
COMP4510 Assignment 1 Sample Solution  
 

Assignment Objectives: 
• To reinforce your understanding of some key concepts/techniques introduced in class. 
• To introduce you to doing independent study in parallel computing. 

 
Assignment Questions: 

[10] 1. We used a number of terms/concepts informally in class relying on intuitive explanations to 
understand them. Provide concrete definitions and examples of the following terms/concepts: 

a) Parallel speedup 
b) Parallel efficiency 
c) Amdahl’s Law 

  Do some online research and provide a concrete definition of Gustafson-Barsis’s law. What 
do this law tell us. How does it relate to Amdahl’s law? 

 
  Parallel speedup is defined as the ratio of the time required to compute some function using a 

single processor (T1) divided by the time required to compute it using P processors (TP). That 
is: speedup = T1/TP. For example if it takes 10 seconds to run a program sequentially and 
2 seconds to run it in parallel on some number of processors, P, then the speedup is 10/2=5 
times. 

 
  Parallel efficiency measures how much use of the parallel processors we are making. For P 

processors, it is defined as: efficiency= 1/P x speedup= 1/P x T1/TP. For 
example, continuing with the same example, if P is 10 processors and the speedup is 5 times, 
then the parallel efficiency is 5/10=.5. In other words, on average, only half of the processors 
were used to gain the speedup and the other half were idle. 

 
  Amdahl’s law states that the maximum speedup possible in parallelizing an algorithm is 

limited by the sequential portion of the code. Given an algorithm which is P% parallel, 
Amdahl’s law states that: MaximumSpeedup=1/(1- (P/100)). For example if 80% of 
a program is parallel, then the maximum speedup is 1/(1-0.8)=1/.2=5 times. If the program in 
question took 10 seconds to run serially, the best we could hope for in a parallel execution 
would be for it to take 2 seconds (10/5=2). This is because the serial 20% of the program 
cannot be sped up and it takes .2 x 10 seconds = 2 seconds even if the rest of the code is run 
perfectly in parallel on an infinite number of processors so it takes 0 seconds to execute. 

 
  The Gustafson-Barsis law states that speedup tends to increase with problem size (since the 

fraction of time spent executing serial code goes down). Gustafason-Barsis’ law is thus a 
measure of what is known as “scaled speedup” (scaled by the number of processors used on a 
problem) and it can be stated as: MaximumScaledSpeedup=p+(1-p)s, where p is the 
number of processors and s is the fraction of total execution time spent in serial code. This 
law tells us that attainable speedup is often related to problem size not just the number of 
processors used. In essence Amdahl’s law assumes that the percentage of serial code is 
independent of problem size. This is not necessarily true. (E.g. consider overhead for 



managing the parallelism: synchronization, etc.). Thus, in some sense, Gustafon-Barsis’ law 
generalizes Amdahl’s law. 

 
[15] 2. Another class of parallel architecture is the pipelined vector processor (PVP). PVP machines 

consist of one or more processors each of which is tailored to perform vector operations very 
efficiently. An example of such a machine is the NEC SX-5. Do a little online research and 
then describe what a PVP is, and how, specifically, it supports fast vector operations. Another 
type of closely related parallel architecture is the vector processor (AP). AP machines support 
fast array operations. An early example of such a machine was the ILLIAC-IV. Do a little 
more research then describe what an AP is and how it supports fast array operations. Which 
architecture do you think offers more potential parallelism? Why? 

 
  A PVP is a parallel architecture where each machine consists of one or more processors 

designed explicitly to support vector operations. To make vector operations efficient, each 
processor has multiple, deep D-unit pipelines and supports a vector instruction set. The 
availability of the vector instructions allows a continuous flow of vector elements into the D-
Unit pipelines thereby making them efficient. The high level architecture of a PVP looks like: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  An array processor is a parallel architecture designed to make operations on arrays efficient. 

It is structurally very different from a PVP in that the processing elements (PEs), which are 
similar to CPU cores, are themselves structured as an array. By mapping elements of the 
arrays we wish to operate on across the PEs (and their corresponding local memories) we can 
enable parallel operation. The high level architecture of an AP looks like: 
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  In general, APs are likely to be more scalable and therefore offer more potential parallelism. 

Of course, this will depend on the problem being solved being able to make use of the 
parallelism offered. The parallelism provided in one D-Unit pipeline in a PVP is limited by 
the number of stages in the pipeline. Further, there is unlikely to be sufficient ILP to keep 
very many D-Unit pipelines busy.  

 
[10] 3. Design an EREW-PRAM algorithm for computing the inner product of two vectors, X and Y, 

of length N, (where N is a power of two). Your algorithm should run in O(logN) time with N 
processors. You should express your algorithm in a fashion similar to the “fan-in” algorithm 
done in class using PARDO and explicitly indicating which variables are shared between 
processes and which are local. 

 
  There are a variety of possible O(logN) EREW PRAM parallel algorithms for inner product. 

Here is one possible algorithm. 
 
  // Start by computing the element-wise product of X and Y 
  FOR i:=1 TO N PARDO 
     Prod[i]:=X[i]*Y[i]; 
 
  // Now use fan-in to accumulate the sum of the products 
  //    Note: I am doing fan-in not parallel prefix 
  Dist=1; 
  REPEAT log2N TIMES 
      FOR i:=1 TO N PARDO 
          IF ((myRank%(Dist*2))==0) THEN 
              Prod[myRank]+=Prod[myRank+Dist] 
      Dist:=Dist*2; 
  innerPrd=Prod[0]; 
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[10] 4. Extend Batcher’s Odd-Even merge network to sort two 8 element sequences of numbers. 
Draw the resulting network machine and provide an illustrative example to show that your 
extension works.  

 
  We begin by extending the merge network alone, from the one given in class that can merge 

two 4 element sequences to one that can merge two sorted 8 element sequences. We use two 
of the smaller merge networks (with odd and even inputs grouped) and feed the outputs of the 
two small networks to another layer of comparators as shown. In all cases, corresponding 
pairs are routed to the same node in the new layer to compare adjacent result values 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Now we combine the necessary stages of the merge network to implement the sort in the 

same way as was done in class for the 4 element networks. 
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[20] 5. You are to write a simple p-threads program that will implement a parallel search in a large 

vector. Your main thread will declare a global shared vector of 6,400,000 integers where each 
element is initialized to the value of the corresponding vector index (i.e. element i in the 
vector will always contain the value i).  The main thread should then prompt for and read two 
values (one between 0 and 6,399,999 which is the value to be searched for in the vector and a 
second (having the value of 1, 2, 8 or 16) which is the number of threads to use in the search. 
In C, you might use the following code sequence to do the necessary I/O: 

 
int  SearchVal, NumThreads; 
 
printf(“Please enter the value to search for: ”); 
scanf(“%d”,&SearchVal); 
printf(“Please enter the number of threads to use: ”); 
scanf(“%d”,&NumThreads); 

 
  Your main thread should then spawn NumThreads threads each running the function 

search which is passed its thread number, MyThreadNum (in the range 0 to 
NumThreads-1), as a parameter. The searching in the vector must be partitioned into 
NumThreads pieces with each piece being done by a separate thread. After partitioning, 
each piece of the vector will contain NumElts = 6,400,000/NumThreads elements.) 
Your search routine should thus search for the value SearchVal in elements 
MyThreadNum * NumElts through ((MyThreadNum+1) * NumElts) - 1 
(inclusive) of the vector. For convenience, you may assume that SearchVal is declared 
globally like the vector. Whichever thread finds the value in the vector should print a 
message announcing that the value has been found and the position in the vector at which it 
was found. It is not necessary to stop other threads once a value is found. You are to include 
calls to measure the runtime of your program (C code will be provided on the homepage for 
this purpose if you need it). Run your program multiple times with 1, 2, 8 and 16 threads on a 
machine in the Linux lab and then on one of the machines helium-XX.cs.umanitoba.ca 
(where XX=01 through 05) and collect the results. Compute the average times for each case 
and then generate a simple bar graph of your two sets of runs comparing the relative average 
execution times. Given the results in each case, how many execution units (i.e. processors or 
cores) do you think each machine has? Some links to p-threads tutorials are provided in case 
anyone is unfamiliar with programming with p-threads. 

 
  See the course homepage for sample code (pthreadSearch.c). The graph of the results 

on the helium-XX machines is: 
 



 
   
  The graph of the results on the Linux lab machines is: 
 

 
 
  Based on the results, it would appear that the Linux lab machines have two cores and the 

helium-XX machines have eight cores. This is determined by the point at which adding more 
processors ceases to yield speedup. Interestingly, the helium-XX machines actually have 16 
cores so there is some other factor affecting the performance of the embarrassingly parallel 
search process. 



 
[10] 6. A simple approach to blur boundaries in a grayscale bitmap image would be to replace each 

pixel with the average of its immediate neighboring pixels. A given pixel, Px,y at location 
(x,y) in an image of size (X,Y) will have neighbors at (x-1,y-1), (x-1,y), (x-1,y+1), (x, y-1), 
(x,y+1), (x+1,y-1), (x+1,y), and (x+1, y+1) unless it is on a boundary of the image (i.e. x=0 
or x=X-1 and/or y=0 or y=Y). Illustrate the application of the PCAM method to this problem. 
Assume that X=Y=N, that N mod 16=0 and that you have 16 processors. Justify your choices. 

 
  The PCAM parallel algorithm design methodology consists of four steps: Partitioning, 

Communication, Agglomeration, and Mapping. 
 
  In partitioning, we identify the fundamental individual units of computation performed by the 

algorithm. In this problem, each internal pixel (i.e. ones not on a border) will be updated 
since the blurring operation is well defined for these pixels. Thus, we could partition the 
problem into (X-2)*(Y-2) partitions as follows: 

 
 
 
 
 
 
 
 
 
  In the communication step, we determine the communication patterns between the partitions. 

In this problem, each partition communicates with its neighboring partitions as defined in the 
problem description since the computation is NewPx,y=(Px-1,y-1+Px-1,y+Px-1,y+1+Px,y-

1+Px,y+1+Px+1,y-1+Px+1,y+Px+1,y+1/8). In essence, each node must send its old pixel value to each 
of its neighbors and every partition can do this in parallel. Hence, for a particular 
partition/pixel, (i,j), the communication patterns are as follows: 

 
 
 
 
 
 
 
 
 
  This communication pattern repeats throughout the partitions. We assume that pixels on the 

boundaries are available through this communication process. 
 
  In agglomeration, we agglomerate partitions related by communication into larger 

“agglomerates”. Since the communication pattern is regular, we can choose to divide out 
collection of partitions anywhere we like and we will only have inter-agglomerate 
communication at the agglomerate boundaries. We also know that X=Y=N and that N is 
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divisible by 16, which is the number of processors. Thus, the number of partitions (including 
those corresponding to boundary pixels) is NxN which is also divisable by 16. We typically 
want a number of agglomerates which is a small multiple of the number of processors. We 
could easily divide up the partitions into 16 groups in each of the x and y dimensions giving 
256 agglomerates. If we then chose one dimension to distribute over the available processors 
during mapping, this would result in 16 agglomerates per processor which is likely a larger 
number than would be ideal to tolerate possible scheduling issues (i.e. 16 is not as small a 
multiple as we would like). We could, of course, instead divide the partitions into 16 groups 
in one dimension and 4 in the other, resulting in 64 agglomerates and, eventually, 4 per 
processor. To minimize communication/sharing across agglomerates, we should always 
agglomerate partitions corresponding to adjacent pixels in the image. 

 
  Finally, in mapping, we assign the agglomerates onto the available processors. Assuming that 

communication/data sharing is equally efficient among all processors then the assignment of 
agglomerates to processors is arbitrary. 

 
 
Total: 75 marks 


