge

1-edge

constant node

variable node

Figure 2: A ZDD representing {{1, 2}, {1, 3, 4},
{2, 3, 4}, {3}, {4}}.

1-succ(v), respectively, denote the nodes pointed by
the 0-edge and the 1-edge from node v, and var(v)
denotes the label of node v. The family F of sets
represented by a ZDD is the one represented by the
root node. Figure 2 is a ZDD representing F =
{{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}. Each path from the
root node to the 1-node, called 1-path, corresponds to
one of the sets in F.

The frontier-based search [11] constructs ZDDs in a
top-down manner, and it can be considered as one of
DP-like algorithms. We can modify DP algorithms for
recognition (i.e., testing whether a given instance sat-
isfies some property) to the frontier-based search algo-
rithm that construct a ZDD representing the family of
the yes-instances of the property. Thus, in Section 3,
we mainly focus on the method in the form of DP algo-
rithms. The key of the frontier-based search is to share
ZDD-nodes by simple “knowledge” of partially given in-
put, and not to traverse the same subproblems more
than once. In the context of DP, this means that “in-
ternal state” for partially given input should be small.
For more details, see [11].

3 Isomorphism Elimination

Let π be a permutation on {1, 2, . . . , n}, and � be a lex-
icographical order on x = (xn, xn−1, . . . , x1) ∈ {0, 1}n.
For any x, we can obtain π(x) = (xπ(n), xπ(n−1), . . . ,
xπ(1)), and thus we can define a family Fπ of lexico-
graphically larger x’s as Fπ = {x | x � π(x)} . Here, we
regard a vector x as a set {xi | xi = 1}, which implies
that Fπ can be regarded as a family of sets {xi1 , xi2 , . . .}
(⊆ {xn, xn−1, . . . , x1}) that are lexicographically larger
than their π-mapped set {xπ(i1), xπ(i2), . . .}. Given a
set of permutations AutG = {π1, π2, . . .}, by taking the
intersection of Fπ1

,Fπ2
, . . ., we can obtain a family of

sets each of which is the lexicographically largest on
AutG. By our algorithms described below, we can con-
struct ZDDs of Fπ1 ,Fπ2 , . . . in the top-down manner.
By combining the top-down construction of the ZDD for

e4e1

e3

e5

e2
e6

e7

e8

e9

e10

e11
e12

(0 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 1)

(1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1)
xπ(12)xπ(11)xπ(10)xπ(9) xπ(8)xπ(7)xπ(6)xπ(5) xπ(4)xπ(3)xπ(2)xπ(1)

x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

xi’s are given on the fly

e4e1

e3

e5

e2
e6

e8

e9

e10

e11
e12

e7

x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

Figure 3: Comparison of x and π(x), and propagation
graph Gπ.

spanning trees Fs, we can directly construct the ZDD
of their intersection Fs∩Fπ1

∩Fπ2
∩· · · in the top-down

manner [18].
Now, we discuss a DP algorithm for recognizing Fπ.

As illustrated in Figure 3, xn, xn−1, . . . , x1 are given
on-the-fly. In other words, xi is given in time slot i
(i = n, n − 1, . . . , 1). We compare x and π(x), and
output 1 if and only if x � π(x) holds.

The outline of our algorithm is as follows. The algo-
rithm consists of two phases. In Phase I, xn, xn−1, . . . ,
x1 are given on-the-fly. In the comparison of x and π(x),
xi is compared with xπ(i). In case i > π(i), since xπ(i)
will be given in the future, we store xi in the memory
until xπ(i) is given. On the other hand, in case i < π(i),
xπ(i) is already stored in the memory, and thus we can
compare xi and xπ(i). We transfer the result (denoted
as ci) of the comparison to Phase II. In case i = π(i),
we compare xi and xπ(i), and transfer ci := ‘=’ (i.e.,
equivalent) to Phase II.

In Phase II, the results of the comparisons C =
{cn, cn−1, . . . , c1} are given from Phase I. Note that
the given order of ci is not cn, cn−1, . . . , c1. The or-
der is defined by π. Let π′ denote the order of
ci’s given to Phase II: ci’s are given in the order of
cπ′(n), cπ′(n−1), . . . , cπ′(1). We also note that no ci may
be given in some time slot, and that two ci and ci′ may
be given in the same time slot. In Phase II, by checking
such ci’s, we conclude whether x � π(x) holds or not.

Now, we move to the details of the algorithm. In
Phase I, xi is stored until xπ(i) appears. At the
same time, xi is required to compare with xπ−1(i).
Thus, precisely speaking, xi is stored into the mem-
ory if i > min{π(i), π−1(i)} holds, and it is stored
until xmin{π(i),π−1(i)} is given. We define the propaga-
tion graph Gπ as the graph Gπ = (V,E) with V =
{xn, xn−1, . . . , x1} and (xi, xπ(i)) ∈ E. From Gπ, we
can estimate the memory consumption. (Note that the
ordering of the variables is fixed.)

Proposition 3 To store xi’s in Phase I, w bit is
enough, where w is the cut width of the propaga-

30th Canadian Conference on Computational Geometry, 2018

Algorithm 1: Preparation of Phases I and II

Input : n, π
Output: UpdateMemory[], cutwidth, Compare[]

1 Prepare an empty array until[]
2 for i := n, n− 1, . . . , 1 do
3 if i > min{π(i), π−1(i)} then // It is necessary to store xi in the memory

4 k :=

{
min{j | i ≤ until[j]} if ∃j s.t. i ≤ until[j]
(cardinality of until[]) + 1 otherwise

5 until[k] := min{π(i), π−1(i)} // M [k] should be kept until the level of xπ(i) or xπ−1(i)

6 position[i] := k // xi is stored in M [k]
7 UpdateMemory[i] := UpdateMemory[i] ∪ {(k, ‘store’)}
8 UpdateMemory[until[k]] := UpdateMemory[until[k]] ∪ {(k, ‘erase’)}

9 cutwidth := cardinality of until[]
10 for i := n, n− 1, . . . , 1 do
11 if i > π(i) then // xi is stored until xπ(i) is given
12 Compare[π(i)] := Compare[π(i)] ∪ {(i,position[i], ‘input’)}
13 else if i < π(i) then // xπ(i) is stored until xi is given
14 Compare[i] := Compare[i] ∪ {(i, ‘input’,position[π(i)])}
15 else // xi and xπ(i) are the same variable
16 Compare[i] := Compare[i] ∪ {(i, ‘input’, ‘input’)}

tion graph Gπ with respect to the variable ordering
xn, xn−1, . . . , x1.

Algorithm 1 summarizes the preparation necessary
for Phases I and II. If i > min{π(i), π−1(i)} holds in
Line 3, we plan to store the value of xi in M [k] and keep
M [k] until xmin{π(i),π−1(i)} is given (Lines 4–6). In Line
4, we assign the position k in the first-fit manner. That
is, we set the smallest j as k, where M [j] is not used
in time slot i. We use a variable-length array until[]
to indicate that M [k] should be kept until time slot
min{π(i), π−1(i)} (Lines 1 and 5). In Line 4, if no j
satisfies i ≤ until[j], we prepare a new position. In
Line 6, position[i] is used to indicate that xi is in M [k].
In Line 7 (respectively, Line 8), we record the plan for
storing xi in M [k] (respectively, erasing M [k]). These
plans UpdateMemory[] are actually executed in Lines
7–11 of Algorithm 2 (Phase I).

The plan for comparing xi and xπ(i) is recorded in
Lines 10–16, and it is actually executed in Lines 3–6
of Algorithm 2. Compare[i] is a set of the plans for
the comparison in time slot i. In case i > π(i) (Lines
11 and 12), we keep xi in M [position[i]] until xπ(i) will
be given in time slot π(i). Thus, we store our plan
in Compare[π(i)]. Plan (i,position[i], ‘input’) indicates
that ci (i.e., the comparison of xi and xπ(i)) can be
obtained by comparing M [position[i]] and ‘input’ (i.e.,
xπ(i)) in time slot π(i). In case i < π(i) (Lines 13 and
14), since we already have xπ(i) in M [position[π(i)]], we
can compare xi and xπ(i) in time slot i. Thus, we store

Algorithm 2: Phase I

Input : UpdateMemory[], cutwidth, Compare[],
x = (xn, xn−1, . . . , x1)

Output: (cn, cn−1, . . . , c1)
1 Prepare an array M [] of size cutwidth
2 for i := n, n− 1, . . . , 1 do
3 foreach (i′, p0, p1) ∈ Compare[i] do

4 m0 :=

{
xi if p0 = ‘input’
M [p0] otherwise

5 m1 :=

{
xi if p1 = ‘input’
M [p1] otherwise

6 ci′ :=

‘>’ if m0 > m1

‘<’ if m0 < m1

‘=’ if m0 = m1

7 foreach (k,behavior) ∈ UpdateMemory[i] do
8 if behavior = ‘store’ then
9 M [k] := xi // Store xi in M [k]

10 else // In case behavior = ‘erase’,
11 M [k] := 0 // erase M [k]

our plan in Compare[i]. Plan (i, ‘input’,position[π(i)])
indicates that ci is obtained by comparing ‘input’ in
time slot i (i.e., xi) and M [position[π(i)]]. Otherwise,
since xi and xπ(i) are the same variable, we can com-
pare xi and xπ(i) in time slot i. We store our plan
(i, ‘input’, ‘input’) in Compare[i], where the plan in-

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Algorithm 3: Phase II

Input : (cn, cn−1, . . . , c1) and a permutation π′

Output:

{
1 : if x � π(x)
0 : otherwise

1 (is, cis) := (∞, ‘=’) // Set the initial state
2 for j := n, n− 1, . . . , 1 do
3 i′ := π′(j)
4 if i′ > is then

// The position of ci′ is higher than that of cis
5 if ci′ 6= ‘=’ then
6 (is, cis) := (i′, ci′)

7 else
// The position of cis is higher than that of ci′

8 if cis = ‘=’ and ci′ 6= ‘=’ then
9 (is, cis) := (i′, ci′)

10 if cis = ‘>’ or ‘=’ then
11 Output 1 // x � π(x) holds

12 else
13 Output 0 // x 6� π(x) holds

dicates that ci is obtained by comparing ‘input’ and
‘input’ (i.e., both are xi’s) in time slot i.

Algorithm 2 executes the plans in Compare[i] and
UpdateMemory[i] in each time slot i. In Line 6, ci′ =
‘>’ means xi′ > xπ(i′). The notions ci′ = ‘<’ and ‘=’
are also defined similarly.

Algorithm 3 describes Phase II. Recall that cn, cn−1,
. . . , c1 may not be given in this order. For convenience,
we introduce permutation π′ denoting that ci’s are given
in the order of cπ′(n), cπ′(n−1), . . . , cπ′(1). (This ordering
is implicitly given by Lines 2 and 3 of Algorithm 2, and
thus, it is just for convenience, and we will avoid it later
by combining Phases I and II.)

Suppose i′ = π′(j) as in Line 3 of Algorithm 3. At
this moment, we are checking ci′ . Note that some of
the already checked cπ′(n), cπ′(n−1), . . . , cπ′(j) may be in
the higher position than ci′ , and others may be in the
lower position than ci′ . To avoid storing all of them,
we use (is, cis) as an internal state. In case cis = ‘>’
(respectively, ‘<’), all of the already checked ck’s sat-
isfying k > is are ‘=’ and already checked cis is ‘>’
(respectively, ‘<’). In this case, if ck is in the lower po-
sition than cis (i.e., k < is), it does not affect the result
in the comparison of x and π(x). In case cis = ‘=’, all
of the already checked ck’s are ‘=’, and thus, they do
not affect the result in the comparison of x and π(x).
In Line 1 of Algorithm 3, we set (is, cis) := (∞, ‘=’) as
an initial state. (is =∞ means no ck’s are checked.)

By checking ci′ , we update (is, cis): If ci′ is in the
higher position than cis (i.e., i′ > is holds), ci′ is prior
to cis . Thus, in case ci′ is not ‘=’, we store (i′, ci′) as

a new state (Lines 4–6). If cis is in the higher position
than ci′ , cis is prior to ci′ . Thus, only in case cis is ‘=’
and ci′ is not ‘=’, we have a chance to store (i′, ci′) as
a new state (Lines 7–9). After all ci′ are checked, we
can conclude whether x � π(x) holds or not according
to the final cis (Lines 10–13).

Now, we combine Phases I and II. Line 1 of Algo-
rithm 3 is an initialization of state (is, cis), and it should
be inserted in the beginning of Algorithm 2. Lines 4–9 of
Algorithm 3 receive ci′ , and thus they should be inserted
just after Line 6 in the foreach-loop of Algorithm 2. As
we mentioned above, we do not need π′ since i′ in Al-
gorithm 3 is given as the i′ in Algorithm 2. Lines 10–13
of Algorithm 3 decide the output according to the final
cis , and thus they should be inserted just after the last
part of Algorithm 2. Given xn, xn−1, . . . , x1 on-the-fly,
by Algorithm 1 and Algorithm 2+3 (i.e., combined ver-
sion of Algorithms 2 and 3), we can conclude whether
x � π(x) holds or not.

In the frontier-based search, we construct ZDDs in a
top-down manner. Each node of the resulting ZDD has
its internal state (is, cis) and M []. The root node of the
resulting ZDD is prepared with (is, cis) := (∞, ‘=’). We
do not care about M [] since we are not given any input
xi. The label of the root node is xn, which indicates
that we are checking xn. For each i in {n, n− 1, . . . , 1}
and for each node v labeled xi, we try both of the cases
xi = 0 and 1. In case xi = 0, from node v, we prepare
node 0-succ(v). The internal state of 0-succ(v) can be
obtained by applying Lines 3–11 of Algorithm 2 (com-
bined with Lines 4–9 of Algorithm 3) to the state of v.
We can perform similarly in case xi = 1. If two nodes
have the same label xi and the same internal state, by
following the definition of ZDD, we merge the two nodes.
From this observation, we can estimate the upper bound
on the size of the resulting ZDD. Furthermore, since the
execution of Lines 3–11 of Algorithm 2 and Lines 4–9
of Algorithm 3 for each node can be done in constant
time, we can also evaluate the time complexity.

Theorem 4 The size of the resulting ZDD is O(n22w),
where w is the cut width of the propagation graph Gπ
with respect to the variable ordering xn, xn−1, . . . , x1.
The computation time for the construction is propor-
tional to the size of the resulting ZDD.

4 Experimental Results

Experimental results are given in Tables 1 and 2. The
computation time is measured on Intel(R) Xeon(R) E7-
2830 2.13GHz, 2TB Memory, Red Hat Enterprise Linux
Server release 6.6.

In table 1, the developments of 5 Platonic solids and
5 out of 13 Archimedean solids (a cuboctahedron, a
truncatedtetrahedron, a truncatedoctahedron, a trun-
catedcube, and a rhombicuboctahedron) are enumer-

30th Canadian Conference on Computational Geometry, 2018

Table 1: Summary of the results for Platonic and Archimedian solids.

Computation
Time (s)

Required
Memory (MB)

Polyhedron |E| |Aut| #

(
Labeled
Developments

)
#Developments Conven-

tional Proposed
Conven-
tional Proposed

Tetrahedron 6 24 16 1 0.01 0.00 30 2
Cube 12 48 384 11 0.02 0.01 30 2

Octahedron 12 48 384 11 0.02 0.01 30 2
Dodecahedron 30 120 5,184,000 43,380 9.10 0.54 529 5

Icosahedron 30 120 5,184,000 43,380 5.73 0.51 282 10
Cuboctahedron 24 48 331,776 6,912 0.35 0.06 36 3

Truncatedtetrahedron 18 24 6,000 261 0.03 0.01 30 2
Truncatedoctahedron 36 48 101,154,816 2,108,512 75.59 2.67 11,192 23

Truncatedcube 36 48 32,400,000 675,585 133.63 2.10 2,078 35
Rhombicuboctahedron 48 48 301,056,000,000 6,272,012,000 > 3 H 1,913.97 11,182

Table 2: Summary of the results for d-dimensional hypercubes.

Computation
Time (s)

Required
Memory (MB)

d |E| |Aut| #

(
Labeled
Developments

)
#Developments Conven-

tional Proposed
Conven-
tional Proposed

2 4 8 4 1 0.02 0.00 36 2
3 12 48 384 11 0.10 0.01 36 2
4 24 384 82,944 261 3.00 0.09 150 2
5 40 3,840 32,768,000 9,694 1166.52 3.96 36,036 10
6 60 46,080 20,736,000,000 502,110 > 3 H 478.39 > 140,000 208

ated. The second column |E| in Table 1 gives the num-
ber of edges in the 1-skeleton of a polyhedron. The
third column |Aut| gives the number of automorphisms
of a polyhedron. The fourth and fifth columns give the
number of labeled and nonisomorphic (i.e., unlabeled)
developments, respectively. For example, as for a rhom-
bicuboctahedron, we have 301,056,000,000 labeled de-
velopments. By checking the graph isomorphism for
all of these labeled developments among 48 automor-
phisms, we obtained 6,272,012,000 nonisomorphic de-
velopments. The size of the required memory is sum-
marized in the eighth and ninth column.

As the conventional method, we used the algorithm
in [8] combined with the frontier-based search [11] for
enumerating labeled developments. The difference be-
tween the conventional and our proposed methods is
as follows: The algorithm in [8] was proposed before
the era of the frontier-based search algorithms. Thus
it is necessary to construct the ZDDs of Fπ1 ,Fπ2 , . . .
completely and then make an intersection of the ZDDs.
On the other hand, in our proposed method, we can
directly construct the ZDD of the intersection with-
out constructing the intermediate ZDDs of Fπ1

,Fπ2
,

The proposed method requires less memory than the
conventional method in many cases.

In table 2, the developments of d-dimensional hyper-
cubes are enumerated. Similarly to the case of tak-
ing dual of a 3-dimensional polyhedron, we prepare the
facet-adjacency graph whose vertices and edges cor-
responds to the (d − 1)-dimensional hypercubes and
their adjacency of the original hypercube. The facet-
adjacency graph of d-dimensional hypercube is a com-
plete d-partite graph with 2d vertices and 4

(
d
2

)
edges.

The automorphism Aut has 2d
(
d
2

)
permutations. Ta-

ble 2 tells that the proposed method is more than 300
times faster and 3,000 times less memory than the con-
ventional method in case d = 5. As for the case d ≥ 6,
we believe the speed-up ratio is more than 300.

5 Conclusion

We have address the issue of the isomorphism elimina-
tion by proposing the top-down construction method
for the ZDDs of lexicographically largest instances. Ex-
perimental results show that the proposed method is
more than 300 times faster and 3,000 times less mem-
ory than the conventional method in the best case. Our
algorithms are applicable to many other enumeration
problems with eliminating isomorphic instances.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] T. J. N. Brown, R. B. Mallion, P. Pollak, B. R. M. de
Castro, J. A. N. F. Gomes, The number of spanning
trees in buckminsterfullerene, Journal of Computational
Chemistry, vol. 12, pp. 1118–1124, 1991.

[2] T. J. N. Brown, R. B. Mallion, P. Pollak, A. Roth,
Some Methods for Counting the Spanning Trees in La-
belled Molecular Graphs, examined in Relation to Cer-
tain Fullerenes, Discrete Applied Mathematics, vol. 67,
pp. 51–66, 1996.

[3] R. E. Bryant, Graph-based algorithms for Boolean func-
tion manipulation, IEEE Transactions on Computers,
vol. C-35, pp. 677–691 (1986).

[4] F. Buekenhout, M. Parker, The Number of Nets of the
Regular Convex Polytopes in Dimension ≤ 4, Discrete
Mathematics, vol. 186, pp. 69–94, 1998.

[5] E. D. Demaine, J. ORourk, Geometric Folding Algo-
rithms: Linkages, Origami, Polyhedra, Cambridge Uni-
versity Press (2007).

[6] M. Gardner, Mathematical Games: Is It Possible to Vi-
sualize a Four-Dimensional Figure?, Scientific American,
214, pp. 138–143, 1966.

[7] C. Hippenmeyer, Die Anzahl der inkongruenten ebenen
Netze eines regulären Ikosaeders, Elemente der Mathe-
matik, vol. 34, pp. 61–63, 1979.

[8] T. Horiyama and W. Shoji, Edge Unfoldings of Platonic
Solids Never Overlap, In Proc. of the 23rd Canadian
Conference on Computational Geometry (CCCG 2011),
pp. 65–70, 2011.

[9] T. Horiyama and W. Shoji, The Number of Different Un-
foldings of Polyhedra, In Proc. of the 24th International
Symposium on Algorithms and Computation (ISAAC
2013), Lecture Notes in Computer Science, 8283, pp.
623–633, Springer-Verlag, 2013.

[10] M. Jeger, Über die Anzahl der inkongruenten ebenen
Netze des Würfels und des regulären Oktaeders, Ele-
mente der Mathematik, vol. 30, pp. 73–83, 1975.

[11] J. Kawahara, T. Inoue, H. Iwashita, and S. Mi-
nato. Frontier-based Search for Enumerating All Con-
strained Subgraphs with Compressed Representation.
IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E100-A,
no. 9, pp. 1773–1784, 2017.

[12] G. Kirchhoff, Über die Auflösung der Gleichungen, auf
welche man bei der Untersuchung der linearen Verteilung
galvanischer Ströme gefuhrt wird, Annalen der Physik
und Chemie, 72, pp. 497–508, 1847.

[13] D. E. Knuth, The Art of Computer Programming, vol.
4, fascicle 1, Bitwise Tricks & Techniques, Binary Deci-
sion Diagrams, Addison-Wesley (2009).

[14] E. M. Luks, Isomorphism of graphs of bounded valence
can be tested in polynomial time, Journal of Computer
and System Sciences, 25 (1), pp. 42–65, 1982.

[15] A. Lubiw, Some NP-complete problems similar to graph
isomorphism, SIAM Journal on Computing, 10 (1), pp.
11–21, 1981.

[16] S. Minato. Zero-Suppressed BDDs for Set Manipula-
tion in Combinatorial Problems. In Proc. of the 30th
ACM/IEEE Design Automation Conference (DAC’93),
pp. 272–277, 1993.

[17] G. Pólya, Kombinatorische Anzahlbestimmungen für
Gruppen, Graphen und chemische Verbindungen, Acta
Mathematica, 68 (1), pp. 145–254, 1937.

[18] TdZdd: A top-down/breadth-first decision dia-
gram manipulation framework, https://github.com/

kunisura/TdZdd

[19] P. D. Turney, Unfolding the Tesseract, Journal of
Recreational Mathematics, 17 (1), pp. 1–16, 1984–85.

