
1

COMP4510
Introduction to Parallel Computation

Models of Parallel Computation

9/9/07 COMP4510 - Introduction to Parallel Computation 2

Outline

• Introduction and overview
• Parallel Computer Architectures
• Models of Parallel Computation
• Data Dependence
• Techniques for Designing Parallel

Algorithms
 Partitioning, Communication, Agglomeration

and Mapping, synchronization and load
balancing

2

9/9/07 COMP4510 - Introduction to Parallel Computation 3

Types of Models

• There have been a huge range of models
proposed for parallel computation

• These range from the abstract/theoretical…
 Primarily used for reasoning about algorithm

design and asymptotic analysis
• … to the concrete/applied models

 Used as frameworks for parallel program
development

• We will focus on the latter in this course

9/9/07 COMP4510 - Introduction to Parallel Computation 4

Abstract Models

• Since parallel machines are divided into
those with and without shared memory, it is
not surprising that there are theoretical
models for each (as well as some others too)

• The primary model for shared memory
algorithms is known as PRAM (Parallel
Random Access)

• The primary model for distributed memory
algorithms is known as the interconnection
network (ICNet) model

3

9/9/07 COMP4510 - Introduction to Parallel Computation 5

Abstract Models (cont’d)

• The PRAM model assumes shared memory
and ignores issues affecting scalability

• Several variants are used depending on
assumptions made about concurrent
memory accesses:
 EREW-PRAM:

• EREW stands for Exclusive Read, Exclusive Write
• Only one process/thread is allowed to access a

memory location at a time
• This is the most restrictive (and realistic) model

9/9/07 COMP4510 - Introduction to Parallel Computation 6

Abstract Models (cont’d)

 CREW-PRAM:
• CREW stands for Concurrent Read, Exclusive Write
• Only one process/thread is allowed to write to a

memory location at a time
• This is a less restrictive (and somewhat realistic)

model
 CRCW-PRAM:

• CRCW stands for Concurrent Read, Concurrent Write
• Many processes/threads are allowed to read or write a

memory location concurrently
• Very powerful but unrealistic

 What is the result of concurrent writes?

4

9/9/07 COMP4510 - Introduction to Parallel Computation 7

Abstract Models (cont’d)

• For machines without shared memory, the
abstract “IC Net model” can be used for
parallel algorithm design

• This model explicitly links messaging over
a network with a specific topology (ring,
star, mesh, hypercube, etc.) to the algorithm
 Can lead to unique and very efficient

algorithms but they are typically non-portable
 More later!

9/9/07 COMP4510 - Introduction to Parallel Computation 8

Abstract Models (cont’d)

• Other abstract models are largely beyond
the scope of this course

• It is worthwhile to note that such models
often try to address complaints about how
unrealistic other theoretical models are
 E.g. The BSP (Bulk Synchronous Parallel)

model by Valiant and Culler et al’s logP
(latency, overhead, gap, Processors) model

5

9/9/07 COMP4510 - Introduction to Parallel Computation 9

Abstract Models (cont’d)

• One might wonder if abstract models are
actually useful for much

• The development of parallel algorithms
using abstract models for parallel machines
is much simpler than addressing all the
issues associated with programming a real
parallel machine

• Such models are also useful to illustrate
some fundamental techniques for solving
problems in parallel

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

10

Parallel Algorithm Design

• Consider the simple problem of finding the
maximum of a set of N numbers

• A straightforward technique for solving this
problem in parallel is to use a technique
called binary fan-in
 Special case of parallel prefix

• The idea is to compare pairs of numbers in
parallel on different processors and
propagate each larger number into a new set

6

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

11

Parallel Algorithm Design (cont’d)

• This is repeated on the resulting set (of half
the size) until a set of size 1 is produced
 X0 X1 X2 X3 X4 X5 X6 X7

Maximum

max(X0,X1)

max(X0,X1,X2,X3)

max(X6,X7)

max(X4,X5,X6,X7)

A different way of thinking!

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

12

Parallel Algorithm Design (cont’d)

• This algorithm requires N/2 processors and
takes time O(logN) (the depth of the tree)
 compare this with the best serial algorithm

which is O(N)
• Only N/2 processors are needed since in any

execution cycle (at any level of the tree) at
most N/2 pairs of numbers are compared
 But where will each comparison be done???

7

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

13

Parallel Algorithm Design (cont’d)

• Consider the following mapping of
comparisons in the binary fan-in algorithm
to N/2 processors
 X0 X1 X2 X3 X4 X5 X6 X7

Maximum

P0

P1
P2

P3

T
I

M
E

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

14

Parallel Algorithm Design (cont’d)

• This algorithm can be expressed as follows:
 For convenience we will use N processors
 Assume that our X values are initially stored in shared

memory locations A[1] through A[N]
 Assume further that each processor has local variables
bigi, tempi, and incri.

1.FOR i:=1 TO n PARDO
incri:=1
A[n+i]:= MAXINT
bigi := A[i]

8

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

15

Parallel Algorithm Design (cont’d)

2.REPEAT log2N TIMES
FOR i:=1 TO N PARDO

tempi:=A[i+incri]
bigi:=max(bigi,tempi)
A[i]:=bigi
incri:=incri*2

• Upon completion, the result is in memory
location A[i]
 Example on the board - think about why!

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

16

Parallel Algorithm Design (cont’d)

• This algorithm runs successfully without
requiring concurrent reads or writes
 Hence it is EREW-PRAM

• Question: How much better than O(logN)
could we do if we added the power of
concurrent reading and writing? (CRCW)

• Answer: Significantly better!
 But that’s for a different course
 And its unrealistic!

9

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

17

Parallel Algorithm Design (cont’d)

• Let’s consider the problem of merging two
ordered sequences of numbers

• We will use a custom “network” which
merges two sequences of sorted numbers
 also implementable using shared memory

• We can emulate the network connections in RAM

• This network is known as “Batcher’s Odd-
Even merge network”

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

18

Parallel Algorithm Design (cont’d)

• Consider two sequences: A={1,3,7,8} and B={2,4,5,6}

- Each box is a comparator giving the minimum at the top
 and the maximum at the bottom

A1
B1

A3
B3

A2
B2

A4
B4

1
2
5

7
3
4
6
8

1
2
3

4
5
6
7
8

2

5

4

6

Note
the

order

1
2

7
5
3
4

8

6

A different way of thinking!

10

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

19

Parallel Algorithm Design (cont’d)

• Merging is the basis of sorting and
Batcher’s Odd-Even merge network can be
extended to provide sorting ability

• To sort N elements, we begin by merging
N/2 pairs of single elements, then we merge
N/4 pairs of two sorted elements, etc. until
we have a single sorted list of N elements

• We can use multiple instances of (parts of)
Batcher’s network to do this

9/9/07 74.451 Parallel Computation Notes - © 1996 P.
Graham

20

Parallel Algorithm Design (cont’d)

• Of course, we can also convert this to run on a
shared memory machine by using temporary
memory locations (one for each vertical cross
section of edges)

11

9/9/07 COMP4510 - Introduction to Parallel Computation 21

Concrete Models

• Flynn made one of the first attempts to
classify parallel machines and his ideas are
still useful as more “concrete” models today

• Flynn realized that parallelism could come
from two sources: the code or the data
 What we would now refer to as functional

parallelism or data parallelism (more later)
• A parallel machine could support either or

both forms of parallelism

9/9/07 COMP4510 - Introduction to Parallel Computation 22

Concrete Models (cont’d)

• Flynn’s classification:
 {SI, MI} x {SD, MD} gives:
 SISD - Single Instruction, Single Data

• Non-parallel machine
 SIMD - Single Instruction, Multiple Data
 MISD - Multiple Instruction, Single Data

• Doesn’t really fit any existing machine
 MIMD - Multiple Instruction, Multiple Data

• We still refer to SIMD and MIMD models

12

9/9/07 COMP4510 - Introduction to Parallel Computation 23

Concrete Models (cont’d)

• MIMD is clearly the most powerful model
 Can support the most parallelism
 Unfortunately, it is also the most complex

• 500 processors could run 500 different pieces of
code in parallel - hard to understand and write

• SIMD has the virtue of simplicity
 Every processor does the same thing
 Good for some things (e.g. vector/array

operations) but quite restrictive
• What about conditional operations?

9/9/07 COMP4510 - Introduction to Parallel Computation 24

Concrete Models (cont’d)

• Probably the most commonly used parallel
programming model is the Single Program
Multiple Data (SPMD) model
 Each processor executes the same program but

is not synchronized at the instruction level
• Thus, different processors can execute different

code based on conditionals
• More flexible and intuitive
• Less time wasted waiting for other processors
• But programmer must include synchronization code

13

9/9/07 COMP4510 - Introduction to Parallel Computation 25

Concrete Models (cont’d)

• There are a number of variants on the
SPMD model including:
 Master/Slave model

• Where one process doles out work to the others and
oversees their execution
 Largely SPMD for the workers

 Inspector/Executor model
• If the work that must be done cannot be known a-

priori then “inspector” code decides on partitioning
and assigns work to the “executor” phase
 Sort of dynamic Master/Slave

9/9/07 COMP4510 - Introduction to Parallel Computation 26

Concrete Models (cont’d)

• The SPMD and Master/Slave models vary a
little based on the type of machine (SMP vs.
cluster…) you will be using

• You will see and write programs using both
models for shared memory…
 Using OpenMP (and possibly pthreads)

• … and for distributed memory
 Using MPI

