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Abstract—A jigsaw puzzle solver reconstructs the original
image from a given collection of non-overlapping image frag-
ments using their color and shape information. In this paper
we introduce new techniques for solving square jigsaw puzzles
(with no prior knowledge of the initial image) that improves
the accuracy of the state-of-the-art jigsaw puzzle solvers. While
the current puzzle solving techniques are based on finding
enhanced compatibility metrics across piece boundaries, we
combine the existing techniques to achieve higher accuracy
and robustness, i.e., our solver outperforms the known solvers
even when the piece boundaries are imprecise. Unlike the most
successful puzzle solvers that use greedy pairwise compatibil-
ity metrics among puzzle boundaries, we incorporate global
information that enhances performance. As a step towards the
future goal of developing an automated assembler for real-
life corrupted image fragments or shredded documents, we
examine puzzles that are corrupted by noise. Our proposed
compatibility metrics shows robustness even in such scenarios.
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I. INTRODUCTION

Jigsaw puzzle solving has been one of the most popu-
lar fun activities among children and adults for centuries.
Original jigsaw puzzles were created by painting a picture
on a flat, rectangular piece of wood, and then cutting that
picture into small pieces. Over time, the natural appeal
of jigsaw puzzles and their applications in many scientific
problems (e.g., reassembling fossil/archaeological relics [4],
[5] or shredded documents [16], [13], molecular docking
problem for drug design [10], DNA/RNA modeling [15],
and image base CAPTCHA construction [9]) have motivated
many efforts in solving jigsaw puzzles using computer
vision techniques. We now have several variations of jigsaw
puzzles, such as spherical jigsaw puzzles, 3-dimensional
jigsaw puzzles, jigsaw puzzles without pictures, and so
on. Recently, Yang et al. [24], Pomeranz et al. [20] and
Gallagher [8] have examined jigsaw puzzles with square
pieces that contain real-world images. Most of these ap-
proaches focus on computing some compatibility metrics
between pairs of puzzle pieces, and then solving the jigsaw
puzzle by reassembling the pieces together based on these
compatibility metrics.

In this paper, we introduce new approaches for solving
square jigsaw puzzles. We assume that the orientations of

Figure 1. Top row illustrates a puzzle under Gaussian noise, and the
bottom row shows a puzzle where one pixel row/column has been cropped
from piece boundaries. (left) original image (middle) constructed puzzle
(right) solved image using our technique.

the puzzle pieces are known, but their positions are unknown
(i.e., Type 1 jigsaw puzzles of [8]). Similar to Gallagher [8],
we do not assume any prior knowledge of the ground truth
image.

Our key contribution is to introduce new approaches for
measuring the compatibility between two puzzle pieces.
Our experimental results demonstrate that our proposed
compatibility metrics outperform the current state-of-the-art
approaches.

Previous work in solving jigsaw puzzles assumes
computer-generated puzzle pieces. Unfortunately this as-
sumption often does not hold in real-world scenarios.
For real-world applications, some rows/columns along the
boundaries of the puzzle pieces may be missing (e.g.,
when puzzle pieces are cut out of paper and subsequently
scanned), or the image may be corrupted by noise (e.g.,
old, squeezed, torn-apart images). In this paper, we evaluate
and compare different compatibility metrics when the puzzle
pieces are imperfect (e.g. with cropped boundaries or noise).

The rest of the paper is organized as follows. Section II
reviews some previous work related to solving jigsaw puz-
zles. In Section III, we briefly describe some of the most
successful compatibility metrics for measuring the compati-



bility between puzzle pieces in the literature. In Section IV,
we introduce our new approaches for measuring the com-
patibility between two puzzle pieces. We evaluate our new
approaches in Section V and conclude in Section VI.

II. PREVIOUS WORK

Early attempts on developing jigsaw puzzle solvers were
based on using shape information for comparing affinity be-
tween pairs of interlocking puzzle pieces. In 1964, Freeman
and Gardner [7] first examined the problem of solving jigsaw
puzzles using the shapes of the pieces where the pieces were
uniformly gray. Radack and Badler [21] used curvature max-
ima and minima of the piece boundaries, Altman [2] used a
string matching technique depending on shape information,
and Wolfson et al. [23] used combinatorial optimization
techniques for curve matching.

Besides the shape information (e.g., convexity/curvature
analysis of the piece boundaries), Kosiba et al. [12] com-
pared color sampling windows at regular intervals along the
contours of both pieces. Chung et al. [4] examined RGB
values along with hue and saturation. Since then there have
been several attempts to improve accuracy using various
similarity measures based on shape and color [1], [14], [22],
[25], and finally in 2008, Nielsen et al. [17] developed a
solver using image features and shape information that could
solve computer-generated jigsaw puzzles with around 320
puzzle pieces.

Color information of jigsaw pieces has been an amazingly
useful tool for solving jigsaw puzzles with images, where
all pieces are of the same square shape [1], [3], [8], [24],
[20]. Some of these solvers can provide elegant solutions to
puzzles with approximately one thousand pieces [8], [20].
Cho et al. [3] evaluated several patch compatibility metrics
such as similarity of feature vectors, image statistics, or
color information along boundaries. They found that the
dissimilarity-based compatibility, i.e., measuring the sum-
of-squared color difference along the boundaries, gives the
best results. Yang et al. [24] used similar compatibility
measure in LAB color space. Pomeranz et al. [20] examined
several Lp norms that makes the dissimilarity measure most
discriminative. Gallagher [8] proposed a new compatibility
measure called Mahalanobis gradient compatibility based on
the similarity in intensity gradients that outperformed the
sum-of-squared color difference strategy by a large margin
(even when the rotations of the puzzle pieces are unknown).
Our puzzle solving technique combines the Mahalanobis
gradient compatibility and the color-dissimilarity based mea-
sures.

A successful puzzle solver not only requires a good
compatibility measure, but also an effective reassembly tech-
nique to put the pieces together based on the compatibility
measure. It has been shown that the piece reassembly is
an NP-hard problem when there is uncertainty in piece
compatibility [6], so we can only expect an approximate

or greedy solution. Most of the initial solvers formulated
the reassembly process as a TSP-problem [4]. Alajlan [1]
used Hungarian assignment to find neighboring pieces. The
square jigsaw solvers of Cho et al. [3] and Yang et al. [24]
used a loopy belief propagation and a particle filter in-
ference technique, respectively. Both Pomeranz et al. [20]
and Gallagher [8] used greedy reassembly. Pomeranz et
al.’s reassembly was based on repeated relocation of partial
solutions for finding the best fit, and Gallagher’s technique
was to first find a minimum spanning tree and then fill
the unoccupied holes. In this paper, we use Gallagher’s
technique for puzzle reassembly.

III. COMPUTING PAIRWISE COMPATIBILITY

In solving jigsaw, one of the most critical issues is mea-
suring the compatibility of two puzzle pieces. In this section,
we briefly describe the color difference based similarity
measure [3] and the Mahalanobis gradient compatibility [8],
two of the most successful approaches for measuring puzzle
piece compatibility in the literature. In Section IV, we will
introduce our new compatibility metrics based on these two
approaches.

Sum of Squared Distance Scoring (SSD): Let xi be a color
square puzzle piece with P×P pixels. We use xi(h,w,c) to
denote the value at position (h,w) of the color channel c,
where 1≤ h,w≤ P, and 1≤c≤3. The dissimilarity between
xi and x j when xi is placed on the left side of x j is:

DLR(xi,x j) =
3

∑
c=1

P

∑
h=1

(xi(h,P,c)− x j(h,1,c))2 (1)

The right-left, top-bottom and bottom-top dissimilarities
are defined similarly. One can define different color based
dissimilarity measures, e.g., RGB SSD, HSV SSD and LAB
SSD, depending on the color space used. We have tried
different color spaces and found their performances are
similar. In the rest of the paper, we will use RGB SSD.

Mahalanobis Gradient Compatibility (MGC): Another very
popular approach for measuring the compatibility between
puzzle pieces is the Mahalanobis Gradient Compatibility
(MGC) [3]. Instead of comparing the difference of RGB
values like SSD, MGC compares the difference between
color gradients. Let µi(c) be the average color difference at
the cth color channel between the rightmost pair of columns
of xi, and let Gi jLR(h,c) be the color difference at hth
position of the cth color channel between the right side of
xi and the left side of x j. Then

µi(c) =
1
P

P

∑
h=1

xi(h,P,c)− xi(h,P−1,c), (2)

Gi jLR(h,c) = x j(h,1,c)− xi(h,P,c). (3)



Now the dissimilarity score from piece xi to x j is

G′i jLR=
P

∑
h=1

(Gi jLR(h)−µi)S−1
i (Gi jLR(h)−µi)

T , (4)

where Si is a 3× 3 covariance matrix computed from the
gradient difference at the right side of xi. The final MGC
score is CLR(xi,x j) = G′i jLR +G′jiRL. Interested readers are
referred to [8] for details.

IV. OUR APPROACH

In this section, we propose two new approaches for
measuring the compatibility of two puzzle pieces. These
approaches are based on SSD and MGC introduced in
Section III. Our hypothesis is that SSD and MGC provide
complementary information for measuring the compatibility.
Our approaches aim to combine them in some sensible way.

A. Combining MGC and SSD (M+S)

Our first approach is to measure the compatibility of two
puzzle pieces by combining MGC and SSD as follows:

C′LR(xi,x j) =CLR(xi,x j) · (DLR(xi,x j))
1/q (5)

where q is a free parameter that can be set. We refer to this
compatibility measure as M+S.

Similar to Gallagher [8], we normalize the compatibility
matrix as follows. Let M be a compatibility matrix, such
that M(xi,x j) is the dissimilarity score between two distinct
pieces xi and x j. Let X be the set of all pieces. Then the
normalized matrix M′ is defined as follows.

M′(xi,x j) =
M(xi,x j)

min
(

min
∀x∈X

M(xi,x), min
∀x∈X

M(x,x j)

)
+ ε

(6)

Note that we do not need to define the diagonal entries
of M in Eq. 6 since we never have to compare a piece
with itself. We will show empirically in Section V that this
normalization significantly improves the accuracy.

B. Selectively Weighted MGC (wMGC)

Our second approach is based on a further refinement
of M+S. Instead of weighting every MGC score by the
corresponding SSD score (i.e., M+S), here we weight the
MGC scores selectively on those pairs that are likely to be
misclassified by MGC score. One of our initial attempts is
as follows. Given a jigsaw piece xi, we first find the two
best matches xa,xb (based on the normalized MGC scores
in Eq. 6). If the difference between C(xi,xa) and C(xi,xb)
is less than some fixed threshold, we assume that the MGC
classification was not sufficiently confident in this scenario
and hence we classified based on the weighted scores.
However, this strategy could not improve the performance
at all. In fact, selecting the pairs that are likely to be
misclassified by MGC scores is a very challenging task.

Instead, our solution is based on the following observa-
tion. Any locally computed compatibility score is potentially
misled by the fact that multiple jigsaw pieces may have the
same nearest neighbor. Instead of breaking ties arbitrarily,
we need some global agreement for selecting adjoining
pieces. Therefore, we formulate the problem as a minimum
weight bipartite matching problem as follows. Let X and
Y be two copies of all puzzle pieces. Then the set X and
Y correspond to the two partitions of a complete bipartite
graph, and the edges are weighted by the normalized MGC
scores. Our goal is to find a a bijective function φ that
matches elements in X to elements in Y by selecting a subset
of edges in the graph. Give the edge weights, the optimal
matching φ can be efficiently found using the Hungarian
algorithm [11].

Now we describe the details of how to define the edge
weights in the graph. Let n(xi) be the nearest neighbor of xi
according to the MGC scores. Then for a pair of pieces
xi and x j, we take either the MGC score or M+S score
depending on whether φ(xi) = n(xi) or not. Hence the left-
right wMGC score between xi and x j is

WLR(xi,x j) =

{
CLR(xi,x j) if φ(xi) = n(xi),
C′LR(xi,x j) otherwise, (7)

where C and C′ correspond to MGC and M+S, respectively.
It is straightforward to modify Equation (7) to define com-
patibility measures for other arrangements of xi and x j, i.e.,
right-left, top-bottom and bottom-top.

Observe that if the matching piece φ(xi) coincides with
the nearest neighbor of xi, then we assign the row CLR(xi, ·)
to WLR(xi, ·); which is inspired by the higher success of MGC
over SSD. Otherwise, if φ(xi) 6= n(xi), then we assume that
the corresponding MGC scores are not confident enough.
Hence the color gradient between xi and its adjoining target
piece may not be very similar. In such scenarios, we assign
the row C′LR(xi, ·) to WLR(xi, ·).

Our experimental results in Section V show that this
wMGC measure outperforms MGC or M+S, even when the
puzzle pieces are corrupted, e.g., by removing rows/columns
around the boundary, or by adding random noise.

V. EXPERIMENTAL RESULTS

In this section, we evaluate different compatibility metrics
on a benchmark dataset. We are particular interested in how
these compatibility metrics perform when the puzzle pieces
are corrupted, e.g., by cropping around the boundaries, or by
adding random noise. We then analyze the impact of those
compatibility measures on the final puzzle reassembly.

A. Classification Accuracy with Cropping

We use the classification accuracy defined in [3] to quanti-
tatively compare different compatibility metrics. If a pair of
puzzle pieces are adjacent in the original image, they should



receive a high compatibility score. The classification accu-
racy is defined to capture this characteristic. For each image
patch xi, we find the most compatible patch x j according to
one of the compatibility metrics to be considered. We then
calculate the percentage of the patches that the compatibility
metric assigns the correct matches. We perform this on the
same dataset used in [3] which contains 20 images.

There are several interesting conclusions we can draw
from the experiments.

1) M+S outperforms MGC or SSD: Table I shows the
classification accuracy for MGC, SSD and M+S, where
t denotes the number of rows/columns cropped from the
boundary from the piece boundaries (i.e., the cropped piece
is of size (P−2t)×(P−2t)×3), and K denotes the number
of pieces per image.

Since MGC is based on the assumption that the adjoining
puzzle pieces will have similar color gradients, its classifica-
tion accuracy is likely to decrease more quickly than that of
SSD as the boundary of the puzzle pieces become imprecise.
Table I supports this assumption when the size of the pieces
is small, i.e., P = 28. For larger pieces, i.e., P = 56, the rate
of decrease in accuracy with the increase in t is smaller for
MGC than for SSD. It is likely because larger boundaries
help MGC to find similar gradient values in adjoining pieces.
However, we observe that for higher values of t the decrease
rate again become smaller for SSD.

Table I
CLASSIFICATION ACCURACY FOR VARIOUS AMOUNT OF CROPPING t
AND NUMBER OF PUZZLE PIECES K ON CHO ET AL.’S DATABASE [3].
HERE M+S,i IS THE M+S SCORE WITH q = i. THE CELLS WHERE THE

ACCURACY OF M+S IS BETTER THAN ANY OTHER MEASURE ARE
SHOWN IN BOLD.

P = 28, K = 432 P = 56, K = 108

t = 0 t = 1 t = 2 t = 0 t = 1

MGC 0.9024 0.5245 0.3661 0.9556 0.7971
SSD 0.7895 0.4231 0.3004 0.9074 0.6655

Ours, M+S,4 0.9010 0.5377 0.3805 0.9532 0.8014
Ours, M+S,5 0.9028 0.5385 0.3796 0.9537 0.8010
Ours, M+S,6 0.9035 0.5401 0.3786 0.9546 0.8022
Ours, M+S,7 0.9040 0.5399 0.3780 0.9545 0.8042

Table I shows that M+S consistently outperforms MGC
and SSD when t ≥ 1, and also when t = 0,P= 28. A possible
explanation is that SSD shows more robustness (with respect
to t) than MGC. Since M+S is essentially the MGC weighed
by SSD, its performance decrease with t is slower than that
of MGC. Consequently, M+S outperforms MGC for larger
values of t. An interesting observation that supports this
explanation is the increase in t requires more weight (lower
values of q) on SSD to attain higher accuracy, as shown
in underline in Table I. From the perspective of error rate,
M+S reduces the error rate (in comparison to MGC) by 1.6%
when t = 0,P = 28, and by 3.2% when t = 1,P = 28.

2) Normalization matters: Table II shows the classifica-
tion accuracy computed with normalized matrices. Although

the accuracy reported is higher than that of Table I, the
relative performance among different compatibility measures
remains the same.

Table II
CLASSIFICATION ACCURACY WITH NORMALIZED COMPATIBILITY
MATRICES, WHERE M+S,i DENOTES THE M+S SCORE WHEN q = i.

P = 28, K = 432 P = 56, K = 108

t = 0 t = 1 t = 2 t = 0 t = 1

MGC 0.9208 0.576 0.4082 0.9609 0.8363
SSD 0.8402 0.4714 0.3389 0.9338 0.7350

M+S,5 0.9203 0.5863 0.4194 0.9596 0.8341
M+S,7 0.9209 0.5871 0.4185 0.9601 0.8349

M+S,14 0.9218 0.5851 0.4159 0.9605 0.8364
M+S,16 0.9220 0.5849 0.4151 0.9605 0.8368

3) wMGC outperforms all the other metrics: Table III
compares the classification accuracy of MGC, SSD, M+S
and wMGC. From the perspective of error rate, wMGC
reduces the error rate (in comparison to MGC) by 3.6%
when t = 0,P = 28, and by 4.1% when t = 1,P = 28. In the
following, we will use wMGC in our approach.

Table III
CLASSIFICATION ACCURACY FOR VARIOUS AMOUNT OF CROPPING t

AND NUMBER OF PUZZLE PIECES K . K = 432 FOR CHO ET AL.’S
DATABASE [3] AND K = 540 FOR MCGILL DATABASE [19]. HERE

WMGC,i DENOTES THE WMGC SCORE WHEN q = i. THE CELLS WHERE
THE ACCURACY OF WMGC IS BETTER THAN ANY OTHER MEASURE ARE

SHOWN IN BOLD.

K = 432 K = 540

P = 28 t = 0 t = 1 t = 2 t = 0 t = 1

MGC 0.9208 0.5760 0.4082 0.9394 0.7483
SSD 0.8402 0.4714 0.3389 0.8159 0.4792
M+S 0.9220 0.5871 0.4194 0.9439 0.7581

wMGC,3 0.9229 0.5930 0.4244 0.9440 0.7591
wMGC,4 0.9235 0.5935 0.4232 0.9434 0.7588
wMGC,5 0.9237 0.5924 0.4221 0.9434 0.7588
wMGC,7 0.9233 0.5905 0.4197 0.9431 0.7583

B. Classification Accuracy with Noise

The importance of jigsaw puzzle solving is certainly
not limited by the fun factor of the puzzle. It provides
potential solutions for a wide range of practical applications
such as reassembling archaeological relics [5] or shredded
documents [16], [13]. In those applications, the ground truth
images may have large amounts of noise. In the literature,
previous work in solving jigsaw puzzles always assumes
that the puzzle pieces are perfect. Little is known about
the performance of current jigsaw puzzle solvers when the
puzzle pieces are corrupted by noise. Here we provide
the first experimental evaluation of popular jigsaw puzzle
solving techniques with noisy puzzle pieces.

Table IV shows the classification accuracy of various com-
patibility measures, where the puzzle pieces are corrupted by
various amounts of Gaussian noise or salt & pepper noise.



The results are very interesting. Salt & pepper noise drasti-
cally reduced the performance of SSD. On the other hand,
SSD outperformed MGC under Gaussian noise. Surprisingly,
wMGC shows robustness in such tough conditions, i.e., its
accuracy remains close to the maximum.

Table IV
CLASSIFICATION ACCURACY UNDER GAUSSIAN NOISE OF MEAN ZERO

AND VARIANCE v AND SALT & PEPPER NOISE OF NOISE DENSITY n (I.E.,
APPROXIMATELY n% PIXELS OF EACH IMAGE ARE AFFECTED).

GAUSSIAN NOISE WAS APPLIED INDEPENDENTLY AT EACH COLOR
CHANNEL.

K = 432 Gaussian Noise Salt & Pepper

P = 28 v=10−4 v=10−3 v=0.01 n=0.01 n=0.1

MGC 0.8215 0.6020 0.2927 0.8345 0.7309
SSD 0.7823 0.6210 0.3469 0.5936 0.0931

wMGC,3 0.8322 0.6294 0.3247 0.8284 0.7047
wMGC,4 0.8315 0.6278 0.3204 0.8301 0.7101
wMGC,5 0.8316 0.6257 0.3175 0.8318 0.7144
wMGC,7 0.8302 0.6225 0.3140 0.8328 0.7190

C. Results on Final Puzzle Reassembly

In this section, we apply different compatibility metrics
and evaluate their performance in terms of the final puzzle
reassembly. To make a fair comparison, it is important to
use exactly the same puzzle reassembly method for all
the compatibility metrics. We choose to use the technique
in Gallagher [8] to reassemble the final puzzle. Given a
compatibility metric and a set of puzzle pieces, this method
first computes a pairwise scoring matrix representing the
compatibility among each pair of pieces in some spatial
arrange (e.g., left-right, top-bottom and so on). It then
constructs a constrained spanning tree greedily from the
pairwise scoring matrix while maintaining a non-overlapping
planar embedding of the tree. This is followed by trim-
ming the embedding to fix the image boundary, and filling
the remaining holes greedily with the remaining pieces.
Interested readers are referred to [8] for details about the
puzzle reassembly technique. Here we use the source code
provided by authors of [8]. The original reassembler code
in [8] uses MGC as the compatibility measure. Although
our natural approach could be to replace the MGC with
wMGC scores, however, we found that the reassembly phase
of [8] is very sensitive to consistent MGC scores. Therefore,
instead of using wMGC scores directly, we use a modified
MGC score based on wMGC with q = 5 as follows. Let
n(xi) and n′(xi) be the nearest neighbor of xi according to
left-right MGC and wMGC scores, respectively. Then for
every puzzle piece xi, where n(xi) 6= n′(xi), we swap the
left-right MGC scores of (xi,n(xi)) and (xi,n′(xi)), i.e., we
swap CLR(xi,n(xi)) and CLR(xi,n′(xi)). We update the right-
left, top-bottom and bottom-top MGC scores analogously.
Similar to [3], [8], [20], we consider three criteria for
measuring the performance of the puzzle reassembly:

Direct comparison: for each puzzle piece, we compare its
position in the assembled jigsaw with its position in the
ground-truth image. The direction comparison measures the
percentage of puzzle pieces that are assigned to the correct
positions in a dataset.

Neighbor comparison: for each pair of puzzle pieces that
are adjacent in the assembled jigsaw, we check how many
of them are also adjacent in the ground-truth images. The
neighbor comparison measures the percentage of such cor-
rect assigned pairs among all possible pairs in a dataset.

Perfect reconstruction: this measures the numbers of jigsaw
puzzles that are perfectly reconstructed. We like to empha-
size that this performance measure is very strict. A jigsaw
puzzle is considered to be “correct” only when all the puzzle
pieces are in the right locations.

The comparison is shown in Table V. We can see that
our proposed method either outperforms or is comparable
to other baseline approaches with respect to all three perfor-
mance criteria.

Table V
EVALUATION OF REASSEMBLED PUZZLES ON CHO ET AL.’S

DATABASE [3] OF 20 IMAGES (EACH CONTAINING 432 PIECES) AND
MCGILL IMAGE DATABASE [19] OF 20 IMAGES (EACH CONTAINING 540

PIECES).

On Cho et al.’s database [3] Direct Neighbor Perfect

Cho et al. [3] 0.100 0.550 0
Pomeranz et al. [20] 0.940 0.950 13

Gallagher [8] 0.953 0.951 12
Ours 0.956 0.954 13

On McGill image database [19] Direct Neighbor Perfect

Pomeranz et al. [20] 0.830 0.910 9
Gallagher [8] 0.928 0.955 11

Ours 0.935 0.967 11

The benefit of our method becomes even more apparent
for puzzles with pieces having imprecise boundaries or
noise. Table VI reports the results on images from two
categories (forest, city) of the MIT Scene database [18].
There are 328 images in the forest category and 308 images
in the city category. Under small Gaussian noise, or with one
row/column cropped from the piece boundary, our method
outperforms MGC and SSD by about 5% in accuracy with
respect to both Direct and Neighbor comparisons. Since
large number of noisy or corrupted puzzle pieces makes
the task extremely challenging for all the compatibility
measures, their performance become difficult to compare.
Therefore, we used MIT Scene database [18] that con-
tains images with smaller size than that of Cho et al.’s
database [3].

Figure 2 shows some examples of jigsaw puzzles with
imprecise piece boundary and the solutions obtained using
SSD, Gallagher [8], and our approach. Figure 3 shows
examples of jigsaw puzzles with Gaussian noise and the



Figure 2. Examples of jigsaw puzzles with imprecise piece boundaries and the solutions obtained using different approaches. Each row corresponds to
an example. The columns are: (1st) original image; (2nd) puzzle pieces; (3rd) solutions of SSD; (4th) solutions of Gallagher [8]; (5th) our solutions.



Table VI
EVALUATION OF REASSEMBLED PUZZLES, EACH CONTAINING 81

PIECES OF SIZE 28×28×3. HERE v IS VARIANCE OF THE MEAN ZERO
GAUSSIAN NOISE, AND t IS THE AMOUNT OF CROPPING.

Dire. Neig. Perf. Scene v t

SSD .694 .741 83 forest 0 0
Gallagher [8] .969 .977 304 forest 0 0

Ours .980 .989 311 forest 0 0
SSD .857 .900 141 city 0 0

Gallagher [8] .988 .992 285 city 0 0
Ours .990 .994 286 city 0 0

SSD .656 .709 65 forest 0.001 0
Gallagher [8] .732 .784 109 forest 0.001 0

Ours .783 .830 126 forest 0.001 0
SSD .758 .813 50 city 0.001 0

Gallagher [8] .752 .803 63 city 0.001 0
Ours .783 .831 72 city 0.001 0
SSD .118 .176 0 forest 0 1

Gallagher [8] .647 .734 54 forest 0 1
Ours .689 .772 74 forest 0 1
SSD .3440 .4597 0 city 0 1

Gallagher [8] .684 .780 46 city 0 1
Ours .746 .829 76 city 0 1

solutions obtained using these three methods. In both figures,
wMGC perfectly solves the puzzles in the 1st, 2nd, 4th and
6th rows.

VI. CONCLUSION

We have proposed new approaches for measuring the
compatibility of two jigsaw puzzle pieces. The proposed
compatibility metrics can be used in combination with exist-
ing puzzle reassembly method to solve jigsaw puzzles. Our
experimental results demonstrate that our proposed com-
patibility metrics outperform the state-of-the-art approaches,
especially when the puzzle pieces have imprecise boundaries
or noise.
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Figure 3. Examples of jigsaw puzzles with Gaussian noise and the solutions obtained using different approaches. Each row corresponds to an example.
The columns are: (1st) original image; (2nd) puzzle pieces; (3rd) solutions of SSD; (4th) solutions of Gallagher [8]; (5th) our solutions.


