
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

On error representation in exact-decisions number types

Martin Wilhelm∗

Abstract

Accuracy-driven computation is a strategy widely used in
exact-decisions number types for robust geometric algo-
rithms. This work provides an overview on the usage of
error bounds in accuracy-driven computation, compares
different approaches on the representation and computa-
tion of these error bounds and points out some caveats.
The stated claims are supported by experiments.

1 Introduction

In Computational Geometry, many algorithms rely on
the correctness of geometric predicates, such as orienta-
tion tests or incircle tests. In contrast to various other
areas of computing, a small error in computation often
does not imply a small error in the result. Instead, algo-
rithms may fail, produce drastically wrong output, or no
output at all if a predicate returns the wrong result [8].
To mitigate the consequences of this problem, exact-

decisions number types have been developed, based on
the concept of accuracy-driven-computation and the Ex-
act Geometric Computation Paradigm [12]. Examples
for such number types are leda::real from the LEDA
library [2], Core::Expr [3, 14] and Real_algebraic [4].
They store the expressions involved in directed acyclic
graphs, called expression dags, and maintain approxima-
tions and error bounds for each subexpression. When
a decision has to be made, the accuracy of the subex-
pressions is increased until the value can be separated
from zero or value can be guaranteed to be zero through
a separation bound [1]. This concept will be explained
in slightly more detail in Section 2.1.

Approximations are usually stored in arbitrary-preci-
sion floating-point number types, or short, bigfloats. In
both leda::real and Real_algebraic, error bounds
are stored in a bigfloat as well, in form of an absolute
error bound. In Core::Expr, error bounds are stored as
a combination of upper and lower bound for the most
significant bit of the value.
In this paper we will show advantages and disadvan-

tages of different error bound representation forms for
accuracy-driven computation. In Section 2, various pos-
sibilities are evaluated and sensible choices for an imple-
mentation are proposed. We present an experimental

∗Institut für Simulation und Graphik, Otto-von-Guericke-
Universität Magdeburg, martin.wilhelm@ovgu.de

comparison for these choices in Section 3 based on the
number type Real_algebraic.

2 Error Representation

There are more aspects to the representation of an error
bound than might be apparent at first glance. One
natural way to represent an error is by storing a value
edir, such that x̂ − edir ≤ x ≤ x̂ + edir, if x represents
the real value of the expression and x̂ its approximation.
We call this the direct error representation.

Since an error bound can get quite small, a direct rep-
resentation must be stored in a non-primitive data type,
most commonly in a bigfloat. Computations involving
bigfloats are expensive. Another natural way of storing
an error bound is to store an exponent elog, such that
x̂ − 2elog ≤ x ≤ x̂ + 2elog . It then suffices to store elog
as a primitive integer data type, such as long. We call
this the logarithmic representation.

The obvious advantage of a direct over a logarithmic
value is that the direct representation can be much more
precise than the logarithmic one. If, for example, a
large sum is computed with error e at the m operands,
error propagation with a direct representation leads to
an error bound of me (assuming exact operations). A
logarithmic integer bound, on the other hand, increases
by at least 1 for each addition. So error propagation
leads to an error bound of 2log(e)+m if the additions are
processed sequentially.
To keep the bound small while avoiding bigfloats, a

third approach on error representation would be to store
a logarithmic error bound in a floating-point primitive,
such as double. While not as precise as the direct rep-
resentation, the error bound can be increased in smaller
steps, avoiding an exponential increase as in the pre-
vious example. In contrast to the error representation
as an integer value, it might also enable more elabo-
rate evaluation strategies, such as proposed by van der
Hoeven [9].
There are various other ways to represent an error.

While all three methods above store the radius of an
error interval, the interval can be stored directly through
an upper and lower bound, such as in Core::Expr. Fur-
thermore one can imagine various combined approaches,
where the representation can change based on the size
of the error. In this paper, however, we will focus on
the three variants proposed above. We also only con-
sider absolute error bounds, although there are good

30th Canadian Conference on Computational Geometry, 2018

reasons to compute the bound relative to the size of
the approximation or even combine an absolute and a
relative error [7].

2.1 Errors in accuracy-driven computation

We introduced three different ways of representing an
error bound in a number type. The complexity rises if we
consider different combinations of the approaches during
the computation process. The usefulness of error bound
representations may change depending on the current
task. So it could be advantageous to switch between
different representations during the computation.
In this section we will shortly describe the con-

cept of accuracy-driven computation as implemented in
Real_algebraic and the usage of error bounds within.
Accuracy-driven computation was first introduced by
Yap and Dubé under the name “precision-driven com-
putation” [13]. It describes a lazy approach on exact-
decisions computation. Computations are not done di-
rectly on invocation, but stored in an arithmetic expres-
sion dag, i.e., a rooted ordered directed acyclic graph
whose nodes are either a floating-point number or an
operator with its operands as children.
Once a decision has to be made, the computation

is started. Since every decision can be translated to
the decision, whether a value is positive, negative or
zero, it is sufficient to determine the sign of the root
node. This can be done by using a separation bound,
i.e., a number sep(E) for an expression E, such that
| value(E)| > 0⇒ | value(E)| > sep(E). If sep(E) is not
part of the error interval of an approximation, then the
sign of the approximation is correct.
The strategy in accuracy-driven computation is to

start with a desired accuracy q at a (root) node, com-
pute the accuracy needed at its children to guarantee a
respective error bound, and recurse on the children with
the new desired accuracies. To determine whether an ex-
pression E is zero, an accuracy of qmax = blog(sep(E))c
is needed. If value(E) > 0, however, a separation is
usually possible with a much larger error as soon as zero
is not contained anymore in the error interval. So usually
q is chosen to be a small negative number1 in the begin-
ning, with an exponential increase until |q| > |qmax|.

Before the top-down computation is started, an initial
value for each node must be computed bottom-up, i.e.,
with a small fixed precision. This is necessary, since
sometimes an estimate for the value of a child node is
needed to compute the required accuracy. During this
process, an accuracy-driven-computation for a subex-
pression may be invoked, if the value of a divisor or the
operand of a root needs to be separated from zero.

Error bounds mainly occur in three different places:
1We will refer to accuracies as “small” if their absolute value is

small, although they are usually negative numbers. We fear that
the opposite notion would be even more misleading.

1. In each node a current error bound is stored to
prevent recomputations of approximations that are
already sufficiently accurate.

2. A desired error bound is computed and propagated
top-down through the expression dag.

3. An initial error bound for each node is computed
bottom-up.

In Real_algebraic, a direct error bound is used in the
first and the third case, while the top-down propagation
is done with a logarithmic integer error bound. The
number type leda::real uses direct error bounds in
all three cases, whereas Core::Expr uses a logarithmic
integer bound in the second and a logarithmic integer
interval, i.e., a combination of upper and lower bound
in the third case. Both representations are saved inside
each node.

The initial bottom-up computation is done with small
precision. Bigfloat operations are less expensive then,
whereas the influence of a weak error bound is increased.
A direct error bound is therefore a sensible choice for this
part of the algorithm. In contrast, the main accuracy-
driven parts of the computation require high precisions,
causing the maintenance of a direct error bound to be
too expensive compared to its benefits [6].

2.2 Switching between direct and logarithmic bound

When parts of the algorithm are computed with differing
error representations, the algorithm must switch between
those representations. Since floating-point data types are
stored as a mantissa and an exponent, computing a direct
bound edir from a logarithmic bound elog can be done
fast and without loss of precision by setting the exponent
of edir to elog, i.e., edir = Φ(elog) := 2elog . For the reverse
process, elog must be computed as elog = Φ̂(edir) :=
dlog(edir)e, losing some precision in the progress. In
particular, it cannot be expected that edir = Φ(Φ̂(edir)).
However, we should expect elog = Φ̂(Φ(elog)) to be true.

As previously mentioned, computing Φ is cheap. What
about Φ̂? The mantissa m and exponent b of a floating-
point value x are usually chosen, such that m ∈ [0.5, 1),
b ∈ Z and x = m2b. So it seems natural to choose
Φ̂(x) = b as a cheap conversion function, as done in
Real_algebraic.
However, there is a significant drawback to this ap-

proach. If x is a power of two, Φ̂ overestimates dlog(x)e
by one, since then m = 0.5. While this does not affect
overall correctness of the algorithm and the case seems
very special, implementing Φ̂ like that can lead to mas-
sive drops in performance, since then elog 6= Φ̂(Φ(elog))
for every value of elog.
After an error bound is guaranteed by the accuracy-

driven computation, the stored error is set to this error
bound. If later on the same error bound is needed for

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

the respective node, the algorithm checks whether a
recomputation is necessary. If the representations of the
stored bound and the requested bound differ, as present
in Real_algebraic, the check fails and the computation
needs to be executed again.
A drastic example for this effect arises if a power is

computed through repeated squaring. Each node gets
recomputed along each of the 2n paths from the root to
the leaf, leading to an exponential increase in running
time (cf. Figure 1). For x =

√
13 +

√
17 and n = 15

operations, Real_algebraic takes 87.84 seconds with
the “inexact” implementation to evaluate the expression
up to an accuracy of q = 50000, compared to about 0.01
seconds with an “exact” one2,3. While in this example
the problem can be avoided by switching to a topological
evaluation order (see Mörig et al. [5]), it persists if checks
need to be repeated in the main algorithm.

∗ ∗ ∗ x

Figure 1: The arithmetic expression dag resulting from
computing x2

n

through repeated squaring. There are 2n

different paths from the topmost multiplication to the
common leaf x. If recomputation checks fail due to con-
version errors, the evaluation time increases drastically.

If the conversion should be exact, considerable effort
needs to be done. We need to check, whether the value
of the mantissa is exactly 0.5 and, if so, decrease the
result by one. When using mpfr bigfloats for example,
this changes the one-liner

mpfr_exp_t ceil_log2 (const mpfr_t& a) {
re turn mpfr_get_exp (a) ;

}

to the more elaborate method

mpfr_exp_t ceil_log2 (const mpfr_t& a) {
mpfr_exp_t e = mpfr_get_exp (a) ;
mpfr_t rop ; mpfr_init (rop) ;
mpfr_div_2si (rop , a , e , MPFR_RNDA) ;
i f (mpfr_cmp_d (rop , 0 . 5) == 0) −−e ;
mpfr_clear (rop) ;
r e turn e ;

}

In the second method, the mantissa of the bigfloat
is accessed, which can potentially be large. For large
computations it can be expected to be significantly slower
than the first method. If the undesirable effects described
above should be avoided, it may therefore prove more
efficient to avoid transformations between different error
representations entirely.

2We use the term “exact” in this context to express that the
method correctly implements the function Φ̂(edir) := dlog(edir)e.

3Specifications on the test configuration can be found at the
beginning of Section 3.

Note that even then the conversion function is widely
used during the computation. Approximations of the
value of a (sub)expression must be stored in bigfloats.
In accuracy-driven computation, often a bound for the
magnitude of the result is needed, which is then com-
puted by the above function. Since, in contrast to error
transformation, a worse bound for the magnitude only
causes a small difference in performance, it is reasonable
to use the inexact, but fast transformation method in
those cases.

2.3 Logarithmic floating-point error bounds

In the previous section, difficulties are pointed out that
may arise when switching between a direct and a log-
arithmic error representation. In contrast, switching
between a floating-point representation and an integer
representation for logarithmic errors is cheap and natu-
ral. This raises the question whether the fixed precision
computations can be done more efficiently through a
logarithmic floating-point bound.
Most of the computations involved in error propaga-

tion with a fixed precision can be broken down to the
sum of two or three errors. So with a logarithmic bound
we have to find a value c for two error representations a
and b, such that 2c ≥ 2a + 2b. With an integer value the
error bound doubles with each such summation, since
this is the smallest step in which the bound can be
increased. So we have c = max(a, b) + 1.

If a, b, c are floating-point values, we may find a better
bound by setting c = max(a, b) + log(1 + 2−|a−b|), where
we have to make sure that each operation is rounded up
(towards infinity). With repeated additions, the floating-
point error bound increases much more slowly than the
integer bound, although computing the logarithm in
each step makes it also a lot more expensive.
Can the error propagation during accuracy-driven

computation benefit from more precision in the expo-
nent? Surprisingly, the answer is no, at least not directly.
When deciding which accuracy is needed at the child
nodes to guarantee a certain accuracy at the parent node,
up to three error terms need to be balanced. Besides
the desired accuracies of the one or two children, the
precision at which the operation at the parent node is
computed must be chosen. A higher accuracy at the
child nodes can then be used to reduce the precision
needed for the bigfloat operation.

This decision is done locally, i.e., the parent node does
neither know of what size, nor of which form its subtrees
are. Without this information it cannot be decided to
what extent the precision of the operation needs to be
increased in order to require a smaller overall accuracy.
So if the decision should be made locally, the gain from
switching to a floating-point exponent is marginal and
will probably not cover the additional costs associated
with it.

30th Canadian Conference on Computational Geometry, 2018

Nevertheless, benefitting may be possible if a global
error propagation strategy is implemented. The overall
accuracy needed could then be kept small through bal-
ancing of error terms, which in turn has the potential
to drastically improve the performance of the number
type, especially for unbalanced expression dags [9, 10].

2.4 Errors and separation bounds

During the accuracy-driven part of the computation, it is
beneficial to convert subgraphs to a single bigfloat node if
their approximation is already exact, i.e., if their error is
zero. This is especially useful if the value of a subgraph is
found to be zero. If after a computation the approxima-
tion of a node is close to zero, Real_algebraic computes
a separation bound for this node and checks whether the
true value can be declared zero. An approximation is
considered close to zero if zero is part of its error interval.
If the error bound is bad, this check happens (and

fails) more often. This can have significant consequences
for the performance, since for computing the separation
bound of a subexpression, the whole subtree must be
traversed. Existing bounds for the child nodes cannot
be used, since they may misrepresent the algebraic de-
gree of the expression if common subexpressions exist
(cf. Figure 2) and a higher algebraic degree drastically
worsens the separation bound.

∗
+

3
√

5

4
+

d = 2

d = 2

d = 2

Figure 2: The two children of the root node share a
common subexpression with a square root operation.
Although both subexpression at the child nodes have
algebraic degree two, the algebraic degree of the full
expression is still only two.

In addition, the separation bound cannot be assumed
to stay the same during the whole computation, since
subgraphs may be converted to bigfloat nodes. While
a previous separation bound stays valid after such a
conversion, in some cases a much better bound can
be computed, e.g. if roots can be eliminated. So it is
advisable to keep the bound flexible.
To solve this problem, once computed separation

bounds can be cached together with a global times-
tamp. Whenever a bigfloat conversion happens, all pre-
vious timestamps get invalidated. The advantage of this
method is an easy implementation without much over-
head, leading to good results, if the usage of the number

type is limited to few large expressions. However, if
many different usages of the number type exist at the
same time, a separation bound might get invalidated
by a bigfloat conversion in a completely disjoint expres-
sion dag. An alternative approach based on topological
evaluation which leads to similar results can be found
in [11].

3 Experimental Results

The experiments are performed on an Intel Core i5 660,
8GB RAM, under Ubuntu 17.10. For Real_algebraic
we use Boost interval arithmetic as floating-point-filter
and MPFR bigfloats for the bigfloat arithmetic. The
code is compiled using g++ 7.2.0 with C++11 on opti-
mization level O3 and linked against Boost 1.62.0 and
MPFR 3.1.0. Test results are averaged over 25 runs each.
The variance for each data point is negligible.

We compare three main strategies with different rep-
resentations for (a) storing, (b) error propagation in
accuracy-driven computation and (c) fixed precision eval-
uation (cf. Section 2.1):

1. The default strategy of Real_algebraic, i.e., direct
error representation for (a) and (c) and logarithmic
integer representation for (b), named def.

2. Logarithmic integer representation for all three parts
(a), (b) and (c), named lgi.

3. Logarithmic floating-point representation for (a)
and (c), logarithmic integer representation for (b),
named lgd.

Note, that in each case we use a logarithmic integer
representation for (b). It has already been shown that
direct error bounds are very expensive compared to the
additional benefit [6]. As described in Section 2.3, ad-
vanced strategies would be needed for error propagation
to benefit from a logarithmic floating-point represen-
tation. While without such strategies, no interesting
results are to be expected, implementing them heavily
reduces comparability to the other approaches presented
in this paper. Therefore we leave it aside for future work.

3.1 Comparison of separation bound strategies

First, we show the effects of the interactions between
error bound representation and the computation of sep-
aration bounds, as described in Section 2.4. We test for
the equality

Fn =
φn − φ̄n√

5
,

where Fn represents the n-th Fibonacci number and
φ = 1 − φ̄ = 1+

√
5

2 . We compute both sides of the
equation in a simple loop as in the code below.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

template <c l a s s NT>
bool fibonacci_test (const i n t n) {

NT sqrt5 = sqrt (NT (5)) ;
NT phi = (NT (1) + sqrt5) / NT (2) ;
NT phibar = (NT (1) − sqrt5) / NT (2) ;

NT phiN = phi ; NT phibarN = phibar ;
NT fib0 = 0 ; NT fib1 = 1 ; NT tmp ;

f o r (i n t i = 1 ; i < n ; i++){
tmp = fib1 ; fib1 += fib0 ; fib0 = tmp ;
phiN ∗= phi ; phibarN ∗= phibar ;

}

NT res = NT (1) /sqrt5 ∗ (phiN−phibarN) ;
r e turn fib1 == res ;

}

We show running times for each of the three aforemen-
tioned strategies with and without a cached separation
bound computation (indicated by an additional s).

def lgi lgd defs lgis lgds

0

5

10

15

0.
25

0.
27

0.
25

0.
25

0.
2

0.
221.
47 2.
06

1.
7

1.
47

0.
84

1.
06

8.
87

12
.3
8

10
.2
3

8.
42

3.
91 5.

41

T
im

e
(s

ec
on

ds
)

n = 2000
n = 4000
n = 8000

Figure 3: Results for fibonacci_test with different
strategies. A logarithmic error bound increases the run-
ning time due to repeated computation of separation
bounds. If the separation bounds are cached, the running
time can be significantly decreased.

The results are shown in Figure 3. Representing the
error logarithmically has a negative impact on the per-
formance due to a heavy increase in separation bound
computations. For n = 8000, a separation bound com-
putation is started 1149 times with def compared to
29092 and 13939 times with lgi and lgd. When the cost
for those computations can be reduced due to caching,
the logarithmic error bounds outperform the direct rep-
resentation. Note that the logarithmic floating-point
representation ranges in between the other two represen-
tations in each scenario, which underlines its character
of slightly more precision for slightly more overhead
compared to a logarithmic integer representation.

3.2 Geometric problems

In the previous section a first impression of the behavior
of the three different representations is obtained. In
this section we test this impression against more real-
istic geometric problems. For this, we recreate several
experiments from Mörig et al. [4].

Figure 4: Examples from the test data for the delau-
nay triangulation and intersection points computation.
Three types of data are shown: A point cloud with 50%
of its points on a union of disks (left), a random collec-
tion of short segments (middle) and a random collection
of segments with endpoints on a grid (right).

We compare the three strategies introduced at the
beginning of Section 3. In none of the experiments, a
timestamped separation bound computation significantly
worsened the performance. So we show only results with
a timestamped computation enabled. Instead we show
the impact of an exact implementation of ceil_log2
(cf. Section 2.2), indicated by an x.

We first compute the delaunay triangulation of a set
of 20000 points, of which between 50% and 100% lie on
a union of disks with no points inside (cf. Figure 4).

def lgi lgd defx lgix lgdx

0.2

0.4

0.6

0.8

1

0.
22

0.
19

0.
2

0.
41

0.
32

0.
34

0.
27

0.
23

0.
25

0.
54

0.
41

0.
42

0.
31

0.
26

0.
28

0.
65

0.
47

0.
5

T
im

e
(s

ec
on

ds
)

50% 75% 100%

Figure 5: Experimental results for the computation
of a delaunay triangulation on 20000 random points
with different percentages of them distributed along the
boundary of a union of disks and none inside. More
degeneracies lead to more performance gain through
a logarithmic error bound. An exact computation of
ceil_log2 causes an increase in running time in all
cases.

The results are shown in Figure 5. The data shows a
small performance gain by switching from a direct error
representation to a logarithmic one. Using exact trans-
formations between bigfloats and integer types shows
to be very expensive in all cases, but even more so in
the case of direct error representation. In lgi and lgd
errors are not transformed through this method. Still,
both experience an increase in running time, since the
computation of the magnitude of an approximation is
affected by this change as well (cf. Section 2.2). It can
be reasoned that for lgi and lgd the inexact transfor-
mation can be used, since the problems from Section 2.2

30th Canadian Conference on Computational Geometry, 2018

are solved by design. While not fully comparable, the
difference between defx and lgi is worth noting.
In Figure 6 the results for the computation of inter-

section points on different test data are shown. The
test data consists of long or short random segments, seg-
ments with endpoints on a grid and segments which are
parallel to the axes (cf. Figure 4). The intersection tests
are performed with homogenous coordinates. Results for
Cartesian coordinates are not shown, but look similar.
The same number of segments as in Mörig et al. are
used in the four scenarios to make the data somewhat
comparable.

def lgi lgd defx lgix lgdx
0

0.5

1

1.5

2

2.5

3

0.
3

0.
31

0.
3

0.
3

0.
3

0.
3

0.
24

0.
24

0.
24

0.
24

0.
25

0.
240.

47

0.
36

0.
4

1.
27

0.
72

0.
77

0.
7

0.
6

0.
64

1.
95

1.
12 1.
18

T
im

e
(s

ec
on

ds
)

long (700) short (2500) grid (500) axis (700)

Figure 6: Results for computing the intersection points
of segments in various constellations. Neither the form of
error representation, nor the exactness of the ceil_log2
operation have an influence on the running time for
random long or short segments. If segments are placed
on a grid or parallel to the axes, a logarithmic error
bound leads to better results. Whether the ceil_log2
operation is performed exactly has significant influence
on the performance in these cases.

For long or short random segments, no difference be-
tween the three forms of error representation is apparent.
Because of the random distribution of the segments, the
data sets have almost no degeneracies. Therefore almost
all relevant signs can be decided through a floating-point
filter, without invoking the accuracy-driven computation
in the first place.
For segments on a grid or axis-parallel segments, sig-

nificant differences are present between different error
representations, especially if the transformation between
representations is exact. In these cases lots of degen-
eracies occur, causing the computation to switch to
accuracy-driven computation more often.
Summarizing the results, in each geometric experi-

ment the logarithmic representation performed at least
as well as the direct representation, while avoiding pos-
sible drawbacks due to a faulty error conversion. The
more degeneracies occur, the larger is the gain compared
to other strategies. Switching to an exact implementa-
tion of ceil_log2 is too expensive to be a reasonable
alternative for solving the problems resulting from an
inexact transformation.

4 Conclusion

Choosing a representation model for error bounds in
accuracy-driven computation means balancing a tradeoff
between the quality of the bound and the efficiency of its
computation. Our results suggest that in most cases it
is not worth the effort to compute a better error bound
to increase the overall efficiency of the number type. A
simple logarithmic integer bound outperforms the direct
error bound representation as well as the logarithmic
floating-point bound in all cases if accompanied by some
cautionary mechanisms regarding the separation bound
computation.

Mixed forms of error representation suffer from prob-
lems arising during the transformation between the rep-
resentation or, respectively, from the transformation
overhead. In conclusion, we suggest using logarithmic in-
teger error bounds by default in exact-decisions number
types based on accuracy-driven computation.

5 Future work

The additional precision gained through the usage of a
logarithmic floating-point representation proved to be
not sufficient to compensate for the additional cost asso-
ciated with its operations in the fixed-precision initial-
ization phase of the algorithm. For accuracy-driven com-
putation it seems promising to combine this approach
with a global error propagation strategy as described in
Section 2.3. To a lesser extent, global strategies may
also be used to improve the error bound computed with
integer exponents.

References

[1] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and
S. Schmitt. A separation bound for real algebraic ex-
pressions. Algorithmica, 55(1):14–28, 2009.

[2] C. Burnikel, K. Mehlhorn, and S. Schirra. The leda class
real number. Report MPI-I-1996-1-001, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 1996.

[3] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A
core library for robust numeric and geometric computa-
tion. In Proceedings of the Fifteenth Annual Symposium
on Computational Geometry, Miami Beach, Florida,
USA, June 13-16, 1999, pages 351–359, 1999.

[4] M. Mörig, I. Rössling, and S. Schirra. On design and
implementation of a generic number type for real alge-
braic number computations based on expression dags.
Mathematics in Computer Science, 4(4):539–556, 2010.

[5] M. Mörig and S. Schirra. Precision-driven computation
in the evaluation of expression-dags with common subex-
pressions: Problems and solutions. In 6th International
Conference on Mathematical Aspects of Computer and
Information Sciences, MACIS, pages 451–465, 2015.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

[6] M. Mörig. Algorithm Engineering for Expression Dag
Based Number Types. Dissertation, Otto-von-Guericke
Universität Magdeburg, 2015.

[7] K. Ouchi. Real/expr: Implementation of an exact com-
putation package. Master’s thesis, New York University,
Department of Computer Science, Courant Institute,
1997.

[8] S. Schirra. Robustness and precision issues in geometric
computation. In Handbook of Computational Geometry,
pages 597–632. Elsevier, 2000.

[9] J. van der Hoeven. Computations with effective real
numbers. Theor. Comput. Sci., 351(1):52–60, 2006.

[10] M. Wilhelm. Balancing expression dags for more efficient
lazy adaptive evaluation. In Mathematical Aspects of
Computer and Information Sciences - 7th International
Conference, MACIS 2017, Vienna, Austria, November
15-17, 2017, Proceedings, pages 19–33, 2017.

[11] M. Wilhelm. Multithreading for the expression-dag-
based number type Real_algebraic. Technical Report
FIN-001-2018, Otto-von-Guericke-Universität Magde-
burg, 2018.

[12] C. Yap. Towards exact geometric computation. Comput.
Geom., 7:3–23, 1997.

[13] C. Yap and T. Dubé. The exact computation paradigm.
In Computing in Euclidean Geometry, pages 452–492.
World Scientific, 1995.

[14] J. Yu, C. Yap, Z. Du, S. Pion, and H. Brönnimann. The
design of core 2: A library for exact numeric compu-
tation in geometry and algebra. In Proceedings of the
Third International Congress on Mathematical Software,
ICMS, pages 121–141, 2010.

