
1

© C. Kemke CLIPS 1

1

COMP 4200:
Expert Systems

Dr. Christel Kemke
Department of Computer Science

University of Manitoba

© C. Kemke CLIPS 1

2

CLIPS Introduction 1

Overview and Introduction
CLIPS Programming System
Basic CLIPS Constructs and Syntax

Basic Data Types
Basic Data Structures
Basic Condition Patterns
Rules

© C. Kemke CLIPS 1

3

CLIPS – Background
CLIPS – C Language Integrated Production System

Production System refers to Rule-Based Systems
Originally developed by NASA
download, user’s manual, developer’s forum etc.
see CLIPS link on course web-page
CLIPS is free, shareware; can even be used for
commercial applications

© C. Kemke CLIPS 1

4

CLIPS – Programming Systems
CLIPS Editor

load, save and edit CLIPS program files

CLIPS Interpreter
enter commands, execute CLIPS programs

Execution-Menu
set execution parameters (e.g. watch)

Browse-Menu
manage constructs

© C. Kemke CLIPS 1

5

CLIPS - Example

CLIPS> (load “file”) or use file-menu
CLIPS> (assert (today is Tuesday))
f-0 (today is Tuesday)
CLIPS> (retract 0) retract fact 0
CLIPS> (facts) display current facts
CLIPS> (reset) reset facts; re-run definitions
CLIPS> (clear) clear CLIPS Interpreter

(everything’s gone now)

© C. Kemke CLIPS 1

6

CLIPS – Defining Facts
CLIPS> (deffacts today defines the set today

(today is Tuesday) with 2 facts
(weather is cold))

CLIPS> (reset) re-read definitions

CLIPS> (facts) display current facts
f-0 (initial-fact) system "start-fact"
f-1 (today is Tuesday)
f-2 (weather is cold)

For a total of 3 facts.

2

© C. Kemke CLIPS 1

7

Working with Facts
Changing the Fact Base

Adding facts (assert <facts>)
Deleting facts (retract <fact-identifier>)
Modifying facts (modify <fact-identifier>

(<slot-name> <slot-value>))
Duplicating facts (duplicate <fact-identifier>

(<slot-name> <slot-value>))

Monitoring fact base
Print all facts (facts)
Displays changes (watch facts)

© C. Kemke CLIPS 1

8

CLIPS – Basic Constructs
Basic Language Elements:

Fields (basic Data Types)
Facts (used in condition patterns)
Rules (condition-action rules)
Templates (like records; define facts)
Classes (like objects; define facts)
Messagehandlers (like methods defined for

classes; used in condition
patterns and actions)

© C. Kemke CLIPS 1

9

CLIPS – Basic Syntax

Syntax of Constructs is LISP-like, e.g.

(deffacts <fact-list-name> <fact-list>)

(defrule <rule-name> <rule-body>)

(defclass <class-name> <class-body>)

General form:

(function-name parameter-list)

Don't forget the brackets (...) !

© C. Kemke CLIPS 1

10

CLIPS – Rules in General
In CLIPS (and other Rule-based Languages)

Rules are the core elements of program
execution.

Rules consist of a Condition-part and an Action-
part.

(defrule rule-name “Comment”
<condition patterns>

=>
<actions>)

© C. Kemke CLIPS 1

11

CLIPS – Rules in General

The condition-part of rules consists of patterns
which are matched against facts; facts are
defined based on data structures (like templates
and classes); plus additional operators to form
complex patterns.

The action-part contains commands for modifying
facts or the fact base, or external actions like
printout or load.

© C. Kemke CLIPS 1

12

CLIPS – Patterns and Rules
CLIPS provides a rich set of mechanisms to define

and describe patterns used as Conditions
("Condition Elements") in rules.

examples:
simple facts;
facts based on templates;
facts based on classes (instances);
facts with variables and wildcards;
connections of facts (logical connectives like 'and'
and 'or')

3

© C. Kemke CLIPS 1

13

CLIPS –
Basic Data Types and Constructs

CLIPS
Fields (data types)
Facts
Templates
Rules

© C. Kemke CLIPS 1

14

CLIPS – special syntax for fields

CLIPS is case-sensitive:
symbols Space different from space

but space
same as _space

strings “_space” different from “space”

special characters in strings: insert \
“\”symbol\”” → “symbol” as string
“\\symbol\\”→ \symbol\ as string

© C. Kemke CLIPS 1

15

CLIPS - Fields
Fields (data types)

float real number
integer integer numbers
symbol character-sequence (without special

characters); ends with space
? and $? not at beginning of a symbol
? and $? are pre-fix of variables
string character-sequence in double-quotes
instance name name of an instance in []

© C. Kemke CLIPS 1

16

Fields - Examples
Fields (data types)

float 4.00, 2.0e+2, 2e-2
integer 4, 2, 22
symbol Alpha24*, !?@*$
string “Johnny B. Good”
instance name [titanic], [PPK]

Variables
?var, ?x, ?day variables for single field value
$?names variable for multi-field value

© C. Kemke CLIPS 1

17

CLIPS –Facts
Facts

a relation-name,
an ordered sequence of values (ordered facts), or
a set of (slot-name slot-value)-pairs (i.e.
deftemplate-facts)

examples:
(today is Thursday)
(person (name “Johnny B. Good”) (age 25))

© C. Kemke CLIPS 1

18

Ordered Facts

Ordered facts
are facts defined without (explicit) template;
the field-values are ordered.

Examples:
(number-list 1 2 55 6 7 42)
(today is Sunday)

4

© C. Kemke CLIPS 1

19

Deftemplate Facts

Deftemplate-facts
are facts defined based on a template;
slots can be arranged arbitrarily, there is no
specific order.

Define a template for describing a set of facts
using deftemplate (record structure) .

Use deffacts to create a list of facts based on a
template.

© C. Kemke CLIPS 1

20

CLIPS – Defining Templates
Templates

keyword ‘deftemplate’
relation-name
list of slot-specifications: (slot slot-name)...

Example:
(deftemplate person

(slot name)
(slot age))

You can add type constraints to the slots, e.g.

(slot name) (type STRING)
(slot age) (type INTEGER)

© C. Kemke CLIPS 1

21

No Order in Deftemplate-Facts
Slots in templates can be arranged arbitrarily. The
following templates define the same data structure:

The template-facts

are regarded the same (→ pattern matching).

(deftemplate person (deftemplate person
(slot name)
(slot age)
(slot age))
(slot name))

(person (name Johnny) (age 42))
(person (age 42) (name Johnny))

© C. Kemke CLIPS 1

22

CLIPS – Defining a Fact List
Fact List

keyword ‘deffacts’
name of the fact list
list of facts, each fact in (...)

Example 1:
Define the set today with 2 facts:

(deffacts today
(today is Thursday)
(weather is cold)

)

© C. Kemke CLIPS 1

23

CLIPS – Defining a Fact List
Example 2:
Define a set of old-students based on a student-template:

(deffacts old-students
(student (name “Igor”) (age 50))
(student (name “Berta”) (age 80)))

(deftemplate student
(slot name)
(slot age))

© C. Kemke CLIPS 1

24

CLIPS – Defining Rules
Rules

keyword ‘defrule’
name of the rule
condition patterns (condition elements)
=>
actions (+ control structure)

(defrule rule-name “Comment”
<condition patterns>

=>
<actions>)

5

© C. Kemke CLIPS 1

25

Defining Rules - Example

(defrule birthday “A person’s birthday”

(person (name ?name) (age ?age))
(has-birthday ?name ?age)

=>
(printout t “Happy Birthday,” ?name))

© C. Kemke CLIPS 1

26

Rule - Example

(defrule birthday “A person’s birthday”
(person (name ?name) (age ?age))
(has-birthday ?name ?age)
=>
(printout t “Happy Birthday, ” ?name))

template
fact

ordered
fact

terminal

rule name comment

variables

variabletextfunction

© C. Kemke CLIPS 1

27

CLIPS - Refraction
refraction: rule fires only once on the same data
refresh (or reset): rule starts all-over again

(defrule birthday “A person’s birthday”
(person (name ?name) (age ?age))
(has-birthday ?name ?age)
=>
(printout t “Happy Birthday,” ?name))

question: How many times does the rule above fire
and produces an output when the fact-base consists
of the 'old-students' fact-list from above?

© C. Kemke CLIPS 1

28

Rule - Test

exercise: Test the rule above and then modify it in
such a way that it produces outputs like "Mary is
turning 40 today."

(defrule birthday “A person’s birthday”
(person (name ?name) (age ?age))
(has-birthday ?name ?age)
=>
(printout t “Happy Birthday, ” ?name))

