
Ranking and Loopless Generation of k-ary Dyck
Words in Cool-lex Order

Stephane Durocher1, Pak Ching Li1, Debajyoti Mondal1, and Aaron Williams2

1 Department of Computer Science, University of Manitoba
2 Department of Mathematics and Statistics, Carleton University

durocher@cs.umanitoba.ca, lipakc@cs.umanitoba.ca

jyoti@cs.umanitoba.ca, haron@uvic.ca

Abstract. A binary string B of length n = kt is a k-ary Dyck word if
it contains t copies of 1, and the number of 0s in every prefix of B is at
most k−1 times the number of 1s. We provide two loopless algorithms
for generating k-ary Dyck words in cool-lex order: (1) The first requires
two index variables and assumes k is a constant; (2) The second requires
t index variables and works for any k. We also efficiently rank k-ary Dyck
words in cool-lex order. Our results generalize the “coolCat” algorithm by
Ruskey and Williams (Generating balanced parentheses and binary trees
by prefix shifts in CATS 2008) and provide the first loopless and ranking
applications of the general cool-lex Gray code by Ruskey, Sawada, and
Williams (Binary bubble languages and cool-lex order under review).

1 Background

1.1 k-ary Dyck Words

Let B(n, t) be the set of binary strings of length n containing t copies of 1. A
string B ∈ B(kt, t) is a k-ary Dyck word if the number of 0s in each prefix is at
most k−1 times the number of 1s. Let Dk(t) be the set of k-ary Dyck words of
length kt. For example, the k-ary Dyck words with k = t = 3 are given below

D3(3) = {111000000, 110100000, 101100000, 110010000, 101010000, 100110000,

110001000, 101001000, 100101000, 110000100, 101000100, 100100100}.

The k-ary Dyck words of length kt have simple bijections with a number of
combinatorial objects including k-ary trees with t internal nodes [2, 3]. The 2-
ary Dyck words are known as balanced parentheses when 1 and 0 are replaced by
‘(’ and ‘)’ respectively, and the cardinality of D2(t) is the tth Catalan number.

A simple property of k-ary Dyck words is that they can be “separated”
according to the following remark. We let αβ denote the concatenation of the
binary strings α and β, and we say that α and β have the same content if they
have equal length and an equal number of 1s.

Remark 1. If αβ, γδ ∈ Dk(t) and α and γ have the same content, then αδ, βγ ∈
Dk(t). In other words, prefixes (or suffixes) of k-ary Dyck words with the same
content can be separated and recombined.



1.2 Combinatorial Generation

Many computational problems require iterating through combinatorial objects
of a given type and size without duplication. Generation algorithms store one
object in a data structure, and create successive objects by modifying its con-
tents. Constant-amortized time (CAT) and loopless algorithms create successive
objects in amortized O(1)-time and worst-case O(1)-time, respectively. Memory
for input parameters and the aforementioned data structure are fixed expenses,
and the algorithm’s remaining variables are additional variables. Index variables
have values in {1, 2, . . . , n} when generating combinatorial objects of size O(n).

Successive objects created by loopless algorithms differ by a constant amount
(in the chosen data structure) and the resulting order of objects is a Gray code.
If successive objects differ by operation ‘x’, then the order is an ‘x’ Gray code;
in a 2-‘x’ Gray code successive objects differ by at most two applications of ‘x’.
In a cyclic Gray code the last object differs from the first object in same way.

Suppose B = B1B2 · · ·Bn is a binary string of length n and 1 ≤ i ≤ j ≤ n.
Informally, swap(B, i, j) exchanges the ith and jth bits of B, and shift(B, j, i)
moves the jth bit of B leftwards into the ith position by moving the intermediate
bits to the right. Formally, the swap and shift operations are defined as follows:

– swap(B, i, j) = B1 · · ·Bi−1BjBi+1 · · ·Bj−1BiBj+1 · · ·Bn, and
– shift(B, j, i) = B1 · · ·Bi−1BjBiBi+1 · · ·Bj−1Bj+1 · · ·Bn.

When appropriate we shorten swap(B, i, j) to swap(i, j), and shift(B, j, i) to
shift(j, i). Swaps are also known as transpositions with special cases including

– adjacent-transpositions: swap(i, i+1),
– two-close-transpositions: swap(i, i+1) or swap(i, i+2), and
– homogeneous-transpositions: swap(B, i, j) where Bi = Bi+1 = · · · = Bj−1.

Prefix-shifts are usually defined as operations of the form shift(j, 1). Swaps and
prefix-shifts are efficient operations for binary strings stored in arrays and com-
puter words, respectively.

Given an order of combinatorial objects, the rank of an object is its position
in the order. Ranking determines the rank of a particular object in a given order,
and unranking determines the object with a particular rank in a given order.

1.3 CoolCat Order

Balanced parentheses are among the most studied objects in combinatorial gen-
eration [3] but fewer results exist for k-ary Dyck words. Generation of Dk(t)
was first discussed by Zaks [10]. A general result by Pruesse and Ruskey implies
that Dk(t) has a 2-adjacent-transposition Gray code [4] and a result by Canfield
and Williamson [1] proves that Dk(t) can be generated by a loopless algorithm3.
More recently, Vajnovszki and Walsh [9] found a two-close transposition Gray

3 Both results use that strings in Dk(t) correspond to linear-extensions of a poset with
cover relations a1 ≺ · · · ≺ at, b1 ≺ · · · ≺ b(k−1)t, and ai ≺ b(k−1)(i−1)+1 for 1 ≤ i ≤ t.



code and created a loopless algorithm that requires twelve if-statements and
O(n) additional variables stored in three additional arrays e, s, and p. Results
on k-ary trees date back to Ruskey [5] and Trojanowski [8].

There are no prefix-shift Gray codes for Dk(t) (except when k, t ≤ 2). How-
ever, the first bit of every k-ary Dyck word is 1, so we can instead define a
prefix-shift as shift(i, 2) with the understanding that the redundant bit could be
omitted from a computer word representation. Using this definition Ruskey and
Williams [7] discovered an ordering of D2(t) with the following properties:

– it is both a cyclic prefix-shift Gray code, and a cyclic 2-swap Gray code that
uses at most one adjacent-transposition and one homogeneous -transposition,

– it can be generated by a loopless algorithm using only two if-statements and
two additional index variables, and

– the ordering has an efficient ranking algorithm.

Furthermore, the Gray code can be created by the “successor rules” in Table 1.
More specifically, every string in D2(t) has a prefix that matches a unique rule
in (1a)-(1d) which describes how the prefix is changed to obtain the next string.
Table 1 uses exponentiation for symbol repetition, and the order for D2(4) is:

10111000, 11011000, 11101000, 10110100, 11010100, 10101100, 11001100,

11100100, 10110010, 11010010, 10101010, 11001010, 11100010, 11110000.

For example, the matched prefix for 11001100 is 1i0j11 with i = 2 and j = 2.
By (1a), shift(i+j+1, 2) (or swap(i+1, i+j+1)) creates the next string 11100100.
Similarly, the matched prefix for 11100100 is 1i0j10 with i = 3 and j = 2. By
(1c), shift(i+j+2, 2) (or swap(2, i+1) swap(i+j+1, i+j+2)) creates 10110010.

Current Prefix† Next Prefix Shift Swap(s)
(1a) 1i0j11 1i+10j1 (i+j+1, 2) (i+1, i+j+1)
(1b) 1i0j10 for i = j 1i+10j+1 (i+j+1, 2) (i+1, i+j+1)
(1c) 1i0j10 for i > j 101i−10j1 (i+j+2, 2) (2, i+1) (i+j+1, i+j+2)
(1d) 1i0j for i = j = t 101i−10j−1 (i+j, 2) (2, i+1)

Table 1. Rules for generating balanced parentheses D2(t) from [7]. Prefixes change
according to (1a)-(1d) by the specified shift or the equivalent swap(s). †j > 0.

Rules (1a) and (1b) can be combined (see [7]) since they perform the same
operation and Rule (1d) simply transforms the ‘last’ string in the cyclic Gray
code into the ‘first’ string. The Gray code is also interesting because it generates
Dk(t) according to a cyclic Gray code for B(kt, t) known as cool-lex order. That
is, if α ∈ Dk(t) comes before β ∈ Dk(t) in the cool-lex order of B(kt, t), then α
comes before β in the Gray code defined by Table 1. The order and algorithm
are named “CoolCat” after cool-lex order and the Catalan numbers.

Theorem 1 ([7]). The balanced parentheses of length 2t in D2(t) are generated
in cool-lex order by the prefix-shift (or equivalent swap(s)) in Table 1.



1.4 Bubble Languages and Cool-lex Order

A bubble language4 is a set of binary strings L ⊆ B(n, t) with the following
property: If B ∈ L where B = 1i0j01γ for some j ≥ 0, then 1i0j10 ∈ L. In other
words, they are sets of binary strings with the same content in which the leftmost
01 of any string can be replaced by 10 to give another string in the set. This
definition comes from Ruskey, Sawada, and Williams who showed that bubble
languages generalize many combinatorial objects including binary necklaces and
solutions to knapsack problems [6]. They substantially generalized Theorem 1 by
proving that cool-lex order provides a cyclic Gray code for any bubble language.
In particular, the successor rules in Table 2 generate all of these Gray codes.

Lemma 1 ([6]). The k-ary Dyck words in Dk(t) are a bubble language. Further-
more, the k-ary Dyck prefixes in Dk(t, s) (see Section 4) are a bubble language.

Proof. Replacing 01 by 10 cannot decrease the number of 1s in a string’s prefix. ut

Current String† Next String‡ Shift Swap(s)
(2a) 1i0j11γ 1i+10j1γ (i+j+1, 1) (i+1, i+j+1)
(2b) 1i0j10γ for 1i0j+11γ /∈ L 1i+10i+1γ (i+j+1, 1) (i+1, i+j+1)
(2c) 1i0j10γ for 1i0j+11γ ∈ L 1h01i−h0j1γ (i+j+2, h+1) (h+1, i+1) (i+j+1, i+j+2)
(2d) 1i0j 1g01i−g0j−1 (i+j, g+1) (g+1, i+1)
(2e) 1i0j1 1i+10j (i+j+1, 1) (i+1, i+j+1)
Table 2. Rules for generating a bubble language L from [6]. Strings change according to
(2a)-(2e) by the specified shift or equivalent swap(s). †j > 0. ‡h is the minimum value
such that 1h01i−h0j1γ ∈ L and g is the minimum value such that 1g01i−g0j−1 ∈ L.

Theorem 2 ([6]). The strings in any bubble language are generated in cool-lex
order by the shift (or equivalent swap(s)) in Table 2.

We will examine how this result applies to k-ary Dyck words later in this
article. In the meantime, observe that the rules in Table 2 refer to entire strings,
and not just specific prefixes as in Table 1. This is due to the fact that bubble lan-
guages do not necessarily have the separability property mentioned in Remark 1.
Also note that Table 2 produces a shift Gray code that is not necessarily a prefix-
shift Gray code. On the other hand, the Gray code is still a 2-swap Gray code
using at most one adjacent-transposition and one homogeneous-transposition.

1.5 New Results

We apply Theorem 2 to obtain a simple set of successor rules that generate a
cyclic prefix-shift Gray code of k-ary Dyck words in Section 2. Then we use

4 These are called “binary fixed-density bubble languages” in [6].



the Gray code as the basis for two loopless generation algorithms that store the
current string in an array in Section 3. The first algorithm works for constant
k and requires only two additional index variables. The second algorithm works
for arbitrary k and requires four if-statements and one array of O(n) additional
index variables. In Section 4 we show how the Gray code can be efficiently ranked
and unranked. With respect to the existing literature these results include

– the first prefix-shift Gray code for k-ary Dyck words [6],
– the first loopless algorithm for generating k-ary Dyck words that uses O(1)

additional index variables (when k is constant),
– a simpler loopless algorithm for generating k-ary Dyck words using 1/3 the

if-statements and additional arrays as [9] (when k is arbitrary), and
– the first order of k-ary Dyck words that has a loopless generation algorithm

as well as efficient ranking and unranking algorithms.

Our results also include the first application of bubble languages to loopless
generation and efficient ranking and unranking. Due to the generalization from
“CoolCat” to k-ary Dyck words, we name the order and algorithms “CoolKat”.

2 CoolKat Order

In this section we specialize the cool-lex Gray code for bubble languages to the
special case of k-ary Dyck words of length kt. In particular, Theorem 3 will prove
that k-ary Dyck words can be generated cyclically using the rules in Table 3.
The resulting “CoolKat” order appears below for D3(3)

101100000, 110100000, 101010000, 100110000, 110010000, 101001000,

100101000, 110001000, 101000100, 100100100, 110000100, 111000000.

As in Table 1 for balanced parentheses, the rules in Table 3 refer to string prefixes
and the stated shifts are prefix-shifts. Also, the rule (3d) refers only to the ‘last’
string 1t0(k−1)t. In the second half of this section we optimize the swap rules in
Table 3 for the array-based loopless algorithms in Section 3.

Current Prefix† Next Prefix Shift Swap(s)
(3a) 1i0j11 1i+10j1 (i+j+1, 2) (i+1, i+j+1)
(3b) 1i0j10 for (k−1)i = j 1i+10j+1 (i+j+1, 2) (i+1, i+j+1)

(3c) 1i0j10 for (k−1)i > j 101i−10j1 (i+j+2, 2) (2, i+1) (i+j+1, i+j+2)

(3d) 1i0j for i = t, j = (k − 1)t 101i−10j−1 (i+j, 2) (2, i+1)

Table 3. New rules for generating k-ary Dyck words Dk(t) in cool-lex order. These
rules generalize those in Table 1 and specialize those in Table 2. †j > 0.



Theorem 3. The k-ary Dyck words of length kt are generated in cool-lex order
by the rules in Table 3.

Proof. Since L = Dk(t) is a bubble language [6], Theorem 2 implies that its
strings are generated by Table 2. We now compare each rule in Table 2 to its
proposed specialization in Table 3. In the comparison, recall that (2a)-(2e) refer
to entire strings, whereas (3a)-(3d) refer to prefixes, and that j > 0 is always
assumed in 1i0j1.

Current Next Shift Swap
(2a) 1i0j11γ 1i+10j1γ (i+j+1, 1) (i+1, i+j+1)
(3a) 1i0j11 1i+10j1 (i+j+1, 2) (i+1, i+j+1)

If a k-ary Dyck word has prefix 1i0j11 and j > 0, then it must be that i > 0.
Therefore, shift(i+j+1, 2) in (3a) is the special case of shift(i+j+1, 1) in (2a).

Current Next Shift Swaps
(2b) 1i0j10γ for 1i0j+11γ /∈ L 1i+10i+1γ (i+j+1, 1) (i+1, i+j+1)
(3b) 1i0j10 for (k−1)i = j 1i+10j+1 (i+j+1, 2) (i+1, i+j+1)

Suppose 1i0j10γ is a k-ary Dyck word. Remark 1 implies that 1i0j+11γ is
not k-ary Dyck word if and only if (k−1)i = j. Therefore, the condition “for
(k−1)i = j” in (3b) is a special case of the condition “for 1i0j+11γ /∈ L” in (2b).
Next observe that i > 0 since k-ary Dyck words must begin with the symbol 1.
Therefore, shift(i+j+1, 2) in (3b) is the special case of shift(i+j+1, 1) in (2b).

Current Next‡ Shift Swaps
(2c) 1i0j10γ for 1i0j+11γ ∈ L 1h01i−h0j1γ (i+j+2, h+1) (i+j+1, i+j+2) (h+1, i+1)
(3c) 1i0j10 for (k−1)i > j 101i−10j1 (i+j+2, 2) (i+j+1, i+j+2) (2, i+1)

‡h is the minimum value such that 1h01i−h0j1γ ∈ L.

Suppose 1i0j10γ is a k-ary Dyck word. Remark 1 implies that 1i0j+11γ is a k-ary
Dyck word if and only if (k−1)i > j. Therefore, the condition “for (k−1)i > j”
in (3c) is a special case of the condition “for 1i0j+11γ ∈ L” in (2c). Next observe
that Remark 1 implies that h = 1 is the minimum value such that 1h01i−h0j1γ ∈
L. Therefore, the shifts and swaps in (3c) are special cases of those in (2c).

Current Next‡ Shift Swaps
(2d) 1i0j 1g01i−g0j−1 (i+j, g+1) (g+1, i+1)
(3d) 1i0j for i = t, j = (k − 1)t 101i−10j−1 (i+j, 2) (2, i+1)

‡g is the minimum value such that 1g01i−g0j−1 ∈ L.

By similar reasoning as above, g = 1 is the minimum value such that 1g01i−g0j−1

is a k-ary Dyck word.

Current Next Shift Swaps
(2e) 1i0j1 1i+10j (i+j+1, 1) (i+1, i+j+1)

This general rule for bubble languages does not apply to k-ary Dyck words
because k-ary Dyck words cannot have 1 as the last symbol. ut



2.1 Optimized Swap Rules

Table 4 gives swap rules that are equivalent to those in Table 3. In these rules,
swap(i+1, i+j+1) is performed when creating the successor of every string (ex-
cept 1t0(k−1)t). This allows more compact array-based algorithms in Section 3.

Current Prefix† Next Prefix Swap(s)
(4a) 1i0j11 1i+10j1 (i+1, i+j+1)
(4b) 1i0j10 for (k−1)i = j 1i+10j+1 (i+1, i+j+1)

(4c) 1i0j10 for (k−1)i > j 101i−10j1 (i+1, i+j+1) (2, i+j+2)

(4d) 1i0j for i = t, j = (k − 1)t 101i−10j−1 (2, i+1)
Table 4. Equivalent swap rules for generating k-ary Dyck words. These swap rules
differ slightly from those in Table 3 and allow for a more efficient algorithm.†j > 0.

Corollary 1. Dk(t) is generated in cool-lex order by the rules in Table 4.

Proof. The swap(s) are identical to those in Table 3 except for (4c) below.

Current Prefix Next Prefix Swap(s)
(3c) 1i0j10 for (k−1)i > j 101i−10j1 (i+j+1, i+j+2) (2, i+1)

(4c) 1i0j10 for (k−1)i > j 101i−10j1 (i+1, i+j+1) (2, i+j+2)

When B ∈ Dk(t) has prefix 1i0j10 with j > 0, then the relevant bit values are

B[2] =

{
1 if i > 1

0 if i = 1,
B[i+1] = 0, B[i+j+1] = 1, and B[i+j+2] = 0.

If i > 1, then (3c) and (4c) both change the prefix to 101i−10j1. If i = 1, then (3c)
and (4c) both change the prefix to 1i0j01 = 10j1i−101 via swap(i+j+1, i+j+2). ut

3 Loopless Algorithms

In this section we provide two loopless algorithms for generating k-ary Dyck
words in cool-lex order: coolkat (for “small” k) and coolKat (for “large” k).

3.1 Algorithm for Constant k

We begin with coolkat, which is a simple algorithm that uses only two additional
index variables. We prove its correctness in Theorem 4 and then prove that it is
loopless for constant k in Theorem 5.

Theorem 4. Algorithm coolkat(k, t) generates each successive k-ary Dyck word
of length kt in cool-lex order.



Procedure coolkat(k, t)
1:
2: B ← array(1t0(k−1)t)
3: x← t
4: y ← t
5: visit()
6: while x < k(t− 1) + 1
7: B[x]← 0
8: B[y]← 1
9: x← x+ 1

10: y ← y + 1
11: if B[x] = 0 then
12: if x− 2 = k(y − 2) then
13:
14: while B[x] = 0
15: x← x+ 1
16: end
17:
18: else
19: B[x]← 1
20: B[2]← 0
21: if y > 3 then
22: x← 3
23: end
24: y ← 2
25: end
26: end
27: visit()
28: end

Procedure coolKat(k, t)
1: A← array(0t−2)
2: B ← array(1t0(k−1)t)
3: x← t
4: y ← t
5: visit()
6: while x < k(t− 1) + 1
7: B[x]← 0
8: B[y]← 1
9: x← x+ 1

10: y ← y + 1
11: if B[x] = 0 then
12: if x− 2 = k(y − 2) then
13: if B[x+ 1] = 1 then
14: A[y − 2]← 0
15: end
16: A[y − 2]← A[y − 2] + 1
17: x← x+A[y − 2]
18: else
19: B[x]← 1
20: B[2]← 0
21: if y > 3 then
22: x← 3
23: end
24: y ← 2
25: end
26: end
27: visit()
28: end

Algorithms 1: coolkat(k, t) and coolKat(k, t) generate k-ary Dyck words of
length kt in cool-lex order for any k, t ≥ 1 (with 1t0(k−1)t visited first).

Proof. We prove that the “main loop” on lines 6-28 always modifies B ac-
cording to Table 4 by induction on the number of iterations. The first itera-
tion visits 1t0(k−1)t and the second iteration begins with y = 2, x = 3, and
B = 101t−10(k−1)t−1, which is correct by (4c). The second iteration provides a
base case for the following main-loop invariant:

If B has prefix 1i0j1 for j > 0 on line 6, then y = i+ 1 and x = i+ j+ 1.

Inductively suppose this invariant holds for the mth iteration and consider the
next iteration. Lines 7-8 apply swap(i+1, i+j+1), which is the first swap listed
in each of (4a)-(4c). Lines 9-10 increment the additional variables to y = i + 2
and x = i+ j + 2. Now consider the possible paths through the algorithm.

– If B[x] = 1 on line 11, then the mth string in cool-lex order had prefix 1i0j11.
By (4a) the successor has already been obtained by swap(i+1, i+j+1). Fur-
thermore, y = i+ 2 and x = i+ j + 2 correctly satisfy the invariant.



– If B[x] = 0 on line 11, then the mth string in cool-lex order had prefix 1i0j10.
• If x − 2 = k(y − 2) on line 12, then j = (k − 1)i by simple algebra.

By (4b) the successor has already been obtained by swap(i+1, i+j+1).
Furthermore, y = i+ 2 is correct. Since B now has prefix 1i+10j+1, x is
greater than its current value of i+ j + 2. The loop on line 14 scans the
remainder of the B to determine the correct value of x.

• If x − 2 < k(y − 2) on line 12, then j < (k − 1)i. Lines 19-20 correctly
apply swap(2, i+ j+ 2) by (4c) and change the prefix of B to 101i−10j1.
∗ If y > 3 on line 21, then i > 1 and x = 2 is correctly set by line 22.
∗ If y = 3 on line 21, then i = 1 and the current value of x = i+ j + 2

is already correct.
Finally, y = 2 is correctly set by line 24.

This induction continues until B = 1t−10(k−1)(t−1)10k−1 since this is the only
string in Dk(t) for which x ≥ k(t− 1) + 1 by the loop-invariant x = i+ j+ 1. By
(4b) the successor of 1t−10(k−1)(t−1)10k−1 is 1t0(k−1)t, which was the first string
visited. Therefore, coolkat(k, t) visits every string in Dk(t). ut

Now we analyze coolkat. We need to show that the loop on line 14 runs a
constant number of times when generating k-ary Dyck words for constant k.
Towards this goal we present the following lemma.

Lemma 2. If 1i0j10γ is a k-ary Dyck word and j = (k − 1)i, then γ does not
have 0k−1 as a prefix.

Proof. A k-ary Dyck word cannot have 1i0(k−1)i10k as a prefix. ut

Theorem 5. Algorithm coolkat(k, t) uses two additional variables, and when k
is a constant each successive string is created in worst-case O(1)-time.

Proof. The algorithm uses the input values k and t, and stores the current k-ary
Dyck word in the array B. Otherwise, the only additional variables are x and y.
Therefore, the stated memory requirements are correct.

Next consider the run-time of creating each successive string in B. Notice
that the only loop inside of the main loop on lines 6–28 is on 14. This loop is run
when the current string stored in B at line 6 has a prefix equal to 1i0(k−1)i10.
By Lemma 2, the next k bits in B cannot all be 0. Therefore, the line 14 runs
at most k times. If k is treated as a constant, then this loop can be replaced
by a constant number of nested if-statements. Therefore, when k is a constant,
successive strings are created in worst-case O(1)-time. ut

3.2 Algorithm for Arbitrary k

To obtain a loopless algorithm for arbitrary k we perform the loop on line 14
with in O(1)-time by introducing an additional array of index variables A.

Theorem 6. coolKat(k, t) is a loopless algorithm that generates each successive
k-ary Dyck word of length kt in cool-lex order and uses only t index variables.



Proof. Observe that coolkat and coolKat differ only in line 1 and lines 13-17.
These lines are executed in coolKat when B begins the main-loop with a prefix
of the form 1i0(k−1)i10. By line 16, the A array is updated so that A[i] contains
the number of 0s that follow the prefix of the form 1i0(k−1)i1. A formal proof
of correctness requires an understanding of the recursive formulation of cool-lex
order presented in Section 4 and is omitted. ut

4 Ranking and Unranking

In this section we generalize k-ary Dyck words, discuss cool-lex order recursively,
and then efficiently rank and unrank k-ary Dyck words in cool-lex order.

A string B ∈ B(s+t, t) is a k-ary Dyck prefix if the number of 0s in each
prefix is at most k−1 times the number of 1s. Notice that k-ary Dyck prefixes
with t 1s can have s ≤ (k−1)t 0s, whereas k-ary Dyck words with t 1s must
have s = (k−1)t 0s. Let Dk(t, s) be the k-ary Dyck prefixes in B(s+t, t). Thus,

Dk(t, s) = {B ∈ B(s+ t, t) | B0(k−1)t−s ∈ Dk(t)}.

Let Nk(t, s) be the cardinality of Dk(t, s). Also let v = (k−1)(t−1) in this section.
The significance of this value is that every B ∈ Dk(t, s) has suffix 0s−v if s > v.

Lemma 3. Nk(t, s) = 0 if t = 0, Nk(t, s) = 1 if t > 0 and s = 0, and otherwise

Nk(t, s) =

{
Nk(t−1, s) + Nk(t, s−1) if 1 ≤ s ≤ v;

1
kt+1

(
kt+1

t

)
if v < s ≤ (k − 1)t.

Proof. Dk(0, s) = ∅ and Dk(t, 0) = {1t} if t > 0. If 1 ≤ s ≤ v, then B1 ∈
Dk(t, s) ⇐⇒ B ∈ Dk(t−1, s) and B0 ∈ Dk(t, s) ⇐⇒ B ∈ Dk(t, s−1). Thus,
Nk(t, s) = Nk(t−1, s)+Nk(t, s−1). If v < s ≤ (k−1)t, then all strings in Dk(t, s)
end in 0 and B ∈ Dk(t, s) ⇐⇒ B0(k−1)t−s ∈ Dk(t). Thus, Nk(t, s) = 1

kt+1

(
kt+1

t

)
by the bijection between Dk(t) and k-ary trees with t internal nodes [3, 10]. ut

Ruskey, Sawada, Williams [6] prove that the following recursive formula gives
the cool-lex order of any bubble language L. The formula is explained below.

C(t, s, γ) =

{
C(t−1, 1, 10s−1γ), . . . , C(t−1, s−j, 10jγ), 1t0sγ if t > 0;

0sγ if t = 0.

(1a)

(1b)

If 1t0sγ ∈ L and γ doesn’t begin with 0, then C(t, s, γ) is the cool-lex order for
the strings in L with suffix γ. The “fixed-suffix” γ is extended in turn in (1)
to 10s−1γ, 10s−2γ, . . . , 10jγ where j is the minimum value such that 10jγ is the
suffix of a string in L. Notice that γ is extended by 10i for decreasing i with one
exception: The single string resulting from i = s (namely, 1t0sγ = 1t−110sγ =
C(t−1, 0, 10sγ)) is last instead of first. In fact, this is the only difference between
cool-lex order and conventional “co-lex order” (see [3] for lexicographic orders).
The entire cool-lex order for some L with 1t0s ∈ L is C(t, s, ε). Now we specialize
cool-lex order to k-ary Dyck prefixes. Let the coolKat order for L = Dk(t, s) be
denoted Dk(t, s, ε) = C(t, s, ε).



Lemma 4. CoolKat order is Dk(t, s, γ) = ε if t = 0, and otherwise

Dk(t, s, γ) =

{
Dk(t−1, 1, 10s−1γ), . . . ,Dk(t−1, s, 1γ), 1t0s if s ≤ v;

Dk(t−1, 1, 10s−1γ), . . . ,Dk(t−1, v, 10s−vγ), 1t0s if v < s ≤ (k−1)t.

Proof. L = Dk(t, s) is a bubble language, so Dk(t, s, γ) follows from (1) by giving
the minimum j such that 10j is the suffix of a string in L. If s ≤ v, then j = 0
by 1t−10s1 ∈ L. If v < s ≤ (k − 1)t, then j = s− v by 1t−10s10s−v ∈ L. ut

Now we efficiently rank and unrank k-ary Dyck prefixes with examples after
Theorems 7 and 8. With respect to an ordered set of strings L = B1, B2, . . . , Bm,
the rank of Bi is rank(Bi,L) = i−1, and unrank(i−1,L) = Bi for 1 ≤ i ≤ m.
For convenience let R(B,L) = rank(B,L)+1. Also let Dk(t, s) denote Dk(t, s, ε).

Theorem 7. If B = α10m ∈ Dk(t, s) for possibly empty α and m ≥ 0, then

R(B,Dk(t, s)) =


Nk(t, s) if B = 1t0s;

R(α,Dk(t−1, s−m))+
s−m−1∑

i=1

Nk(t−1, i) if B 6=1t0s and s≤v;

R(β,Dk(t, v)) otherwise,

where β is the first t+ v bits of B.

Proof. If B = 1t0s, then R(B,Dk(t, s)) = Nk(t, s) since B is last in Dk(t, s) by
Lemma 4.

If B 6= 1t0s and 0 ≤ s ≤ v, then Dk(t−1, i) appears before B in Dk(t, s) for
1 ≤ i ≤ s−m−1 by Lemma 4.

If s > v, then by Lemma 4 each string of Dk(t, v) appears as a prefix of
the corresponding string in Dk(t, s), i.e., Dk(t, s) = Dk(t, v, 0s−v). Therefore,
R(B,Dk(t, s)) = R(β,Dk(t, v)). ut

With respect to an ordered set of strings L, let U(x,L) = unrank(x−1).

Theorem 8.

U(x,Dk(t, s)) =


1t0s if x = Nk(t, s);

U(x−
y∑

i=1

Nk(t−1, i),Dk(t−1, y+1))10s−y−1 if x<Nk(t, s) and s≤v;

U(x,Dk(t, v))0s−v otherwise,

where y is the largest integer such that x >
∑y

i=1 Nk(t−1, i).

Proof. If x = Nk(t, s), then U(x,Dk(t, s)) is the last string in Dk(t, s) and by
Lemma 4, U(x,Dk(t, s)) = 1t0s.

We now consider the case when x < Nk(t, s) and 0 ≤ s ≤ v. Let p be
an integer, such that U(x,Dk(t, s)) is in Dk(t, p, 10s−p). By Lemma 4, x >∑p−1

i=1 Nk(t−1, i). It is now straightforward to observe that y = p−1. Therefore,
U(x,Dk(t, s)) = U(x−

∑y
i=1 Nk(t− 1, i),Dk(t−1, y + 1))10s−y−1.

The remaining case is x < Nk(t, s) and s > v. By Lemma 4, each string of
Dk(t, v) appears as a prefix of the corresponding string in Dk(t, s), i.e., Dk(t, s) =
Dk(t, v, 0s−v). Therefore, U(x,Dk(t, s)) = U(x,Dk(t, v))0s−v. ut



We precompute and store the values of Nk(t, s) in a table so that for any value
of k, t, s, we can obtain Nk(t, s) in O(1) time. As a result we obtain O(t + s)-
time ranking and unranking algorithms for k-ary Dyck words using Theorems 7
and 8, respectively. For example, the following table illustrates the first few
values of Nk(t, s) for k = 5. In the ranking and unranking process we assume
that such tables for small fixed values of k are computed in advance. Thus for
the corresponding precomputed values, we can obtain Nk(t, s) in O(1) time.

N5(t, s) s=0 s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 s=11 s=12

t = 1 1 1 1 1 1 1

t = 2 1 2 3 4 5 5 5 5 5

t = 3 1 3 6 10 15 20 25 30 35 35 35 35 35

We now compute R(100100010,D5(3, 6)) and U(16,D5(3, 6)) as follows:

R(100100010,D5(3, 6)) = R(1001000,D5(2, 5)) +
∑6−1−1

i=1 N5(2, i)

= R(100,D5(1, 2)) +
∑5−3−1

i=1 N5(1, i) +
∑4

i=1N5(2, i)

= N5(1, 2) +
∑1

i=1N5(1, i)+
∑4

i=1N5(2, i)

= 16.

U(16,D5(3, 6)) = U(16−
∑4

i=1N5(2, i),D5(2, 5))106−4−1

= U(2,D5(2, 5))10

= U(2,D5(2, 4))05−(2−1)(5−1)10

= U(2−
∑1

i=1N5(1, i),D5(1, 2))104−1−1010

= U(1,D5(1, 2))100010

= 100100010.

Acknowledgements. We thank Frank Ruskey for helpful conversations.

References

1. Canfield, E., Williamson, S.: A loop-free algorithm for generating the linear exten-
sions of a poset. Order 12, 57–75 (1995)

2. Heubach, S., Li, N.Y., Mansour, T.: A garden of k-Catalan structures (2008),
http://www.scientificcommons.org/43469719

3. Knuth, D.E.: The Art of Computer Programming: Generating all Trees and History
of Combinatorial Generation, vol. 4. Addison-Wesley (February 2006)

4. Pruesse, G., Ruskey, F.: Generating the linear extensions of certain posets by
transpositions. SIAM Journal on Discrete Mathematics 4(3), 413–422 (1991)

5. Ruskey, F.: Generating t-ary trees lexicographically. SIAM Journal on Computing
7(4), 424–439 (1978)



6. Ruskey, F., Sawada, J., Williams, A.: Binary bubble languages and cool-lex order.
(under review) p. 13 pages (2010)

7. Ruskey, F., Williams, A.: Generating balanced parentheses and binary trees by
prefix shifts. In: Proceedings of the 14th Computing: The Australasian Theory
Symposium (CATS 2008), NSW, Australia. vol. 77, pp. 107–115 (January 22–25
2008)

8. Trojanowski, A.E.: Ranking and listing algorithms for k-ary trees. SIAM Journal
on Computing 7(4), 492–509 (1978)

9. Vajnovszki, V., Walsh, T.: A loop-free two-close Gray-code algorithm for listing
k-ary Dyck words. Journal of Discrete Algorithms 4(4), 633–648 (2006)

10. Zaks, S.: Generation and ranking of k-ary trees. Information Processing Letters
14(1), 44–48 (1982)


