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Abstract We consider range queries that search for low-frequency elements (least
frequent elements and α-minorities) in arrays. An α-minority of a query range has
multiplicity no greater than an α fraction of the elements in the range. Our data
structure for the least frequent element range query problem requires O(n) space,
O(n3/2) preprocessing time, and O(

√
n) query time. A reduction from boolean matrix

multiplication to this problem shows the hardness of simultaneous improvements in
both preprocessing time and query time. Our data structure for the α-minority range
query problem requires O(n) space, supports queries in O(1/α) time, and allows α

to be specified at query time.

Keywords Data structures · Range queries ·Minority · Least frequent element

1 Introduction

The frequency of an element x in a multiset stored as an array A[0 : n− 1], denoted
freqA(x), is the number of occurrences (i.e., the multiplicity) of x in A. Given α ∈
[0,1], an element x is an α-minority in A if 1 ≤ freqA(x) ≤ αn, whereas x is an α-
majority if freqA(x)> αn.

A preliminary version of these results appeared at the 13th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT) [6].
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We examine two problems which involve preprocessing a given array A to con-
struct a data structure that can efficiently find low-frequency elements in query ranges.
A least frequent element range query specifies a pair of indices (i, j) and returns a
least frequent element that occurs in A[i : j]. An α-minority range query specifies
some α ∈ [0,1] and a pair of indices (i, j), and returns an element whose frequency
in A[i : j] is at least 1 and at most α| j− i+ 1|. If no such element exists, the query
must not return any element. Whenever we discuss a data structure with a parameter
β instead of α , β is fixed before preprocessing. We do so to differentiate from the
more challenging case in which different parameter values can be specified at query
time.

Several recent results examine the minimum, selection (including median), mode
(i.e., the most frequent element), β -majority, and α-majority range query problems
on arrays (e.g., [1–3,5,8,10–16,18–20]). Most relevant to our low-frequency query
problems are results for their high-frequency analogues: an O(n)-space data structure
that supports range mode queries in O(

√
n/ logn) time [5], an O(n log(1/β + 1))-

space data structure that supports β -majority range queries in O(1/β ) time [11], and
a O(n logn)-space data structure that supports α-majority range queries in O(1/α)
time [13]. Related generalizations include examinations of the β -majority range query
problem in the dynamic setting [12] and the α-majority range query problem in two
dimensions [13]. Greve et al. [15] give a lower bound of Ω(logn/ log(s ·w/n)) on the
range mode query time for any data structure that uses s memory cells of w bits in the
cell probe model; they show the same bound applies to the problem of determining
whether any element in a given query range has frequency exactly k, for any k given
at query time. Consequently, no O(n)-space data structure can support constant-time
(independent of α) α-minority queries.

Our low-frequency query problems have significant differences when compared
to their high-frequency analogues. For example, for any (i, j), the frequencies of the
modes of A[i : j] and A[i : j + 1] differ by either zero or one. The frequency of the
mode of a set increases monotonically with the addition of new elements into the set.
Conversely, the frequencies of the least frequent elements of A[i : j] and A[i : j+ 1]
can differ by any value in {i− j, . . . ,0,1}. Similarly, if x is a mode of A[i : k] and
A[k+1 : j], then x is a mode of A[i : j], whereas the analogous property does not hold
for least frequent elements.

In Section 2 we consider the least frequent element range query problem. We de-
scribe an O(n)-space data structure that identifies a least frequent element in a query
range in O(

√
n) time. This data structure is a variant of a previous data structure of

Chan et al. [5] for the range mode problem (which in turn was an improvement of a
previous data structure of Krizanc et al. [18]). In addition, using an argument similar
to that of Chan et al. [5], we present a reduction from boolean matrix multiplication
to the least frequent element range query problem, showing the hardness of simulta-
neously improving our preprocessing and query time bounds.

Section 3 contains the main result of this paper: an O(n)-space data structure that
supports α-minority range queries in O(1/α) time. Our technique is quite different
from the previous techniques of Durocher et al. [11] for β -majority range queries
and Gagie et al. [13] for α-majority range queries, which have worse space bounds
(O(n log(1/β +1) and O(n logn), respectively).
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In Section 4 we apply a variation of our technique to give an O(n logn)-space
data structure that supports α-majority range queries in O(1/α) time. These space
and time bounds match those achieved by a recent α-majority data structure of Gagie
et al. [13].

Both our data structures in Sections 3 and 4 make interesting use of existing tools
from computational geometry. Notably, we apply Chazelle’s hive graphs [7], which
were designed for a seemingly unrelated two-dimensional searching problem: pre-
process a set of horizontal line segments so that we can report segments intersecting
a given vertical line segment or ray.

2 Finding a Least Frequent Element

2.1 O(
√

n)-Time Data Structure

In this section we present an O(n)-space data structure that identifies a least frequent
element in a query range in O(

√
n) time and requires O(n3/2) preprocessing time.

Specifically, we will prove the following theorem that implies the above result when
s =
√

n:

Theorem 1 Given an array A[0 : n−1] and any fixed s ∈ [1,n], there exists an O(n+
s2)-space data structure that supports least frequent range query on A in O(n/s) time
and requires O(ns) preprocessing time.

Preprocessing Given an arbitrary input array A[0 : n− 1], we begin by building an
array B[0 : n− 1] such that B[x] is the rank of A[x] amongst the distinct elements of
A. We find the ranks of all the elements by sorting A. Thus, all elements in B are
in the range {0, . . . ,∆ − 1}, where ∆ denotes the number of distinct elements in A.
Furthermore, B[x] is a least frequent element in B[i : j] if and only if A[x] is a least
frequent element in A[i : j], for any i, j, and x. Following Krizanc et al. [18] and Chan
et al. [5], for each x ∈ {0, . . . ,∆ −1}, we define an array Qx such that Qx[k] stores the
index of the kth instance of x in B. Since each element in B is represented exactly once
in Q0, . . . ,Q∆−1, the total space required by Q0, . . . ,Q∆−1 is Θ(n). We also define a
rank array B′[0 : n− 1] such that for all b, B′[b] denotes the rank (i.e., the index) of
b in QB[b]. Therefore, QB[b][B′[b]] = b. Using these arrays, Chan et al. observe the
following lemma (which follows by comparing QB[i][B′[i]+q−1] with j):

Lemma 1 (Chan et al. [5, Lemma 3]) Given an array B[0 : n− 1], there exists an
O(n)-space data structure that determines in O(1) time for any 0≤ i≤ j≤ n−1 and
any q whether B[i : j] contains at least q instances of element B[i].

We also require the following lemma:

Lemma 2 Given an array B[0 : n−1], there exists an O(n)-space data structure that
computes in O( j− i+1) time for any 0≤ i≤ j≤ n−1 the frequencies of all elements
in B[i : j]. In particular, a least frequent element in B[i : j] and its frequency can be
computed in O( j− i+1) time.
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Proof No actual preprocessing is necessary other than initializing an array C[0 : ∆ −
1] to zero. The query algorithm is similar to counting sort: compute a frequency table
for B[i : j] stored in C (i.e., for every x, C[x] corresponds to the frequency of x in
B[i : j]), then find a minimum element in C. The time required to find the minimum
is bounded by O( j− i+1) by comparing all frequencies C[x] were x corresponds to
an element in B[i : j] (these are exactly the elements of C that have non-zero values).
This procedure is repeated after identifying the minimum to reset C to zero. ut

We divide the array B into s blocks of size t = dn/se. A query range B[i : j] spans
between 0 and s complete blocks. Let the span of B[i : j] be the sequence of complete
blocks contained within B[i : j]. Let the prefix and suffix of B[i : j] be the elements of
B[i : j] that respectively precede and succeed the span of B[i : j]. We precompute the
following data for each possible span S:

i. an element of minimum frequency and its frequency in S, among all elements in
S, and

ii. an element of minimum frequency and its frequency in S, among all elements (if
any) that appear in S but not in the blocks immediately adjacent to the left and
right of S.

Since s(s+ 1)/2 spans are possible, these data can be stored in a table D of size
Θ(s2). We construct this table in O(ns) time by repeatedly passing through the entire
array, starting at each of the s block boundaries. We will use the following lemma:

Lemma 3 There exists a data structure maintaining an initially empty multiset S of
elements from {0, . . . ,∆ − 1}. It requires O(∆) space and preprocessing time and
supports the following operations:

– Insert(S,e): Inserts element e into multiset S in O(1) time.
– LeastFrequentElement(S,k): Returns the k least frequent elements in S, along

with their frequencies, in O(k) time.

Proof We construct a doubly-linked list L, where each node contains a frequency f
and a doubly-linked sublist of all distinct elements with frequency f . The nodes of L
are sorted in the ascending order of frequency. Nodes for the sublists are taken from
an array N[0 : ∆ −1] of nodes for each distinct element. Each of these sublist nodes
contains a pointer to its containing sublist. It can be verified that an insertion of an
element e causes only local changes around N[e] that run in O(1) time. To find the
k least frequent elements, we simply iterate through L and its sublists until we have
reported k elements or there are no more elements to report. ut

During each pass we incrementally build a multiset using the data structure of
Lemma 3. At every block boundary (i.e., every t elements) we obtain the least fre-
quent element of the multiset in O(1) time. We must also find the least frequent ele-
ment excluding the elements contained in two blocks. This set of excluded elements
has size O(t) and so the element for which we are searching must appear amongst the
O(t) least frequent elements of the multiset, which we can find in O(t) time. The total
cost of a single pass is thus O(n+ st) = O(n) time. Therefore, the s passes altogether
require O(ns) time.
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Fig. 1 Every element in the query range R (shaded) is in P or S, partitioned into sets 1–4.

Query Algorithm Consider arbitrary indices 0≤ i≤ j≤ n−1 and the corresponding
query range R = B[i : j]. If the prefix and suffix are empty, then the query can be
answered in O(1) time by referring to table D. By Lemma 2, if j− i+ 1 < 2t, then
the range query can be answered in O(t) = O(n/s) time. Now consider the case j−
i+1≥ 2t. In this case, the span, denoted S, must be non-empty. We denote the prefix
by P1 and the suffix by P2. Let P′1 and P′2 denote the respective blocks that contain P1
and P2. We now treat R, S, P1, P2, P′1, P′2 as multisets. Let P denote the union of P1 and
P2. Similarly, let P′ denote the union of P′1 and P′2. We partition the elements of R into
four groups (see Figure 1) and find an element of minimum frequency among those
in each group. We then find an element of minimum frequency in R in constant time
by comparing the elements of minimum frequency from each of the four groups. The
groups are as follows:

Case 1: elements of R that are in P but not S,
Case 2: elements of R that are in S and P,
Case 3: elements of R that are in S and P′, but not P, and
Case 4: elements of R that are in S but not P′.

We first show how to determine which elements of P′ fall into Cases 1, 2, and 3.
It suffices to determine for each element of P′ whether or not the element appears in
P and whether or not the element appears in S. We determine which elements appear
in P by simply iterating through P. To determine which elements appear in S, we first
find the closest occurrence of each element to S in a scan through P′. Assume that we
have one such closest element B[x] at index x. Assume without loss of generality that
it appears in P′1. The next occurrence of element B[x] is at index x′ = QB[x][B′[x]+1],
which we compute in O(1) time. Thus, S contains an occurrence of element B[x] if
and only if x′ lies inside S.

The least frequent element in R is given by the least frequent of those found in
each of the four cases defined above:
CASE 1. By Lemma 2, we compute the frequencies of all elements in P1 in O(t) time,
omitting the final step of resetting the frequency table to zero. We then repeat for P2
so that the frequency table contains aggregate data for all of P. Consider all elements
that occur in P but not in S. For each such element e, freqR(e) = freqP(e). So, the
least frequent of these elements in R is the element with minimum non-zero entry in
the frequency table.
CASE 2. Let f denote the precomputed minimum frequency of any element in S,
which is stored in table D. The minimum frequency in R of any element present in
both S and P is at least f and at most f +2t. For each element e that occurs in both S
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and P1, we find the leftmost occurrence of e within P1 in a scan through P1. We repeat
in a symmetric fashion in P2. Then, by Lemma 1, we can check in O(1) time whether
an element e in both S and P has frequency in R less than some threshold. We begin
with a threshold of f +2t +1. If an element e has frequency less than the threshold,
we find its actual frequency by iterating through Qe (forward for an element in P1
and backwards for P2) until reaching an index within R. This frequency becomes our
new threshold. We repeat with all other elements that occur in both S and P. The
last element to change the threshold is the least frequent of these elements. Since the
threshold can decrease to at most f , the total time spent finding exact frequencies is
O(t).
CASE 3. Consider all elements that occur in both S and P′ but not in P. As in Case 2,
their frequencies in R are bounded between f and f +2t. We can thus apply the same
technique as in Case 2. However, for each element, instead of finding the leftmost
occurrence in P1 or the rightmost occurrence in P2 from which to base the queries of
Lemma 1, we find the rightmost occurrence in P′1 or the leftmost occurrence in P′2.
CASE 4. Consider all elements that occur in S but not in P′. For each such element e,
freqR(e) = freqS(e). The least frequent of these elements has been precomputed and
can be found in table D in O(1) time.

Analysis In addition to the arrays A, B, and B′ (each O(n) space), the data struc-
ture stores the tables Q0, . . . ,Q∆−1 (O(n) total space), the table D (O(s2) space),
and a frequency table (O(∆) ⊆ O(n) space). Populating, scanning, and resetting the
frequency table during a query requires O(t) = O(n/s) time. The query algorithm
involves a constant number of scans of the blocks P′1 and P′2. Each element is pro-
cessed in O(1) amortized time, resulting in O(t) total time. Thus, the data structure
has space O(n+ s2) and supports queries in O(t) = O(n/s) time in the worst case.
This completes the proof of Theorem 1.

2.2 Reduction from Boolean Matrix Multiplication

We follow the technique of Chan et al. [5] to multiply two n× n boolean matrices
L and R via least frequent element range queries. In particular, we build an array A
of size n′ ∈ O(n2), and after preprocessing the array in P(n′) time we perform n2

least frequent element queries, each in Q(n′) time, to calculate M = LR. The result is
Theorem 2.

Theorem 2 Given a data structure for least frequent element query in an array of
n elements with P(n) preprocessing time and Q(n) query time, there exists an algo-
rithm for boolean matrix multiplication of two n×n matrices that runs in O(P(n2)+
n2Q(n2)) time.

Thus, a data structure for least frequent element with P(n) ∈ o(n3/2−ε) and with
Q(n) ∈ o(n1/2−ε) would yield an algorithm for boolean matrix multiplication that
runs in o(n3−2ε) time, via purely combinatorial means.

The technique of Chan et al. [5] first reduces boolean matrix multiplication to
set disjointness queries between sets encoding the rows of L and the columns of
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R. Let U = {1, . . . ,n} be our ground set. We are left with the following problem:
given sets L1, . . . ,Ln ⊆U and R1, . . . ,Rn ⊆U , determine whether Li ∩R j = /0 for all
i, j ∈ {1, . . . ,n}.

Our construction of A involves creating a sequence of 2n+1 blocks of n elements
each: blocks L1, . . . ,Ln, one for each set Li, followed by a block containing each
element of U , followed by blocks R1, . . . ,Rn, one for each set R j. The block for set
Li contains all elements of Li followed by all elements of U \Li. The block for set R j
contains all elements of U \R j followed by all elements of R j.

We determine whether or not Li and R j are disjoint via a single least frequent
element query from the leftmost element of U \ Li to the rightmost element of U \
R j. This query range consists of a prefix containing the elements of U \Li, a suffix
containing the elements of U \R j, and n+ j− i > 0 complete blocks, each containing
some permutation of U . If Li and R j are disjoint, then every element of U occurs either
in U \Li or U \R j. Thus, in this case, the least frequent element has frequency greater
than n+ j− i. If Li and R j are not disjoint then some element occurs in neither U \Li
nor U \R j, and thus has the lowest possible frequency of n+ j− i. Thus, Li∩R j = /0 if
and only if the frequency of the least frequent element in the range is exactly n+ j− i.

In total we must preprocess A, which has size O(n2) and perform n2 least fre-
quent element queries in this array, resulting in an algorithm that requires O(P(n2)+
n2Q(n2)) time. This completes the proof of Theorem 2.

3 Range Minority

In this section we describe an O(n)-space data structure that identifies an α-minority
element, if any exists, in a query range in O(1/α) time. We first reduce this α-
minority range query problem to the problem of identifying the leftmost occurrences
of the k leftmost distinct elements on or to the right of a given query index. We call
the latter problem distinct element searching and we require that k can be specified at
query time.

Lemma 4 Given a data structure D for distinct element searching that requires
SD(n) space and QD(n,k) query time to report k elements, there exists a data struc-
ture for the α-minority range query problem that requires O(SD(n)+ n) space and
O(QD(n,1/α)+1/α) query time.

Proof As described in Section 2.1, suppose we store in an array B′, for each index i
of A, a count of the number of times A[i] occurs previously in A, and for each distinct
element x ∈ {0, . . . ,∆ − 1}, a sorted array Qx of all the indices where x occurs in A.
These arrays require O(n) space. By Lemma 1, we can check in O(1) time whether
there are at least q instances of A[i] in the range A[i : j] for any q≥ 0 and j ≥ i.

Observe that any element in a range is either an α-majority or an α-minority for
the range and fewer than 1/α distinct elements can be α-majorities. Thus, if we can
find 1/α distinct elements in a range, then at least one of them must be an α-minority.

Given a query range A[i : j], we use data structure D to find the leftmost occur-
rences of the 1/α leftmost distinct elements on or to the right of index i in Q(n,1/α)
time. Some of these leftmost occurrences may lie to the right of index j; we can
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ignore these elements as no occurrence of these elements lies in A[i : j]. There are
O(1/α) remaining leftmost occurrences of leftmost distinct elements. Consider such
an occurrence at index `. Since this is the first occurrence of A[`] on or after index i,
the frequency of A[`] in A[` : j] is equal to the frequency of A[`] in A[i : j]. We can
then check whether or not A[`] is an α-minority in A[i : j] in O(1) time by setting
q = α( j− i+ 1) + 1 in Lemma 1. Repeating for all leftmost occurrences requires
O(1/α) time.

If we find an α-minority we are done. If we do not find an α-minority, then
there must not have been 1/α distinct elements to check. In that case, we checked all
distinct elements in A[i : j] so there cannot be an α-minority. ut

We can now focus on distinct element searching. If all queries use a common
fixed k (as is the case if our goal is to solve just the range β -minority problem), there
is a simple data structure that requires O(n) space and O(k) query time: for each i that
is a multiple of k, store the k leftmost distinct elements to the right of index i; then
for an arbitrary index i, we can answer a query by examining the k elements stored
at j′ = di/kek in addition to the O(k) elements in A[i : j′]. However, it is not obvious
how to extend this solution to the general problem for arbitrary k, without increasing
the space bound.

In Lemma 5, we will map this problem to a 2-dimensional problem in computa-
tional geometry that can be solved by Chazelle’s hive graph data structure [7]. Given n
horizontal line segments, the hive graph allows efficient intersection searching along
vertical rays. Finding the first horizontal line intersecting a vertical ray requires an or-
thogonal planar point location query; however, subsequent intersections can be found
in sorted order in constant time each. The hive graph requires O(n) space.

Lemma 5 There exists a data structure for distinct element searching that requires
O(n) space and O(k) query time.

Proof Let Li be the set of indices in A that are associated with the leftmost occur-
rence of an element on or after index i. We can find the leftmost occurrences of the k
leftmost distinct elements on or after index i by iterating through Li in sorted order.
However, ∑

n−1
i=0 |Li| can be Ω(n2) so we cannot afford to explicitly store all these sets.

Consider an index `. Clearly, ` ∈ L` and ` /∈ Li for i > `. Consider the first oc-
currence of A[`] to the left of index ` at index `′, if it exists. Then ` /∈ Li for i ≤ `′.
However, for `′ < i ≤ `, ` ∈ Li. We associate ` with a horizontal segment with x-
interval [`′+ 1, `] and with y-value `. If no such index `′ exists, then we associate
` with a horizontal segment with x-interval [0, `] and with y-value `. We thus have
n horizontal segments. We build Chazelle’s hive graph data structure [7] on these
segments. Figure 2 illustrates the construction.

By the construction of the x-intervals of our segments, a segment intersects the
vertical line x = i if and only if it is associated with an index ` such that ` ∈ Li.
Since the y-value of a segment associated with ` is `, the segments are sorted along
the vertical line in the order of their associated indices. Thus, to find the k leftmost
indices in Li, we query the hive graph for the horizontal segments with a vertical ray
from (i,0) to (i,∞). The cost of Chazelle’s query algorithm is O(tPL(n)+ k) time,
where tPL(n) denotes the cost of a point location query in an orthogonal subdivision
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Fig. 2 Finding the first distinct elements after a given index by shooting a ray through a collection of
segments.

of size O(n). The overall query time would then be O(log logn+k) if we use the best
known linear-space data structure for orthogonal point location of Chan [4].

To reduce the query time to O(k), our key idea is to observe that there are only n
distinct vertical rays with which we query the hive graph, and hence only n distinct
points with which we do point location. Thus, we can perform the orthogonal point
location component of each query during preprocessing and store each resulting node
in the hive graph in a total of O(n) space. In fact, since all the query rays originate
from points on the x-axis, the batched point locations are one-dimensional and can be
handled easily in our application. ut

Corollary 1 There exists a data structure for the α-minority range query problem
that requires O(n) space and O(1/α) query time.

Proof By Lemmas 4 and 5. ut

Another approach to solve the distinct element searching problem involves rep-
resenting the lists Li from the proof of Lemma 5 as different views over time of a
persistent linked list. Since linked lists have constant in-degree they can be made
persistent by the general persistence technique of Driscoll et al. [9] with only O(1)
overhead per operation. Since there are O(1) differences between lists Li and Li+1
the additional space cost is O(n). In order to access the head of any list in constant
time, we create an array of length n which maps each possible query to the head of
the appropriate list.

4 Range Majority

We now consider the α-majority range query problem. Recently, Gagie et al. [13]
describe an O(n logn)-space data structure that supports α-majority in O(1/α) time,
where α is specified at query time. In this section we describe a different α-majority
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range query data structure whose asymptotic space and time costs match those of
Gagie et al. Previous work by Durocher et al. [11] considers the β -majority range
query problem, where β is specified during preprocessing; their data structure re-
quires O(n log(1/β +1)) space and supports queries in O(1/β ) time.

We begin by noting that a β -majority data structure can be adapted to support
α-majority at the cost of increased space. Consider logn instances of the β -majority
data structure of Durocher et al. [11], each with respective values β = 2−i, for i =
1, . . . , logn, for a total of O(n log2 n) space. For any query with parameter α , there is a
data structure for which 1/α ≤ 1/β but 1/β ∈ O(1/α). Querying this data structure
results in a superset of the α-majorities of size O(1/α). The data structure, having
counted the frequencies of each of these elements, can then filter out the α-minorities
in O(1/α) time. Our effort now turns to solving the problem in O(n logn) space and
O(1/α) query time using an entirely different approach.

Next we consider a related problem: reporting the top k most frequent elements
in a query range where k is specified at query time. We call this problem the top-k
range query problem while warning the reader not to confuse it with reporting the
top k highest valued elements. We use a variation on the technique of Lemma 5 in
order to support one-sided queries in O(n) space and O(k) query time. We note that
the resulting data structure is a persistent version of Lemma 3 in which all updates
are provided offline.

Lemma 6 There exists a data structure for the one-sided top-k range query problem
that requires O(n) space and O(k) query time.

Proof Assume our one-sided queries take the form A[0 : i] for 0≤ i≤ n−1. Consider
the frequencies of the elements as we enlarge the one-sided range from left to right.
Say an element has frequency f for ranges A[0 : i] through A[0 : j] and this range of
ranges is maximal. We construct a horizontal segment with x-interval [i, j] and with
y-value f . We repeat for all elements and for all f > 0 and arbitrarily perturb the
y-values for any segments that overlap.

In total, we construct ∆ ≤ n segments with y-value 0: one segment corresponding
to each distinct element having frequency 0 in a vacuous subarray. Each element
of A causes a single change in frequency of a single element, which results in one
additional segment. So, in total we construct O(n) segments, as shown in Figure 3.
We build Chazelle’s hive graph data structure [7] on these segments.

For every distinct element e in A[0 : i] there is a horizontal segment with x-interval
[`,r] intersecting the vertical line x = i with A[`] = e and freqA[0:i](e) = f . These
horizontal segments are sorted along the vertical line in the order of frequency. To
find the k most frequent elements in A[0 : i], we query the hive graph for the first k
horizontal segments intersecting the vertical ray from (i,n) to (i,−∞). As in Lemma
5, there are only n distinct queries to the hive graph, so we can perform the orthogonal
point location component of each query during preprocessing at a cost of O(n) space
to store the resulting nodes of the hive graph. For each segment that the hive graph
reports, we report A[`] where ` is the left x-coordinate of the segment. ut

Observe also that the index of the leftmost endpoint of the horizontal segment
associated with a reported element is the index of the rightmost occurrence of the
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Fig. 3 Solving the one-sided top-k range query problem by querying a set of segments.

element in A[0 : i]. Top-k queries are not decomposable in the sense that, given a
partition of a range R into two subranges R1 and R2, there is no relationship between
the top k most frequent elements in R1, R2, and R. As observed by Karpinski and
Nekrich [17], given the same partition of R, an α-majority in R must either be an
α-majority in R1 or R2. Since α-majority queries are decomposable in this way, and
since all α-majorities are amongst the top 1/α most frequent elements, we can now
apply the range tree to support two-sided α-majority queries.

Theorem 3 There exists a data structure for the α-majority range query problem
that requires O(n logn) space and O(1/α) query time.

Proof We build the data structure of Lemma 6 on array A. We divide A into two halves
and recurse in both halves to create a range tree. The total space consumption of all
top-k data structures is thus O(n logn). We also include a data structure for lowest
common ancestor queries in the range tree. We use this data structure to decompose
a two-sided query into one-sided queries in two nodes of the range tree. There are
succinct data structures for LCA that require only O(n) bits of space and O(1) time
(e.g., [21]). We also build the arrays required to support the queries of Lemma 1.

We decompose a two-sided query into one-sided queries in two nodes of the range
tree in O(1) time. For each one-sided query we find the 1/α most frequent elements
using the top-k data structures in O(1/α) time. By the decomposability of α-majority
queries as observed by Karpinski and Nekrich [17], our O(1/α) most frequent ele-
ments in both one-sided ranges are a superset of the α-majorities of the original
two-sided query. Since the top-k data structures report for each element occurrences
that are closest to one of the boundaries of the two-sided range, we can apply Lemma
1 to check which of the O(1/α) most frequent elements are in fact α-majorities in
constant time each. ut
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5 Discussion

Using binary rank and select data structures and bit packing, Chan et al. [5] reduce
the range mode query time from O(

√
n) to O(

√
n/ logn) without increasing the data

structure’s space beyond O(n). Unlike the frequency of the mode, the frequency of
the least frequent element does not vary monotonically over a sequence of elements.
Furthermore, unlike the mode, when the least frequent element changes, the new
element of minimum frequency is not necessarily located in the block in which the
change occurs. Consequently, the techniques of Chan et al. do not seem immediately
applicable to the least frequent range query problem; it remains open whether o(

√
n)

query time is possible in O(n) space.
We have described a data structure for the range least frequent element problem

achieving O(
√

n) query time with O(n3/2) preprocessing time, and given a lower
bound by reduction from boolean matrix multiplication under which least frequent
element with o(n1/2−ε) query time and o(n3/2−ε) preprocessing time would imply
matrix multiplication in o(n3−2ε) time by purely combinatorial means. We have also
given a data structure achieving O(1/α) query time in O(n) space on the range α-
minority problem; and one achieving O(1/α) query time in O(n logn) space on the
range α-majority problem, matching the bounds achieved by that of Gagie et al. [13].
The greater space required by current α-majority data structures compared to that
required by current α-minority data structures suggests that further improvement may
be possible; whether α-majority range queries can be supported in o(n logn) space
and O(1/α) query time remains open.
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