
1

COMP4510
Introduction to Parallel Computation

Models of Parallel Computation

9/9/07 COMP4510 - Introduction to Parallel Computation 2

Outline

• Introduction and overview
• Parallel Computer Architectures
• Models of Parallel Computation
• Data Dependence
• Techniques for Designing Parallel

Algorithms
 Partitioning, Communication, Agglomeration

and Mapping, synchronization and load
balancing

2

9/9/07 COMP4510 - Introduction to Parallel Computation 3

Types of Models

• There have been a huge range of models
proposed for parallel computation

• These range from the abstract/theoretical…
 Primarily used for reasoning about algorithm

design and asymptotic analysis
• … to the concrete/applied models

 Used as frameworks for parallel program
development

• We will focus on the latter in this course

9/9/07 COMP4510 - Introduction to Parallel Computation 4

Abstract Models

• Since parallel machines are divided into
those with and without shared memory, it is
not surprising that there are theoretical
models for each (as well as some others too)

• The primary model for shared memory
algorithms is known as PRAM (Parallel
Random Access)

• The primary model for distributed memory
algorithms is known as the interconnection
network (ICNet) model

3

9/9/07 COMP4510 - Introduction to Parallel Computation 5

Abstract Models (cont’d)

• The PRAM model assumes shared memory
and ignores issues affecting scalability

• Several variants are used depending on
assumptions made about concurrent
memory accesses:
 EREW-PRAM:

• EREW stands for Exclusive Read, Exclusive Write
• Only one process/thread is allowed to access a

memory location at a time
• This is the most restrictive (and realistic) model

9/9/07 COMP4510 - Introduction to Parallel Computation 6

Abstract Models (cont’d)

 CREW-PRAM:
• CREW stands for Concurrent Read, Exclusive Write
• Only one process/thread is allowed to write to a

memory location at a time
• This is a less restrictive (and somewhat realistic)

model
 CRCW-PRAM:

• CRCW stands for Concurrent Read, Concurrent Write
• Many processes/threads are allowed to read or write a

memory location concurrently
• Very powerful but unrealistic

 What is the result of concurrent writes?

4

9/9/07 COMP4510 - Introduction to Parallel Computation 7

Abstract Models (cont’d)

• For machines without shared memory, the
abstract “IC Net model” can be used for
parallel algorithm design

• This model explicitly links messaging over
a network with a specific topology (ring,
star, mesh, hypercube, etc.) to the algorithm
 Can lead to unique and very efficient

algorithms but they are typically non-portable
 More later!

9/9/07 COMP4510 - Introduction to Parallel Computation 8

Abstract Models (cont’d)

• Other abstract models are largely beyond
the scope of this course

• It is worthwhile to note that such models
often try to address complaints about how
unrealistic other theoretical models are
 E.g. The BSP (Bulk Synchronous Parallel)

model by Valiant and Culler et al’s logP
(latency, overhead, gap, Processors) model

5

9/9/07 COMP4510 - Introduction to Parallel Computation 9

Abstract Models (cont’d)

• One might wonder if abstract models are
actually useful for much

• The development of parallel algorithms
using abstract models for parallel machines
is much simpler than addressing all the
issues associated with programming a real
parallel machine

• Such models are also useful to illustrate
some fundamental techniques for solving
problems in parallel

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

10

Parallel Algorithm Design

• Consider the simple problem of finding the
maximum of a set of N numbers

• A straightforward technique for solving this
problem in parallel is to use a technique
called binary fan-in
 Special case of parallel prefix

• The idea is to compare pairs of numbers in
parallel on different processors and
propagate each larger number into a new set

6

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

11

Parallel Algorithm Design (cont’d)

• This is repeated on the resulting set (of half
the size) until a set of size 1 is produced
 X0 X1 X2 X3 X4 X5 X6 X7

Maximum

max(X0,X1)

max(X0,X1,X2,X3)

max(X6,X7)

max(X4,X5,X6,X7)

A different way of thinking!

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

12

Parallel Algorithm Design (cont’d)

• This algorithm requires N/2 processors and
takes time O(logN) (the depth of the tree)
 compare this with the best serial algorithm

which is O(N)
• Only N/2 processors are needed since in any

execution cycle (at any level of the tree) at
most N/2 pairs of numbers are compared
 But where will each comparison be done???

7

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

13

Parallel Algorithm Design (cont’d)

• Consider the following mapping of
comparisons in the binary fan-in algorithm
to N/2 processors
 X0 X1 X2 X3 X4 X5 X6 X7

Maximum

P0

P1
P2

P3

T
I

M
E

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

14

Parallel Algorithm Design (cont’d)

• This algorithm can be expressed as follows:
 For convenience we will use N processors
 Assume that our X values are initially stored in shared

memory locations A[1] through A[N]
 Assume further that each processor has local variables
bigi, tempi, and incri.

1.FOR i:=1 TO n PARDO
incri:=1
A[n+i]:= MAXINT
bigi := A[i]

8

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

15

Parallel Algorithm Design (cont’d)

2.REPEAT log2N TIMES
FOR i:=1 TO N PARDO

tempi:=A[i+incri]
bigi:=max(bigi,tempi)
A[i]:=bigi
incri:=incri*2

• Upon completion, the result is in memory
location A[i]
 Example on the board - think about why!

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

16

Parallel Algorithm Design (cont’d)

• This algorithm runs successfully without
requiring concurrent reads or writes
 Hence it is EREW-PRAM

• Question: How much better than O(logN)
could we do if we added the power of
concurrent reading and writing? (CRCW)

• Answer: Significantly better!
 But that’s for a different course
 And its unrealistic!

9

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

17

Parallel Algorithm Design (cont’d)

• Let’s consider the problem of merging two
ordered sequences of numbers

• We will use a custom “network” which
merges two sequences of sorted numbers
 also implementable using shared memory

• We can emulate the network connections in RAM

• This network is known as “Batcher’s Odd-
Even merge network”

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

18

Parallel Algorithm Design (cont’d)

• Consider two sequences: A={1,3,7,8} and B={2,4,5,6}

- Each box is a comparator giving the minimum at the top
 and the maximum at the bottom

A1
B1

A3
B3

A2
B2

A4
B4

1
2
5

7
3
4
6
8

1
2
3

4
5
6
7
8

2

5

4

6

Note
the

order

1
2

7
5
3
4

8

6

A different way of thinking!

10

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

19

Parallel Algorithm Design (cont’d)

• Merging is the basis of sorting and
Batcher’s Odd-Even merge network can be
extended to provide sorting ability

• To sort N elements, we begin by merging
N/2 pairs of single elements, then we merge
N/4 pairs of two sorted elements, etc. until
we have a single sorted list of N elements

• We can use multiple instances of (parts of)
Batcher’s network to do this

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

20

Parallel Algorithm Design (cont’d)

• Of course, we can also convert this to run on a
shared memory machine by using temporary
memory locations (one for each vertical cross
section of edges)

11

9/9/07 COMP4510 - Introduction to Parallel Computation 21

Concrete Models

• Flynn made one of the first attempts to
classify parallel machines and his ideas are
still useful as more “concrete” models today

• Flynn realized that parallelism could come
from two sources: the code or the data
 What we would now refer to as functional

parallelism or data parallelism (more later)
• A parallel machine could support either or

both forms of parallelism

9/9/07 COMP4510 - Introduction to Parallel Computation 22

Concrete Models (cont’d)

• Flynn’s classification:
 {SI, MI} x {SD, MD} gives:
 SISD - Single Instruction, Single Data

• Non-parallel machine
 SIMD - Single Instruction, Multiple Data
 MISD - Multiple Instruction, Single Data

• Doesn’t really fit any existing machine
 MIMD - Multiple Instruction, Multiple Data

• We still refer to SIMD and MIMD models

12

9/9/07 COMP4510 - Introduction to Parallel Computation 23

Concrete Models (cont’d)

• MIMD is clearly the most powerful model
 Can support the most parallelism
 Unfortunately, it is also the most complex

• 500 processors could run 500 different pieces of
code in parallel - hard to understand and write

• SIMD has the virtue of simplicity
 Every processor does the same thing
 Good for some things (e.g. vector/array

operations) but quite restrictive
• What about conditional operations?

9/9/07 COMP4510 - Introduction to Parallel Computation 24

Concrete Models (cont’d)

• Probably the most commonly used parallel
programming model is the Single Program
Multiple Data (SPMD) model
 Each processor executes the same program but

is not synchronized at the instruction level
• Thus, different processors can execute different

code based on conditionals
• More flexible and intuitive
• Less time wasted waiting for other processors
• But programmer must include synchronization code

13

9/9/07 COMP4510 - Introduction to Parallel Computation 25

Concrete Models (cont’d)

• There are a number of variants on the
SPMD model including:
 Master/Slave model

• Where one process doles out work to the others and
oversees their execution
 Largely SPMD for the workers

 Inspector/Executor model
• If the work that must be done cannot be known a-

priori then “inspector” code decides on partitioning
and assigns work to the “executor” phase
 Sort of dynamic Master/Slave

9/9/07 COMP4510 - Introduction to Parallel Computation 26

Concrete Models (cont’d)

• The SPMD and Master/Slave models vary a
little based on the type of machine (SMP vs.
cluster…) you will be using

• You will see and write programs using both
models for shared memory…
 Using OpenMP (and possibly pthreads)

• … and for distributed memory
 Using MPI

