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Abstract. In this note, we report an error in our paper “Computing
Partitions of Rectilinear Polygons with Minimum Stabbing Number” [2].
Given an orthogonal polygon P and a partition of P into rectangles, the
stabbing number of the partition is defined as the maximum number of
rectangles stabbed by any orthogonal line segment inside P . Abam et
al. [1] introduced the problem of finding a partition of P into rectangles
with minimum stabbing number and gave a 3-approximation algorithm
for this problem. We gave a 2-approximation algorithm for a conforming
version of this problem based on a Linear Program (LP) formulation of
the problem [2], and claimed that generalizing the LP will also result in a
2-approximation algorithm for the general problem studied by Abam et
al. [1]. In this note, we give a counterexample showing that generalizing
the LP may not always result in a 2-approximation algorithm for the
general version of the problem.

1 Introduction

Let P be a simple orthogonal polygon and let R denote a partition of P into
rectangles. A partition of R into rectangles is obtained by inserting orthogonal
edges into the interior of the polygon such that edge’s endpoint is either on the
boundary of the polygon or in the interior of another edge. The stabbing number
of R is defined as the maximum number of partition rectangles stabbed by any
orthogonal line segment inside P . We study the problem of finding a partition
of P into rectangles whose stabbing number is minimum over that of all such
partitions of P . There are two types of partitions of P into rectangles: in a
conforming partition of P both endpoints of every edge of the partition must be
on the boundary of the polygon while in a general partition this constraint is
relaxed; that is, the edges of the partition may end on the interior of each other.
Throughout this paper, we call the corresponding problems the conforming and
the general problems, respectively.

Abam et al. [1] introduced the general problem and gave a 3-approximation
algorithm for this problem; their approximation result is based on a polynomial-
time exact algorithm for solving the general problem for a histogram. Durocher
and Mehrabi [2] introduced the conforming problem for which they gave a
polynomial-time exact algorithm for histograms. They also gave a polynomial-
time 2-approximation algorithm for the conforming problem for any orthogonal
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polygon based on a Linear Program (LP) formulation of the problem. In the
following, we briefly describe the LP given by Durocher and Mehrabi [2].

We first observe that a partition divides polygon P into convex regions if
and only if at least one of the edges of the partition is anchored at every reflex
vertex of P . For each reflex vertex u of P , let Hu (resp., Vu) be the maximal
horizontal (resp., vertical) line segment inside P that has one endpoint at u.
Moreover, consider two binary variables uh and uv that are correspond to Hu

and Vu, respectively. Since at least one of Hu and Vu has to be in the partition,
we have uh + uv ≥ 1 for every reflex vertex u of P . Moreover, we observe that
if Hv intersects Vu for two reflex vertices u and v of P , then at most one of Hv

and Vu can be in the partition. Therefore, the followings are the constraints of
the Integer LP (ILP) for the conforming problem:

uh + uv ≥ 1, ∀u ∈ V (P ),

vh + uv ≤ 1, if Hv intersects Vu,

uh, uv ∈ {0, 1}, ∀u ∈ V (P ). (1)

We omit the details of the objective function of the ILP (as it requires to
introduce more notations) and we just describe the idea behind it: we select a
set S of orthogonal line segments inside P such that, for a given partition of P ,
the stabbing number of the partition is determined by the number of rectangles
intersected by the line segments in S; that is, the line segment in S that intersects
the maximum number of rectangles of the partition determines the stabbing
number of the partition. We next relax the constraint (1) to uh, uv ≥ 0,∀u ∈
V (P ) to get an LP for the conforming problem. Let s∗ be an optimal solution to
the LP. We use the following rounding to get a 2-approximation to an optimal
solution for the conforming problem. For each vertex u ∈ V (P ):

uh =

{
0, if s∗(uh) ≤ 1/2,

1, if s∗(uh) > 1/2,
and uv =

{
0, if s∗(uv) < 1/2,

1, if s∗(uv) ≥ 1/2.
(2)

We also claimed that a generalization of this LP and using the same round-
ing method will result in a polynomial-time 2-approximation algorithm for the
general problem. In Section 2, we present the details of generalizing the LP and
show that it may not result in a 2-approximation algorithm.

2 The Generalized LP

In this section, we first present the generalized LP for general problem given
by Durocher and Mehrabi [2] and then will note that it does not result in a
2-approximation algorithm for the general problem. In the following, we present
the details of how the LP described in Section 1 is generalized.
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2.1 Generalizing the LP

The objective function of the LP is defined as follows. Let u be a vertex in V (P ).
Vu intersects Hv, for zero or more reflex vertices v. Therefore, Vu is partitioned
into a number of line segments whose union is Vu. Similarly, Hu intersects Vv, for
zero or more reflex vertices v. Therefore, Hu is partitioned into a number of line
segments whose union is Hu. Let L(Vu) = {s1u, s2u, . . . , scu} denote the set of
line segments of Vu in the order of visiting if one walks on Vu started from u and
towards the edge of P opposite to u. Similarly, let L(Hu) = {s′1u, s′2u, . . . , s′c′u}
denote the set of line segments of Hu in the order of visiting if one walks on
Hu started from u and towards the edge of P opposite to u. For any vertex
u ∈ V (P ), we call a line segment in L(Vu)∪L(Hu) a fragment. A binary variable
uvi is associated with siu, for 1 ≤ i ≤ c, such that uvi=1 if and only if siu is
present in the partition. Similarly, a binary variable uhi is associated with s′iu,
for 1 ≤ i ≤ c′, such that uhi=1 if and only if s′iu is present in the partition.

Next, we define two variables uΣh and uΣv for each reflex vertex u ∈ V (P ).
Let Su (resp. S′u) be the set of fragments that are crossed by a maximal horizontal
(resp. vertical) line segment that passes through u and is completely contained
in P . Note that a maximal axis-parallel line segment may include a portion of
the boundary of P . Then,

uΣh = 1 +
∑
a∈Su

var(a) (resp., uΣv = 1 +
∑
a∈S′

u

var(a)),

where var(a) denotes the variable correspond to the fragment a. Therefore, the
stabbing number of a partition corresponds to

1 + max
u∈V (P )

{max{uΣh, uΣv}}. (3)

Similar to Section 1, the LP formulation is computed from an ILP. The con-
straints of the ILP is computed as follows that along with (3) complete the ILP
formulation of the problem. First, it is easy to see that the following constraints
must be followed. For every vertex u ∈ V (P ) with |L(Vu)| = c and |L(Hu)| = c′:

uv1 + uh1 ≥ 1,

uv1 ≥ uv2 ≥ · · · ≥ uvc ,
uh1 ≥ uh2 ≥ · · · ≥ uhc′ ,

uvi , uhj ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ j ≤ c′. (4)

Now, let u ∈ V (P ) be as described above and, moreover, let v be a vertex in
V (P ) such that |L(Vv)| = t and |L(Hv)| = t′. Now, suppose that s′iu, where
1 ≤ i < c′, intersects sjv in a partition, where 1 ≤ j < t.1 Then, exactly one of
s′(i+1)u

and s(j+1)v
must be present in the partition. More precisely, (i) if s′iu is

1 It is not possible that s′iu intersects stv for 1 ≤ i < c′, or, sjv intersects s′c′u, for
1 ≤ j < t.
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present in a partition, then exactly one of s′(i+1)u
and s(j+1)v

must be present

in the partition and, similarly, (ii) if sjv is present in a partition, then exactly
one of s(j+1)v

and s′(i+1)u
must be present in the partition. . By (i):

uhi
→ [(uhi+1

∧ ∼ vvj+1
) ∨ (∼ uhi+1

∧ vvj+1
)]

⇒1− uhi
+ 1− vvj+1

+ 1− uhi+1
≥ 1, and 1− uhi

+ uhi+1
+ vvj+1

≥ 1. (5)

Similarly, by (ii):

vvj → [(vvj+1
∧ ∼ uhi+1

) ∨ (∼ vvj+1
∧ uhi+1

)]

⇒1− vvj + 1− vvj+1
+ 1− uhi+1

≥ 1, and 1− vvj + uhi+1
+ vvj+1

≥ 1. (6)

Finally, an LP is computed from the ILP by replacing the last constraint
of (4) with uvi , uhj

≥ 0, where 1 ≤ i ≤ c, 1 ≤ j ≤ c′:

minimize (3) (7)

subject to ∀u ∈ V (P ) :

uv1 + uh1 ≥ 1, (8)

uv1 ≥ uv2 ≥ · · · ≥ uvc (9)

uh1 ≥ uh2 ≥ · · · ≥ uhc′ , (10)

uvi , uhj ≥ 0, 1 ≤ i ≤ c, 1 ≤ j ≤ c′. (11)

∀u, v ∈ V (P ) that s′iu intersects sjv : (12)

1− uhi + 1− vvj+1 + 1− uhi+1 ≥ 1,

1− uhi + uhi+1 + vvj+1 ≥ 1,

1− vvj + 1− vvj+1 + 1− uhi+1 ≥ 1,

1− vvj + uhi+1 + vvj+1 ≥ 1.

Let s∗ be a solution to (7). A rounding method similar to the one described in
Section 1 for s∗ is used to obtain a feasible solution for the problem: for each ver-
tex u ∈ V (P ) with L(Vu) = {s1u, s2u, . . . , scu} and L(Hu) = {s′1u, s′2u, . . . , s′c′u}:

uvi =

{
0, if s∗(uvi) < 1/2,

1, if s∗(uvi) ≥ 1/2,
(13)

where i = 1, 2, · · · , c, and

uhj
=

{
0, if s∗(uhj ) ≤ 1/2,

1, if s∗(uhj
) > 1/2,

(14)

where j = 1, 2, · · · , c′. We claimed that similar arguments as for the conform-
ing problem can be used to show that this rounding method results in a 2-
approximation algorithm for the general version of the problem.
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Fig. 1: A counterexample for the 2-approximation algorithm to the generalized
version of the problem.

2.2 A Counterexample

In this section, we show that the generalized version of the LP as described above
may not always result in a 2-approximation algorithm for the general problem.
Consider the simple polygon shown in Figure 1; for simplicity, the fragments are
labelled from a to h. The generalized LP for this polygon is as follows. By (4),
we have:

d+ e ≥ 1, c+ g ≥ 1 and c ≥ b, d ≥ a, g ≥ h, e ≥ f,

where a, b, c, d, e, f, g, h ≥ 0. Moreover, by (5) and (6), we have:

1− d+ a+ b ≥ 1 and 1− d+ 1− a+ 1− b ≥ 1

1− c+ b+ a ≥ 1 and 1− c+ 1− b+ 1− a ≥ 1

1− g + h+ f ≥ 1 and 1− g + 1− h+ 1− f ≥ 1

1− e+ f + h ≥ 1 and 1− e+ 1− f + 1− h ≥ 1

It is straightforward to see that the assignment a = 2/3 + ε, b = 1/3 + ε,
c = 1/3 + ε, d = 2/3 + ε, e = 2/3, f = 1/3 + ε, g = 2/3 and h = 1/3 + ε is a
feasible solution for this LP. By (13) and (14), we get a = d = e = g = 1 and
b = c = f = h = 0, which does not result in a valid rectangular partition of the
polygon shown in Figure 1.

3 Conclusion

In this note, we reported an error in our paper “Computing Partitions of Recti-
linear Polygons with Minimum Stabbing Number” [2]. We showed by a couterex-
ample that generalizing the LP given in [2] for the conforming problem does not
always result in a 2-approximation algorithm for the general problem. We note
that Breno and de Souza [3] have independently discovered a different counter-
example. Thus, to the best of our knowlwedge, the 3-approximation algorithm of
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Abam et al. [1] remains the best approximation algorithm for the general prob-
lem. Designing algorithms with better approximation factor or finding a suitable
rounding method for our LP remain open.
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