
1

COMP7840 OSDI Current OS Research 41

Supporting Mobility in File Systems
With the advent of mobile computing and the
need to conveniently access data from
servers it became clear that traditional file
systems were inadequate
This lead to the design of the CODA
filesystem which provides direct support for
replication and disconnected operation

Replication to enhance availability
Disconnected operation to support mobility

COMP7840 OSDI Current OS Research 42

CODA basics
Coda is tailored to access patterns typical of
academic and research environments

Relatively little concurrent file sharing

Not intended for applications exhibiting highly
concurrent fine granularity data access
Clients view Coda as a single location-transparent
shared Unix file system
Coda namespace is mapped to individual file servers
at the granularity of subtrees
Each client has a cache manager (VICE)

Clients run on the mobile devices

COMP7840 OSDI Current OS Research 43

CODA Benefits
High availability achieved using:

Server replication
Set of replicas of a volume is a VSG
(Volume Storage Group)
At any time, client can access files in the AVSG
(Available Volume Storage Group)

Disconnected Operation
When there are no available VSGs

COMP7840 OSDI Current OS Research 44

CODA Benefits
Must handle two kinds of failures

Server failures
Data servers are replicated

Communication failures or voluntary
disconnections

Due to mobility
Coda uses optimistic replication and file
hoarding

COMP7840 OSDI Current OS Research 45

CODA challenges
Normally consistency among replicas is
provided using majority voting

This fails with possible disconnections

Optimistic replica control allows access in
disconnected mode

Tolerates temporary inconsistencies
Promises to detect them later
Provides much higher data availability

COMP7840 OSDI Current OS Research 46

CODA challenges (cont’d)

Define an accessible universe
set of replicas that the user can access

The accessible universe varies over time
At any time, the user

reads from the latest replica(s) in the accessible
universe
updates all replicas in the accessible universe

2

COMP7840 OSDI Current OS Research 47

CODA Client Architecture

System call interface

Vnode interface
Coda MiniCache

(handles local accesses)

Application
Venus

(connects with Coda servers)

COMP7840 OSDI Current OS Research 48

Venus States

1. Hoarding:
Normal operation mode

2. Emulating:
Disconnected operation mode

3. Reintegrating:
Propagates changes and detects inconsistencies

COMP7840 OSDI Current OS Research 49

Venus States (cont’d)

Hoarding

Emulating Recovering

COMP7840 OSDI Current OS Research 50

CODA Emulation Mode

In emulation mode:
Attempts to access files that are not in
the client caches appear as failures to
application
All changes are written in a client
modification log (CML)

COMP7840 OSDI Current OS Research 51

CODA Persistence
Venus keeps its cache and related data
structures in non-volatile storage
All Venus metadata are updated
through
atomic transactions

Using a lightweight recoverable virtual
memory (RVM) developed for Coda

COMP7840 OSDI Current OS Research 52

CODA Reintegration
When a mobile unit is reconnected,
Coda initiates a reintegration process

Performed one volume at a time
Venus ships replay log to all volumes
Each volume performs a log replay
algorithm

3

COMP7840 OSDI Current OS Research 53

Supporting Massive File Systems

As the size of file systems increase, it
becomes increasingly difficult to locate files

Especially when considering historical,
distributed files

This is a naming issue
Normally addressed with hierarchical structures

The design goals of a naming system that
enables dynamic resource discovery and
service location:
Expressiveness : flexible to handle various devices and

COMP7840 OSDI Current OS Research 54

The Intentional Naming System
“The Design and Implementation of an Intentional
Naming System”

Adjie-Winoto, Schwartz, Balakrishnan and Lilley
The Intentional Naming System (INS) allows
applications to describe what they are looking for,
not where to find it.
Intentional Naming Resolvers (INR), which can be
provided by any devices in distributed system,
self-configure into a spanning-tree based on
metrics that reflect INR-to-INR round-trip latency.
These resolvers then provide a lookup service

COMP7840 OSDI Current OS Research 55

Architecture of INS

COMP7840 OSDI Current OS Research 56

Architecture of INS
Name-specifiers
Discovering names
Name lookup and extraction
Resolver network
Load balancing and scaling

COMP7840 OSDI Current OS Research 57

Name-specifiers

Wild card (*) is
supported

COMP7840 OSDI Current OS Research 58

Discovering Names
Services periodically advertise their intentional
names to the system to describe what they provide.
INRs update contained name information when
newer information becomes available or discard as
no refresh announcement is received or lifetime is
out.
Clients get all matched names from an INR by
sending an intentional name with the name
discovering message.
INRs disseminate name information between each
other using periodic updates and triggered updates.

4

COMP7840 OSDI Current OS Research 59

Name Lookup and Extraction
Name-trees

A data structure storing
the correspondence
between name-specifiers
and name-records.

COMP7840 OSDI Current OS Research 60

Resolver Network
INRs build up a spanning-tree network.
A well-known entity in the network, called the
Domain Space Resolver (DSR), is used to
administrate domain constructed by a set of INRs.
A new INR sends INR-pings messages to all active
INRs and picks the INR with minimal value of
round-trip latency to establish a neighbor relation
with.

COMP7840 OSDI Current OS Research 61

Load balancing & scaling
An INR can obtain a candidate list from DSR and
spawn new instances on other candidates to
handle some of its current load as the INR is
loaded heavily because of name lookups.

When an INR is loaded due to update processing,
the namespace is partitioned into several virtual
spaces for scaling, and the names of different
virtual space is stored in separate name trees.

COMP7840 OSDI Current OS Research 62

Performance Evaluation
Name lookup performance

COMP7840 OSDI Current OS Research 63

INS – Conclusions
The INS integrates resolution and routing, allowing
applications seamlessly handle the mobility of services and
nodes.

The resolvers can self-configure into a network and
incorporate load-balancing algorithm to perform well.

Using intentional anycast and intentional multicast provides
a useful, flexible way of discovering resources in dynamic,
mobile networks, and simplifies the implementation of
applications.

COMP7840 OSDI Current OS Research 64

Some Recent Issues in
Scheduling

5

COMP7840 OSDI Current OS Research 65

It’s a Changing World
Assumption about bi-modal workload no longer holds

Interactive continuous media applications
E.g. Graphics viewers are definitely processor-bound but needs good
response time

New computing model requires more flexibility
How to match priorities of cooperative jobs?

E.g. client/server

How to balance execution between multiple threads of a
single process?

COMP7840 OSDI Current OS Research 66

Fair Share Scheduling
Goal: Each user gets their “fair share” of the
resources (e.g. CPU)
Process scheduling priority determined by allocated
“share” and recent use

If process has used more than its share, its priority is
lowered
If process has received less than its share, its priority is
increased
Priorities can get low and need adjustment but every
process gets a “kick at the can”

COMP7840 OSDI Current OS Research 67

Lottery Scheduling
“Lottery Scheduling:Flexible Proportional-Share Resource
Management” by Waldspurger and Weihl from OSDI’94
Randomized resource allocation mechanism
Resource rights are represented by lottery tickets assigned to
processes
Each round of a lottery the winning ticket (i.e. the scheduled
process) is chosen at random
The chances of you winning directly depends on the number of
tickets that you have

P[winning] = t/T, t = your number of tickets, T = total number of
tickets

COMP7840 OSDI Current OS Research 68

Lottery Scheduling
After n rounds, your expected number of wins is

E[win] = nP[winning]
The expected number of lotteries that a client must
wait before its first win

E[wait] = 1/P[winning]

Lottery scheduling implements proportional-share
resource management
Like fair-share scheduling but cheaper and fast to
respond to changes in priorities
OK, so how do we actually schedule the processor
using lottery scheduling?

COMP7840 OSDI Current OS Research 69

Selecting a winner

COMP7840 OSDI Current OS Research 70

Performance

Conclusion: lottery
scheduling comes very
close to providing the
shares requested

6

COMP7840 OSDI Current OS Research 71

Scheduling in Parallel Systems

“Scheduling Techniques for Concurrent Systems” by
John Ousterhout, ICDCS’82

An “oldie but a goodie”

One of the classic papers on parallel processor
scheduling
Two sets of issues:

Synchronization
Co-scheduling

COMP7840 OSDI Current OS Research 72

Parallel Synchronization

Lock(A)
Lock(B)
A ← A + 10
B ← B - 10
Unlock(B)
Unlock(A)

Recall: Mutual exclusion ≡ want to be only
thread modifying a shared data
Have three steps:

Acquire, Release, Waiting

Acquire/release operations often termed
Lock/Unlock
Example: transferring $10 from A to B

Function Transfer (Amount, A, B)
Lock(Transfer_Lock)
A ← A + 10
B ← B - 10
Unlock(Transfer_Lock)

COMP7840 OSDI Current OS Research 73

What To Do While Waiting?
Blocking

OS or RT system de-schedules waiting threads
Allows processor to do other things but high overhead

Spinning
Waiting threads keep testing location until it changes
Lower overhead but keeps processor busy and can cause
bus traffic

Spinning better when
Scheduling overhead is larger than expected wait time
Processor not needed for other tasks

Hybrid methods: Spin a while, then block

COMP7840 OSDI Current OS Research 74

Lock Contention

Number of processors

Ti
m

e
(μ

s)

11 13 15
0

2

4

6

8

10

12

14

16

18

20
Test&set, c = 0
Test&set, exponential backof f, c = 3.64
Test&set, exponential backof f, c = 0
Ideal

9753

Culler et al., 1999
Measured on an
SGI Challenge

Hmm, looks like
this is going to be
important!

COMP7840 OSDI Current OS Research 75

Parallel Synchronization
Spin for a while then block
How much to spin?

Too little then you will pay the cost of both spinning and
context switching
Too much leads to wasting processor cycles and contention
showed in last slide
Research shows that spinning for t = context switch time is
competitive – it’s at worst 2 times as bad as the optimal
algorithm
Adaptive spinning can do even better

COMP7840 OSDI Current OS Research 76

The Need for Co-scheduling
Cooperating processes may interact frequently

What’s the problem with this?
Fine-grain parallel applications have a process
working set
Two things needed

Identify the process working set of a job
Co-schedule them

Ousterhout
Identifying process working set is hard – let’s punt for now
Just co-schedule parallel programs that have an explicit
process working set

7

COMP7840 OSDI Current OS Research 77

Co-scheduling Algorithms
First issue is where should processes execute and
can the OS control this?

e.g. Do they have “affinity” for specific processors
Based on available cache data or …

Ousterhout described three “algorithms”
Matrix
Continuous Algorithm
Undivided Algorithm

COMP7840 OSDI Current OS Research 78

Ousterhout’s Matrix Algorithm
Construct a matrix of rows where each row has ‘p’
elements (p=# of processors)
A new process working set (“gang”) is either
assigned to a new row or, if possible, is fit into empty
spaces in an existing gang
Schedule a “row” (i.e. gang) at a time

All processes from a working set so IPC wait times are
minimized
It is also safe to use spin locks – only wasting the same
process’ time

COMP7840 OSDI Current OS Research 79

Ousterhout’s other Algorithms
The matrix algorithm suffers from “process
fragmentation”

Process working sets must fit in one row and this is
unnatural

Often some “slots” (i.e. processors) left unfilled (unused)

Ousterhout’s continuous algorithm views the process
space as a sequence and slides a window of size ‘P’
over the sequence until the leftmost slot in the
window corresponds to the first process to be
scheduled in a working set yet to be executed
The undivided algorithm is an extension of this

COMP7840 OSDI Current OS Research 80

Performance of Scheduling Algos
A. Gupta, A. Tucker,and S. Urushibara “The Impact of Operating
System Scheduling Policies and Synchronization Methods on the
Performance of Parallel Applications” SIGMETRICS ’91 continue
this sort of work.
They consider the performance of a set of applications using a
variety of scheduling schemes:

Feedback priority scheduling with:
Spinning vs. Blocking
Spin-and-block
Block-and-hand-off (to a specified process)
Block-and-Affinity (what’s in the cache)

Gang Scheduling (e.g. Matrix) – Time sharing
Process Control – Space sharing

Application varies number of processes based on processors available

COMP7840 OSDI Current OS Research 81

Applications

COMP7840 OSDI Current OS Research 82

Batch vs. Regular Priority

8

COMP7840 OSDI Current OS Research 83

Blocking Synchronization

COMP7840 OSDI Current OS Research 84

Gang Scheduling

COMP7840 OSDI Current OS Research 85

Scheduling with Implicit Info.
Lots of research results show that space-sharing
outperforms time-sharing for parallel processor
scheduling if applications are structured to deal with
space-sharing
Without appropriate system support, it’s difficult to
write programs for space-sharing
Also, hard to space-share in a distributed
environment (client/server)
Want some form of Gang Scheduling

Hard to implement on clusters of independent machines
May not have explicit working set information

COMP7840 OSDI Current OS Research 86

Implicit Co-scheduling
Two-level scheduler

Kernel-level scheduler is ignorant of parallel nature of jobs
User-level scheduler uses local events to achieve co-
scheduling

Basic idea is for a thread to
Relinquish processor if peers are not scheduled
Hold on to the processor if peers are scheduled

Use two-phase spin-block and priority as the two
basic mechanisms to implement implicit co-
scheduling
Use message response time, message arrival, and
scheduling progress as meaningful local events

COMP7840 OSDI Current OS Research 87

Implicit Information

COMP7840 OSDI Current OS Research 88

Some Recent Issues in
Protection and Sharing

9

COMP7840 OSDI Current OS Research 89

Single Address Space OSs
Historically, processes have operated in
separate addresses spaces and the OS has
been isolated from user processes
This provides protection but makes sharing
inconvenient and costly

Must cross address space boundaries via OS calls

With 64 bit addressing, the need to separate
address spaces is disappearing
If a single address space is to be shared,
some other form of protection is needed

COMP7840 OSDI Current OS Research 90

The ‘Opal’ SAS OS
The Opal Single Address Space (SAS) OS
developed at U. Washington introduced this
idea
Proposed mapping primary and secondary
storage persistently into the single virtual
address space

Also across the network

Separate protection via “protection domains”
Sort of like capabilities with HW support

COMP7840 OSDI Current OS Research 91

The ‘Opal’ SAS OS (cont’d)

Using a single address space offers several
advantages:

Improved sharing
Easy and efficient

Better efficiency
HW supported protection is cheaper than address space
creation, etc.

Support for persistence
No more files

COMP7840 OSDI Current OS Research 92

Protection Domains
A protection domain is an abstraction of a set
of access rights and multiple threads may be
assigned to the same protection domain
Virtual memory segments are explicitly
attached to protection domains using
“capabilities”
Capabilities can be passed via shared memory
Since there is a single address space, pointers
maintain significance across processes

No pointer swizzling

COMP7840 OSDI Current OS Research 93

Protection Lookaside Buffer
Conceptually, the enforcement of protection
could be done entirely in software but, as
with conventional virtual address translation,
it is more efficient with hardware support
Koldinger, et al propose a PLB which caches
protection information on a per
<domain,page> basis

Each thread belongs to a domain and has access
to pages in segments it has attached
Access checks are done in HW using the PLB

COMP7840 OSDI Current OS Research 94

HP PA-RISC
The PLB is only a theoretical architectural
component
It is possible to implement protection
domains without a PLB
For example, the HP PA-RISC architecture
supports a TLB that contains an AID (Access
IDentifier) for each entry
The executing thread can load AIDs for
virtual segments into page group registers

These are checked against the AID in HW

10

COMP7840 OSDI Current OS Research 95

HP PA-RISC (cont’d)

COMP7840 OSDI Current OS Research 96

Resource Containers
“Resource Containers: A new facility for resource
management in server systems”

Banga, Druschel and Mogul from OSDI’99

The paper is concerned with server systems
File servers, web servers, compute servers, etc.

We want to be able to accurately track and control
access to OS resources by clients

To enable fair sharing of, and charging for, resource
consumption

Current OS abstractions are inadequate to do this
Clients/users are not always well identified at the servers so
who should be charged, etc.?

COMP7840 OSDI Current OS Research 97

The Problem
Existing OS resource management mechanisms
are most commonly tied to processes running
on a given machine

Processes (protection domains) are the unit of
resource management – the “resource principal”

See Single Address Space OSs

This is inadequate to permit servers to
effectively manage their services

Commonly, a single server process performs
functions on behalf of different entities (i.e. clients)
which are attributed to the single process

COMP7840 OSDI Current OS Research 98

Typical Server Models

User level User level

KernelKernel

Process per-connection
Server

(has high overhead!)

Single Process
Multithreaded Server

(who is charged? – 1 process)

Pending
Connections

Pending
Connections

Connections Connections

Processes

COMP7840 OSDI Current OS Research 99

The Proposed Solution
How can this problem be fixed?
Must separate the notion of resource principal
from that of process

or any other type of protection domain

“Resource Containers” are a new OS
abstraction that does exactly this

OS manages resource containers and tracks usage
for them but they are not associated with any
particular protection domain

COMP7840 OSDI Current OS Research 100

The Proposed Solution (cont’d)

Since resource containers are separate from
processes, they may be associated with arbitrary
computations

Like network connections to a server

With resource containers, the multi-threaded server
can be used (for efficiency) and client resource use
can be managed

via their connections (one container per client)

11

COMP7840 OSDI Current OS Research 101

Resource Container Operations
Create a Container: processes create containers as needed and
may manage several at once. (fork → new container)
Set Container’s Parent: containers may be nested (e.g resources
assigned to 1 container shared by its children)
Sharing Containers: containers may be passed and shared
between processes at will

Hence, an application may be executed in >1 protection domain
Container Release: containers are reclaimed once no one is using
them
Container Attributes: processes can exert control over containers
(control resources “in” them) by setting attributes
Container Usage Information: processes can collect usage
information from containers (e.g. for charging purposes)

COMP7840 OSDI Current OS Research 102

Server with Resource Containers

Single Process
Multithreaded Server

with
Resource Containers

(efficient and can
manage/charge

individually
for each client)

User level

Kernel

Pending
Connections Connections

Process/Protection Domain Resource Containers

COMP7840 OSDI Current OS Research 103

Resource Container Conclusions
Resource containers provide an effective
mechanism for addressing the problem
Separation of resource management from
protection domain makes sense
Resource containers may be efficiently
implemented
Resource containers also provide side
benefits

E.g. protections against SYN-flooding

