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Abstract We present O(n)-space data structures to support various range frequency
queries on a given array A[0 : n− 1] or tree T with n nodes. Given a query con-
sisting of an arbitrary pair of pre-order rank indices (i, j), our data structures return
a least frequent element, mode, α-minority, or top-k colors (values) of the multiset
of elements in the unique path with endpoints at indices i and j in A or T . We de-
scribe a data structure that supports range least frequent element queries on arrays in
O(
√

n/w) time, improving the Θ(
√

n) worst-case time required by the data structure
of Chan et al. (SWAT 2012), where w∈Ω(logn) is the word size in bits. We describe
a data structure that supports path mode queries on trees in O(log logn

√
n/w) time,

improving the Θ(
√

n logn) worst-case time required by the data structure of Krizanc
et al. (ISAAC 2003). We describe the first data structures to support path least fre-
quent element queries, path α-minority queries, and path top-k color queries on trees
in O(log logn

√
n/w), O(α−1 log logn), and O(k) time, respectively, where α ∈ [0,1]

and k ∈ {1, . . . ,n} are specified at query time.
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1 Introduction

1.1 Definitions

Given an array A[0 : n− 1] of integer values drawn from the alphabet {0, . . . ,σ −
1}, the frequency, denoted freqA[i: j](x), of an element x in the multiset stored in the
subarray A[i : j] is the number of occurrences (i.e., the multiplicity) of x in A[i : j].
Elements a and b in A[i : j] are respectively a mode and a least frequent element of A[i :
j] if for all c ∈ A[i : j], freqA[i: j](a)≥ freqA[i: j](c)≥ freqA[i: j](b). Given α ∈ [0,1], an
α-minority of A[i : j] is an element d ∈A[i : j] such that 1≤ freqA[i: j](d)≤α| j− i+1|.
Conversely, d is an α-majority of A[i : j] if freqA[i: j](d)>α| j−i+1|. The top-k colors
in A[i : j] are the k distinct highest values that occur in the multiset A[i : j], reported
in descending order. Range top-k color queries generalize range minimum/maximum
queries; when k = 1, a range top-1 query is a range maximum query. Modes, least
frequent elements, α-majorities, α-minorities, and top-k colors of a multiset are not
necessarily unique.

We study the problem of indexing a given array A[0 : n− 1] to construct data
structures that can be stored using O(n) words of space and support efficient range
frequency queries. Each query consists of a pair of input indices (i, j) (along with
a value α ∈ [0,1] for α-minority queries or k ∈ {1, . . . ,n} for top-k color queries),
for which a mode, least frequent element, α-minority, or top-k colors of A[i : j] must
be returned. Any two nodes in a tree define a unique path between them, just as two
elements of an array define a unique range. When the entire tree is a path, tree paths
reduce to array ranges. Thus, range queries generalize to trees, where they are called
path queries: given a tree T on n nodes and a pair of indices (i, j), a query is applied to
the multiset of elements stored at nodes along the unique path in T whose endpoints
are the two nodes with pre-order traversal ranks i and j.

We assume the Word RAM model of computation using words of size w∈Ω(logn+
logσ) bits, where n denotes the number of elements stored in the input array/tree and
σ denotes an upper bound on the magnitude of integers stored in the array/tree. Un-
less explicitly specified otherwise, space requirements are expressed in multiples of
words. We use the notation log(k) to represent logarithm iterated k times; that is,
log(1) n = logn and log(k) n = log log(k−1) n for any integer k > 1. To avoid ambiguity,
we use the notation (logn)k instead of logk n to represent the kth power of logn.

1.2 Related Work

Krizanc et al. [34] presented O(n)-space data structures that support range mode
queries in O(

√
n log logn) time on arrays and O(

√
n logn) time on trees. Chan et

al. [8,9] achieved o(
√

n) query time with an O(n)-space data structure that supports
queries in O(

√
n/w)⊆O(

√
n/ logn) time on arrays (also see [17]). In this paper we

present a new O(n)-space data structure that improves the path mode query time on
trees to O(

√
n/w log logn).

Chan et al. [10] presented an O(n)-space data structure that supports range least
frequent element queries on arrays in O(

√
n) time. Range mode and range least fre-
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quent element queries on arrays appear to require significantly longer times than
either range minimum or range selection queries; reductions from boolean matrix
multiplication show that query times significantly lower than

√
n are unlikely for ei-

ther problem with O(n)-space data structures [8,10]. Whereas an O(n)-space data
structure that supports range mode queries on arrays in o(

√
n) time is known [8],

the space reduction techniques applied to achieve the time improvement are not di-
rectly applicable to the setting of least frequent elements. Chan et al. [10] ask whether
o(
√

n) query time is possible in an O(n)-space data structure, observing that “unlike
the frequency of the mode, the frequency of the least frequent element does not vary
monotonically over a sequence of elements. Furthermore, unlike the mode, when
the least frequent element changes [in a sequence], the new element of minimum
frequency is not necessarily located in the block in which the change occurs” [10,
p. 11]. By applying different techniques, in this paper we present the first O(n)-space
data structure that supports range least frequent element queries on arrays in o(

√
n)

time; specifically, we achieve O(
√

n/w) ⊆ O(
√

n/ logn) query time, matching the
time achieved by Chan et al. [8] for range mode queries and answering the question
posed by Chan et al. [10]. We also generalize our techniques to the setting of trees to
support path least frequent element queries in O(log logn

√
n/w) time.

Karpinski and Nekrich [32] gave an O(n logσ)-bit data structure that supports
range top-k queries on arrays in O(k) time, which is asymptotically optimal. Other
related problems include reporting all distinct colors, counting the number of distinct
colors, and finding a most frequent, least frequent, majority or minority color in the
query range. Efficient data structures offering various space-time trade-offs for such
range query problems are known [4,8,16,23–26,33]. Such problems arise often in
information retrieval and computational geometry. In this paper we present the first
O(n)-space data structure for path top-k color queries on trees, supporting queries in
O(k) time, which is asymptotically optimal.

The α-majority range query problem on arrays was introduced by Karpinski and
Nekrich [32] and Durocher et al. [15,16]; the latter presented an O(n log(α−1))-
space data structure that supports queries in O(α−1) time for any α ∈ (0,1) fixed
during preprocessing. When α is specified at query time, Gagie et al. [23] and Chan
et al. [10] presented O(n logn)-space data structures that support queries in O(α−1)
time, and Belazzougui et al. [2] presented an O(n)-space data structure that supports
queries in O(α−1 log log(α−1)) time. For range α-minority queries, Chan et al. [10]
described an O(n)-space data structure that supports queries in O(α−1) time, where α

is specified at query time. In this paper we present the first O(n)-space data structure
for path α-minority queries on trees, achieving O(α−1 log logn) query time.

A variety of other range query problems have been examined on arrays and trees,
including range minimum/extrema, for which optimal data structures exist requir-
ing O(n) space and O(1) query time (e.g., on arrays [5,12–14,21] and on trees
[13]) and range selection/median, for which optimal data structures exist requiring
O(n) space and O(logn/ log logn) query time (e.g., on arrays [7,25,26,31,34] and
on trees [28,29,37]). Jørgensen and Larsen [31] proved a matching lower bound of
Ω(logn/ log logn) on the worst-case time required for range median query on arrays
by any O(n)-space data structure. See Skala [40] for a detailed survey of array range
queries.
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range/path query input previous best new (this paper)

mode array O(
√

n/w) [8,9]
tree O(

√
n logn) [33,34] O(log logn

√
n/w)

least frequent element array O(
√

n) [10] O(
√

n/w)
tree no previous result O(log logn

√
n/w)

α-minority array O(α−1) [10]
tree no previous result O(α−1 log logn)

top-k array O(k) [32]
tree no previous result O(k)

Table 1 Worst-case query times of previous best and new O(n)-space data structures

1.3 Overview of Contributions

In this paper we present new O(n)-space data structures for range least frequent el-
ement query on arrays and path mode query on trees that achieve faster query times
than the previous best data structures, and the first O(n)-space data structures for least
frequent, α-minority, and top-k color path queries on trees. After revisiting some nec-
essary previous work in Section 2, in Section 3 we describe the first O(n)-space data
structure that achieves o(

√
n) time for range least frequent element queries on ar-

rays, supporting queries in O(
√

n/w) time. We then extend this data structure to the
setting of trees in Section 5, where we achieve O(log logn

√
n/w) query time. In Sec-

tion 4 we present an O(n)-space data structure that supports path mode queries on
trees in O(log logn

√
n/w) time. To do so, we construct O(n)-space data structures

that support colored nearest ancestor path queries on trees in O(log logn) time (find
the nearest ancestor with value k of node i, where i and k are given at query time);
path frequency queries on trees in O(log logn) time (count the number of instances
of k on the path between nodes i and j, where i, j, and k are given at query time); and
k-nearest distinct ancestor path queries on trees in O(k) time (return k ancestors of
node i such that each ancestor stores a distinct value and the distance to the furthest
ancestor from i is minimized, where i and k are given at query time). In Section 6 we
present an O(n)-space data structure that supports path α-minority queries on trees
in O(α−1 log logn) time, where α is given at query time. Finally, in Section 7 we
present an O(n)-space data structure that supports top-k color path queries on trees
in O(k) time, where k is given at query time. Our contributions are summarized in
Table 1.

2 A Framework for Range Least Frequent Element Queries on Arrays

Our data structure for range least frequent element queries on an arbitrary given input
array A[0 : n− 1] uses a technique introduced by Chan et al. [10]. Upon applying a
rank space reduction to A, all elements in A are in the range {0, . . . ,∆ −1}, where ∆

denotes the number of distinct elements in the original array A. Before returning the
result of a range query computation, the corresponding element in the rank-reduced
array is mapped to its original value in constant time by a table lookup [8,10]. Chan
et al. [10] prove the following result.
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Theorem 1 (Chan et al. [10]) Given any array A[0 : n− 1] and any fixed s ∈ [1,n],
there exists an O(n+s2)-word space data structure that supports range least frequent
element query on A in O(n/s) time and requires O(n · s) preprocessing time.

The data structure of Chan et al. includes index data that occupy a linear number
of words, and two tables Dt and Et whose sizes (O(s2) words each) depend on the
parameter s. Let t be an integer blocking factor. Partition A[0 : n− 1] into s = dn/te
blocks of size t (except possibly the last block which has size 1+ [(n− 1) mod t]).
For every pair (i, j), where 0≤ i < j ≤ s−1, the contents of the tables Dt and Et are
as follows:

– Dt(i, j) stores a least frequent element in A[i · t : j · t−1], and
– Et(i, j) stores an element which is least frequent in the multiset of elements that

are in A[i · t : j · t−1] but not in A[i · t : (i+1)t−1]∪A[( j−1)t : j · t−1].

In the data structure of Chan et al. [10], the tables Dt and Et are the only compo-
nents whose space bound depends on s. The cost of storing and accessing the tables
can be computed separately from the costs incurred by the rest of the data structure.
The proof for Theorem 1 given by Chan et al. implies the following result.

Lemma 1 (Chan et al. [10]) If the tables Dt and Et can be stored using S(t) bits of
space to support lookup queries in T (t) time, then, for any {i, j} ⊆ {0, . . . ,n− 1},
a least frequent element in A[i : j] can be computed in O(T (t) + t) time using an
O(S(t)+n logn)-bit data structure.

When t ∈Θ(
√

n), the tables Dt and Et can be stored explicitly in linear space.
In that case, S(t) ∈ O((n/

√
n)2 logn) = O(n logn) bits and T (t) ∈ O(1), resulting in

an O(n logn)-bit (O(n)-word) space data structure that supports O(
√

n)-time queries
[10]. In the present work, we describe how to encode the tables using fewer bits per
entry, allowing them to contain more entries, and therefore allowing a smaller value
for t and lower query time.

We also refer to the following lemma by Chan et al. [8]:

Lemma 2 (Chan et al. [8]) Given an array A[0 : n− 1], there exists an O(n)-space
data structure that returns the index of the qth instance of A[i] in A[i : n−1] in O(1)
time for any 0≤ i≤ n−1 and any q.

3 Range Least Frequent Element Queries on Arrays

In this section, we improve on the data structure of Chan et al. [10] for array range
least frequent element queries to return results in O(

√
n/w) time. We first describe

how to calculate the table entries for a smaller block size using lookups on a similar
pair of tables for a larger block size and some index data that fits in linear space.
Then, starting from the t =

√
n tables which we can store explicitly, we apply that

block-shrinking operation log∗ n times, ending with blocks of size O(
√

n/w), which
gives the desired lookup time.
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Fig. 1 Illustration in support of Lemma 3

3.1 Data Structure Overview

At each level of the construction, we partition the array into three levels of blocks
whose sizes are t (big blocks), t ′ (small blocks), and t ′′ (micro blocks), where 1≤ t ′′ ≤
t ′ ≤ t ≤ n. We will compute table entries for the small blocks, Dt ′ and Et ′ , assuming
access to table entries for the big blocks, Dt and Et . The micro block size t ′′ is a
parameter of the construction but does not directly determine which queries the data
structure can answer. Lemma 3 follows from Lemmas 4 and 5 (see Section 3.2). The
bounds in Lemma 3 express only the cost of computing small block table entries
Dt ′ and Et ′ , not for answering a range least frequent element query at the level of
individual elements.

Lemma 3 Given block sizes 1≤ t ′′ ≤ t ′ ≤ t ≤ n, if the tables Dt and Et can be stored
using S(t) bits of space to support lookup queries in T (t) time, then the tables Dt ′

and Et ′ can be stored using S(t ′) bits of space to support lookup queries in T (t ′) time,
where

S(t ′) = S(t)+O(n+(n/t ′)2 log(t/t ′′)) , and (1)
T (t ′) = T (t)+O(t ′′) . (2)

Following Chan et al. [8,10], we refer to a consecutive sequence of blocks in A as
a span. When it does not coincide with the start (respectively, end) of a query range,
we refer to the first (respectively, last) block that intersects the query range as the
prefix (respectively, suffix). For any span SQ among the Θ((n/t ′)2) possible spans of
small blocks, we define Sbig, Ssmall, SL, and SR, as follows (see Figure 1):

– Sbig: the unique minimal span of big blocks containing SQ,
– SL (prefix): the leftmost big block in Sbig,
– SR (suffix): the rightmost big block in Sbig, and
– Ssmall (span): the span of big blocks obtained by removing SL and SR from Sbig.
– SL is divided into S1 (outside SQ) and S2 (inside SQ).
– SR is divided into S3 (inside SQ) and S4 (outside SQ).
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Suppose Sbig = A[i : j]; hence Ssmall = A[i + t : j− t] and SQ = A[iQ : jQ]. In
Sections 3.2 and 3.3 we show how to encode the entries in Dt ′(·, ·) and Et ′(·, ·) in
O(log(t/t ′′)) bits. In brief, we store an approximate index and approximate frequency
for each entry and decode the exact values at query time.

3.2 Encoding and Decoding of Dt ′(·, ·)

We denote the least frequent element in SQ by π and its frequency in SQ by fπ .
We consider three cases based on the indices at which π occurs in Sbig as follows.
The case that applies to any particular span can be indicated by two bits, hence
O(2(n/t ′)2) bits in total. We use the same notation for representing a span as for
the set of distinct elements within it.

Case 1: π is present in SL ∪ SR but not in Ssmall . As explicit storage of π is costly,
we store the approximate index at which π occurs in SL ∪ SR, and the approximate
value of fπ , in O(log(t/t ′′)) bits. Later we show how to decode π and fπ in O(t ′′)
time using the stored values.

The approximate value of fπ can be encoded using the following observations.
We have |SL ∪SR| ≤ 2t. Therefore fπ ∈ [1,2t]. Explicitly storing fπ requires log(2t)
bits. However, an approximate value of fπ (with an additive error at most of t ′′) can be
encoded in fewer bits. Observe that t ′′b fπ/t ′′c ≤ fπ < t ′′b fπ/t ′′c+ t ′′. Therefore the
value b fπ/t ′′c ∈ [0,2t/t ′′) can be stored using O(log(t/t ′′)) bits and accessed in O(1)
time. The approximate location of π is a reference to a micro block within SL ∪ SR
(among 2t/t ′′ micro blocks) which contains π and whose index can be encoded in
O(log(t/t ′′)) bits. There can be many such micro blocks, but we choose one carefully
from among the following possibilities:

– the rightmost micro block in S1 which contains π ,
– the leftmost micro block in S2 which contains π ,
– the rightmost micro block in S3 which contains π , and
– the leftmost micro block in S4 which contains π .

Next we show how to decode the exact values of π and fπ . Consider the case
when the micro block (say Bm) containing π is in S1. First initialize π ′ to any arbi-
trary element and f ′π to τ (an approximate value of fπ ), such that τ − t ′′ ≤ fπ < τ .
Upon terminating the following algorithm, we obtain the exact values of π and fπ as
π ′ and f ′π respectively. Scan the elements in Bm from left to right and let k denote the
current index.

While k is an index in Bm, do:

1. If the second occurrence of A[k] in A[k : n− 1] is in S1, then go to Step 1 with
k← k+1.

2. If the ( f ′π +1)st occurrence of A[k] in A[k : n−1] is in SQ, then go to Step 1 with
k← k+1.

3. Set f ′π ← f ′π −1, π ′← A[k], and go Step 2.
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This algorithm finds the rightmost occurrence of π within Bm, i.e., the rightmost
occurrence of π before the index iQ. Correctness can be proved via induction as fol-
lows: after initializing π ′ and f ′π , at each step we check whether the element A[k] is
a least frequent element in SQ among all the elements in Bm which we have seen so
far. Step 1 discards the position k if the rightmost occurrence of A[k] in Bm is not at
k, because we will see the same element eventually. Note that if the rightmost oc-
currence of A[k] in Bm is at the position k, then the frequency of the element A[k] in
SQ = A[iQ : jQ] is exactly one less than its frequency in A[k : jQ]. Using this property,
we can check in O(1) time whether the frequency of A[k] in SQ is less than f ′π (Step 2).
If so, we update the current best answer π ′ by A[k] and compute the exact frequency
of A[k] in SQ in Step 3. We scan all elements in Bm and on completion the value stored
at π ′ represents the least frequent element in SQ among all elements present in Bm.
Since π is present in Bm, π is the same as π ′, and fπ = f ′π . By Lemma 2, each step
takes constant time. Since τ− fπ ≤ t ′′, the total time is proportional to |Bm|= t ′′, i.e.,
O(t ′′) time.

The remaining three cases, in which Bm is within S2, S3, and S4, respectively, can
be analyzed similarly.

Case 2: π is present in SL ∪ SR and in Ssmall . The approximate position of π is en-
coded as in Case 1. In this case, however, fπ can be much larger than 2t. Observe that
α ≤ fπ ≤ α + 2t, where α is the frequency of the least frequent element in Ssmall ,
which is already stored and can be retrieved in T (t) time. Therefore, an approximate
value fπ −α (with an additive error of at most t ′′) can be stored using O(log(t/t ′′))
bits and decoded in T (t)+O(1) time. The approximate location of π among the four
possibilities as described in Case 1 is also maintained. By the algorithm above we
can decode π and fπ in T (t)+O(t ′′) time.

Case 3: π is present in Ssmall but in neither SL nor SR. Since π is the least frequent
element in SQ, and does not appear in SL∪SR, it is the least frequent element in Ssmall
that does not appear in SL ∪ SR. This implies π is the least frequent element in Sbig
that does not appear in SL∪SR (which is precomputed as stored). Therefore the time
required for decoding the values of π and fπ is T (t)+O(1). That completes the proof
of the following lemma.

Lemma 4 The table Dt ′(·, ·) can be stored using O((n/t ′)2 log(t/t ′′)) bits in addition
to S(t) and any value within it can be decoded in T (t)+O(t ′′) time.

3.3 Encoding and Decoding of Et ′(·, ·)

Let φ denote the least frequent element in SQ that does not appear in the leftmost and
rightmost small blocks in SQ and let fφ denote its frequency in SQ. As before, we
consider three cases for the indices at which φ occurs in Sbig. The case that applies to
any particular span can be indicated by 2 bits, hence O((n/t ′)2× 2) bits in total for
any single given value of t ′.

For each small block (of size t ′) we maintain a hash table that can answer whether
a given element is present within the small block in O(1) time. We can maintain each
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hash table in O(t ′) bits for an overall space requirement of O(n) bits for any single
given value of t ′, using perfect hash techniques such as those of Schmidt and Siegel
[39], Hagerup and Tholey [27], or Belazzougui et al. [1].

Case 1: φ is present in SL ∪ SR but not in Ssmall . In this case, fφ ∈ [1,2t], and its
approximate value and approximate position (i.e., the relative position of a small
block) can be encoded in O(log(t/t ′′)) bits. Encoding is the same as the encoding of
π in Case 1 of Dt ′(·, ·). For decoding we modify the algorithm for Dt ′(·, ·) to use the
hash table for checking that A[k] is not present in the first and last small blocks of SQ.
The decoding time can be bounded by O(t ′′).

Case 2: φ is present in SL∪SR and in Ssmall . The approximate position of φ is stored
as in Case 1. The encoding of fφ is more challenging. Let α denote the frequency of
the least frequent element in Ssmall , which is already stored and can be retrieved in
T (t) time. If fφ > α +2t, the element φ cannot be the least frequent element of any
span S, where S contains Ssmall and is within Sbig. In other words, φ is useful if and
only if fφ ≤ α +2t. Moreover, fφ ≥ α . Therefore we store the approximate value of
fφ if and only if it is useful information, and in such cases we can do it using only
O(log(t/t ′′)) bits. Using similar arguments to those used before, the decoding time
can be bounded by T (t)+O(t ′′).

Case 3: φ is present in Ssmall but in neither SL nor SR. Since φ is the least frequent
element in SQ that does not appear in the leftmost and rightmost small blocks in SQ,
and does not appear in SL ∪ SR, it is the least frequent element in SQ that does not
appear in SL ∪ SR. Therefore, φ it is the least frequent element in Ssmall (as well as
Sbig) that does not appear in SL∪SR (which is precomputed as stored). Hence φ and
fφ can be retrieved in T (t)+O(1) time. That completes the proof of the following
lemma.

Lemma 5 The table Et ′(·, ·) can be encoded in O(n+(n/t ′)2 log(t/t ′′)) bits in addi-
tion to S(t) and any value within it can be decoded in T (t)+O(t ′′) time.

By applying Lemma 3 with carefully chosen block sizes, followed by Lemma 1
for the final query on a range of individual elements, we show the following result.

Theorem 2 Given any array A[0 : n−1], there exists an O(n)-word space data struc-
ture that supports range least frequent element queries on A in O(

√
n/w) time, where

w = Ω(logn) is the word size.

Proof Let th = log(h) n
√

n/w and t ′′h =
√

n/w/ log(h+1) n, where h ≥ 1. Then by ap-
plying Lemma 3 with t = th, t ′ = th+1, and t ′′ = t ′′h , we obtain the following:

S(th+1) = S(th)+O
(
n+(n/th+1)

2 log(th/t ′′h )
)
∈ S(th)+O(nw/ log(h+1)n)

T (th+1) = T (th)+O(t ′′h ) ∈T (th)+O(
√

n/w/ log(h+1)n) .
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By storing Dt1 and Et1 explicitly, we have S(t1) ∈O(n) bits and T (t1) ∈O(1). Apply-
ing Lemma 1 to log∗ n levels of the recursion gives tlog∗ n =

√
n/w and

S(
√

n/w) ∈ O

(
nw

log∗ n

∑
h=1

1

log(h) n

)
= O(nw)

T (
√

n/w) ∈ O

(√
n/w

log∗ n

∑
h=1

1

log(h) n

)
= O(

√
n/w) . ut

4 Path Mode Queries on Trees

In this section, we generalize the range frequency query data structures to apply to
trees (path mode query).

4.1 Preliminaries

The time bound of Chan et al. [10] for range mode queries on arrays depends on the
ability to answer a query of the form “is the frequency of element A[i] in the range
A[i : j] greater than k?” in constant time. There is no obvious way to generalize the
data structure for such queries on arrays to apply to trees. Instead, we use an exact
calculation of path frequency, not just whether it is greater than k.

Consider two nodes i and j in a tree, with common ancestor a, as shown in Fig-
ure 2A. The frequency of an element x in the path from i to j is the frequency from
i to a plus the frequency from j to a. If at every node we store the frequency of that
node’s value on the path to the root, then we can compute the frequency in the path
from any i to any j by the following procedure:

– find the nearest common ancestor a of i and j;
– find nearest ancestors of i, j, and a that have value x;
– find the frequencies of x from all those ancestors to the root;
– the frequency of x on the path from i to j is the sum of its frequencies from i and

j to the root, minus twice its frequency from a to the root, plus b, where b = 1 if
the value stored at a is x, and b = 0 otherwise.

We will perform these operations in time O(log logn) with an O(n)-space data struc-
ture.

Finding the nearest common ancestor is a constant-time operation with an O(n)-
space data structure, by well-known results such as those of Bender et al. [6]. The
next step is to solve the colored nearest ancestor problem: in a tree where each node
is assigned a color, given a color x and a node i find the nearest ancestor of i that has
color x.

Lemma 6 There exists an O(n)-space data structure that supports colored nearest
ancestor queries on trees in O(log logn) time.
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Fig. 2 A. The frequency from i to j is the sum of the frequencies from i to the root and j to the root, minus
twice that from a to the root. B. A collection of segments representing nearest distinct ancestors.

Proof Suppose we wish to find the nearest ancestor i′ of color x for a node i. If the
nodes are indexed according to a pre-order traversal, then the descendants of a given
node are exactly the nodes in one interval of indices. As we increase i from 1 to n,
i′ can only change at an endpoint of the interval corresponding to an x-colored node.
There are twice as many such endpoints as there are x-colored nodes. For fixed x,
finding the nearest x-colored ancestor of i reduces to finding the last endpoint before
i. That is the predecessor problem on integers in the range {1, . . . ,n}. We can answer
predecessor queries by well-known methods such as those of van Emde Boas [20] in
O(log logn) time, using a data structure of size linear in the number of nodes of color
x. Storing one predecessor structure for each distinct color gives an overall space
bound of O(n). ut

An improved result on colored nearest ancestor queries can be obtained as fol-
lows:

Lemma 7 There exists an (n(H + 4)+ o(nH + n))-bit data structure that supports
colored nearest ancestor queries on a tree T in O(log logw σ) time, where H is the
entropy of the distribution of colors in T , σ is the number of distinct colors in T , and
w is the word size.

Proof The data structure consists of the following components:

1. a balanced-parenthesis representation of the tree T ;
2. a sequence S[1 : n], where S[i] is the color of node i (node 1 is the root); and
3. a balanced-parenthesis representation of Tc for every color c, where Tc is a tree

obtained by retaining only those nodes in T whose color is c, and the parent of
any node i in Tc is same as the nearest ancestor of i in T with color c. While
constructing Tc, we assume the color of the root of T is c.

We use a constant-time parent operation on balanced-parenthesis representations,
as described by Sadakane [38]. Also, we represent S in nH + o(nH + n) bits, such
that rank, select, and access on S can be supported in O(log logw σ) time [3]. To find
the nearest ancestor i′ of color c for a node i, if such an ancestor exists, let j be the
index of the last occurrence of c in S before i; that is, the greatest integer j such that
1≤ j < i and S[ j] = c. Observe that the c-colored nearest ancestor i′ of i is either j, or
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the c-colored nearest ancestor of j. The integer j can be computed using a constant
number of rank and select operations on S. If j is an ancestor of i, then j is the answer
to the query. Otherwise, we can find the node in Tc corresponding to j in T using the
balanced-parenthesis representation; find its parent; and then find the corresponding
node j′ in T using an access operation on S. If the color of j′ is c, then j′ is the answer
to the query. The only remaining case is the j′ is the root and not of color c, in which
case i has no ancestor of color c. ut

Given colored nearest ancestor queries, it is then straightforward to compute path
frequencies.

Lemma 8 There exists an O(n)-space data structure that supports path frequency
queries on trees in O(log logn) time.

Proof Given node indices i and j and an element value x, we first use an O(n)-space
nearest common ancestor data structure to find the nearest common ancestor a of i
and j. That is a constant-time operation. Then we use the data structure of Lemma 6
to find i′, j′, and a′, respectively the nearest x-colored ancestors of i, j, and a. At every
node we store the frequency of that node’s value on the path from it to the root. The
desired path frequency is then the sum of these frequency values stored at i′ and j′,
minus twice that stored at a′, using zero for any x-colored ancestors found not to exist
and adding one more if a′ itself has color x. The time bound is O(log logn) because
of the colored nearest ancestor queries; the other calculations are constant time. ut

We must also generalize to trees the idea of splitting an array into blocks. The
following lemma describes a scheme for selecting some nodes in T as marked nodes,
which split the tree into blocks over which we can apply the same kinds of block-
based techniques that were effective in the array versions of the problems.

Lemma 9 Given a tree T with n nodes and an integer t < n which we call the block-
ing factor, we can choose a subset of the nodes, called the marked nodes, such that:

– at most O(n/t) nodes are marked;
– the lowest common ancestor of any two marked nodes is marked; and
– the path between any two nodes contains ≤ t consecutive unmarked nodes.

Proof For any node u, let size(u) represent the number of nodes in the subtree rooted
at u. We mark nodes according to the following rules:

– mark any node u where size(u)≥ t and size(v)< t for every child v of u;
– mark the lowest common ancestor of any two marked nodes; and
– as long as there is an unmarked node v with a descendant u such that size(v)−

size(u)≥ t, and v is the lowest such node in the tree, mark v.

There are O(n/t) marked nodes. The first rule marks at most n/t nodes because
there must be t descendants (including the marked node itself) for each marked node.
Suppose after applying the first rule we remove all unmarked leaves, recursively until
none remains. The remaining tree has only marked leaves, and all the nodes marked
by the second rule must correspond to non-unary nodes in this remaining tree. There
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can be no more of those than there are leaves, which correspond to the n/t nodes
marked by the first rule.

The third rule may mark O(n/t) additional nodes because each time it marks one,
there are at least t possible values for u eliminated from further consideration. No
more nodes need be marked under a re-application of the second rule, because if v has
a descendant marked under the first rule, then any lowest common ancestors between
v and other marked nodes would already be marked because of v’s descendant, and
if v does not have a descendant marked under the first rule, then v cannot meet the
minimum size subtree condition to be chosen by the third rule. Therefore at most
O(n/t) nodes are marked overall, and the lowest common ancestor of two marked
nodes must be marked by definition.

Given this set of marked nodes, suppose there were two nodes connected by a path
containing a run of more than 2t consecutive unmarked nodes. Let u and v be the start
and end of the run of unmarked nodes and let w be their lowest common ancestor.
Then size(w)− size(u) > t or size(w)− size(v) > t, and so the third marking rule
would have forced one of the nodes on the path from u to w or from w to v to be
marked. By contradiction, the longest possible run of unmarked nodes is of length
O(t). ut

4.2 A Simple Data Structure for Path Mode Query

A simple path mode data structure follows naturally: we store the answers explicitly
for all pairs of marked nodes, then use the data structure of Lemma 8 to compute
exact frequencies for a short list of candidate modes. We let the blocking factor be a
parameter, to support later use of this as part of a more efficient data structure.

Lemma 10 For any blocking factor t, if we can answer path mode queries between
marked nodes in time T (t) with a data structure of S(t) bits, then we can answer path
mode queries between any nodes in time T (t)+O(t log logn) with a data structure of
S(t)+O(n logn) bits.

Proof As in the array case considered by Chan et al. [10], we can split the query path
into a prefix of size O(t), a span with both endpoints marked, and a suffix of size O(t)
using Lemma 9 (see Figure 1). The mode of the query must either be the mode of the
span, or it must occur within the prefix or the suffix. We find the mode of the span
in T (t) time by assumption, and compute its frequency in O(log logn) time using the
data structure of Lemma 8. Then we also compute the frequencies of all elements in
the prefix and suffix, for a further time cost of O(t log logn). The result follows. ut

Setting t =
√

n and using a simple lookup table for the marked-node queries gives
O(
√

n log logn) query time with O(n) words of space.

4.3 A Faster Data Structure for Path Mode Query

To improve the time bound by an additional factor of
√

w, we derive the following
lemma and apply it recursively.
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Lemma 11 For any blocking factor t, given an S(t)-bit data structure that supports
path mode queries between marked nodes in time T (t), there exists an S(t ′)-bit data
structure that supports path mode queries between marked nodes for blocking factor
t ′ in time T (t ′) = T (t)+O(t ′′ log logn), where S(t ′) = S(t)+O(n+(n/t ′)2 log(t/t ′′))
and t > t ′ > t ′′.

Proof Assume the nodes in T are marked based on a blocking factor t using Lemma 9,
and the mode between any two marked nodes can be retrieved in T (t) time using an
S(t)-bit structure. Now we are interested in encoding the mode corresponding to the
path between any two nodes i′ and j′, which are marked based on a smaller blocking
factor t ′. Note that there are O((n/t ′)2) such pairs. The tree structure along with this
new marking information can be maintained in O(n) bits using succinct data struc-
tures [38]. Where i and j are the first and last nodes in the path from i′ to j′, marked
using t as the blocking factor, the path between i′ and j′ can be partitioned as follows:
the path from i′ to i, which we call the path prefix; the path from i to j; and the path
from j to j′, which we call the path suffix (see Figure 1). The mode in the path from
i′ to j′ must be either (i) the mode of i to j path or (ii) an element in the path prefix
or path suffix.

In Case (i), the answer is already stored using S(t) bits and can be retrieved in
T (t) time. Case (ii) is more time-consuming. Note that the number of nodes in the
path prefix and path suffix is O(t). In Case (ii) our answer must be stored in a node
in the path prefix which is k < t nodes away from i′, or in a node in the path suffix
which is k < t nodes away from j′. Hence an approximate value of k (call it k′, with
k < k′ ≤ k+ t ′′) can be maintained in O(log(t/t ′′)) bits. In order to obtain a candidate
list, we first retrieve the node corresponding to k′ using a constant number of level
ancestor queries (each taking O(1) time [38]) and its O(t ′′) neighboring nodes in the
i′ to j′ path. The final answer can be computed by evaluating the frequencies of these
O(t ′′) candidates using Lemma 8 in O(t ′′ log logn) overall time. ut

The following theorem is our main result on path mode query.

Theorem 3 Given any tree T with n nodes, there exists an O(n)-word space data
structure that supports path mode queries on T in O(log logn

√
n/w) time.

Proof Let th = log(h) n
√

n/w and t ′′h =
√

n/w/ log(h+1) n, where h ≥ 1. Then by ap-
plying Lemma 11 with t = th, t ′ = th+1, and t ′′ = t ′′h , we obtain the following:

S(th+1) = S(th)+O
(
n+(n/th+1)

2 log(th/t ′′h )
)
∈ S(th)+O(nw/ log(h+1) n)

T (th+1) = T (th)+O(t ′′h log logn) ∈ T (th)+O(log logn
√

n/w/ log(h+1) n) .

By storing Dt1 and Et1 explicitly, we have S(t1) ∈O(n) bits and T (t1) ∈O(1). Apply-
ing Lemma 10 to log∗ n levels of the recursion gives tlog∗ n =

√
n/w and

S(
√

n/w) ∈ O

(
nw

log∗ n

∑
h=1

1

log(h) n

)
= O(nw)

T (
√

n/w) ∈ O

(
log logn

√
n/w

log∗ n

∑
h=1

1

log(h) n

)
= O(log logn

√
n/w) . ut
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5 Path Least Frequent Element Queries on Trees

In this section we consider the problem of finding path least frequent elements on
trees, for which we present O(n)-space data structures that support queries in O(log logn

√
n/w)

time.
Like our data structure for range least frequent element queries on arrays de-

scribed in Section 3, this data structure divides the tree into blocks, storing results
for queries on block boundaries, and then doing some work at query time to compute
the query on individual nodes based on the stored result for nearby block boundaries.
See Lemma 9.

The marked nodes provide the boundaries for splitting the tree into blocks, at
which point we can apply similar techniques to those used for the case of arrays.

Lemma 12 Given a tree T with n nodes and an integer t < n and some nodes marked
by the procedure of Lemma 9, we can partition the nodes of T into O(n/t) blocks each
of size O(t), such that for any nodes u and v whose lowest marked ancestors are u′

and v′, the path from u to v consists of u, O(t) unmarked nodes in the block of u, u′,
the path from u′ to v′, v′, O(t) unmarked nodes in the block of v, and finally v; or
possibly just O(t) nodes in the block shared by u and v if that is the same block.

Proof From a marked node u, consider the nodes reachable by paths that exit u
through the link to its parent and contain no marked nodes other than u. The set
of all nodes reachable by such paths from u (including u itself) is of size O(t), be-
cause if it were larger, the marking rules would force another node to be marked
within the set. Any node is in at most one such set, because otherwise there would
be two marked nodes whose least common ancestor is unmarked, again contradicting
the marking rules. For any node v reachable from some marked node u by a path that
exits u through the link to its parent and contains no other marked node, we assign v
to a block Bu.

Any node v not reachable in this way from any u must be near the bottom of the
tree, with a marked ancestor that has no marked descendants. We let w be the lowest
marked ancestor of such a v and assign v to a block B′w. Again by the marking rules,
there can be at most O(t) nodes assigned to each B′w. And since at most two blocks
are associated with each marked node, we have O(n/t) blocks. ut

The query time achieved by the data structure of Chan et al. [10] for range least
frequent element queries on arrays depends on the ability to answer a query of the
form “is the frequency of element A[i] in the range A[i : j] greater than k?” in constant
time (see Lemma 2). There is no obvious way to generalize the data structure for
such queries on arrays to apply to trees. Instead, we use an exact calculation of path
frequency (not just whether it is greater than k), which takes O(log logn) time per
query by Lemma 8.

Theorem 4 Given any tree T with n nodes, there exists an O(n)-word space data
structure that supports path least frequent element queries on T in O(

√
n log logn)

time.
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Proof Let t =
√

n and partitions the tree into blocks according to Lemma 12. For each
pair of blocks, there is a unique path between the blocks that is contained in every
path from any element of the first block to any element of the second block. (This
path is possibly empty if the blocks are not distinct.) We store a table that records,
for each pair of blocks, the element which is least frequent in the path between two
blocks, and is absent in two blocks. This table requires O(n) words of space.

Then for a path from a node i to a node j, which are contained in blocks Bi
and B j, respectively, the least frequent element on the path between i and j must
either be the one recorded in the table for this pair of blocks, or be an element of
Bi or B j. That gives O(

√
n) candidates; by computing the exact frequency of each

one in O(log logn) time each using Lemma 8, we can find the least frequent in
O(
√

n log logn) time. ut

The query time can be improved by a factor of
√

w using our block-shrinking
technique, and the following result can be obtained.

Theorem 5 Given any tree T with n nodes, there exists an O(n)-word space data
structure that supports path least frequent element queries on T in O(log logn

√
n/w)

time.

6 Path α-Minority Queries on Trees

An α-minority in a multiset A, for some α ∈ [0,1], is an element that occurs at least
once and as no more than α proportion of A. If there are n elements in A, then the
number of occurrences of the α-minority in A can be at most αn. Elements in A that
are not α-minorities are called α-majorities. Chan et al. studied α-minority range
queries in arrays [10]; here, we generalize the problem to path queries on trees. In
general, an α-minority is not necessarily unique; given a query consisting of a pair
of tree node indices and a value α ∈ [0,1] (specified at query time), our data struc-
ture returns one α-minority, if at least one exists, regardless of the number of dis-
tinct α-minorities. As in the previous sections, we can compute path frequencies in
O(log logn) time (Lemma 8); then a data structure similar to the one for arrays gives
us distinct elements within a path in constant time per distinct element. Combining
the two gives a bound of O(α−1 log logn) time for α-minority queries.

As discussed by Chan et al. for the case of arrays [10], examining α−1 distinct
elements in a query range allows us to guarantee either that we have examined an
α-minority, or that no α-minority exists. So we construct a data structure based on
the hive graph of Chazelle [11] for the k-nearest distinct ancestor problem: given a
node i, find a sequence a1,a2, . . . of ancestors of i such that a1 = i, a2 is the nearest
ancestor of i distinct from a1, a3 is the nearest ancestor of i distinct from a1 and a2,
and so on. Queries on the data structure return the distinct ancestors in order and in
constant time each.

Lemma 13 There exists an O(n)-space data structure that supports k-nearest dis-
tinct ancestor queries on trees in O(k) time, returning them in nearest-to-furthest
order in O(1) time each, so that k need not be specified.
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Proof Suppose the nodes of the tree are indexed according to a pre-order traversal.
Any node with index i is an ancestor of exactly those nodes whose indices are in
the interval [i, j] for some index j. Let d be the depth of i. For each node i in the
tree, consider the line segment on the Euclidean plane from coordinates (i,−d) to
( j,−d). Figure 2B shows an example of such segments. A vertical ray directed up-
ward through the collection of segments at the x-coordinate corresponding to the
node’s index will intersect the segments for that node’s ancestors, in order from the
node to the root. However, such a query will find all the ancestors, including any with
duplicate colors.

Suppose that as shown by the dashed lines and open circles in the figure, we delete
any part of a segment that is covered by some other segment of the same color below
it on the plane. The case of deleting a single point can be handled by opening up a
small gap, bearing in mind that only queries at integer coordinates are relevant. This
deletion procedure increases the number of segments in the collection, but only by a
factor of at most two, because each endpoint of a deeper segment creates at most one
new endpoint inside a shallower segment, in the segment corresponding to its nearest
same-color ancestor. Therefore the number of segments remains linear to the size of
the tree. Vertical ray queries on the resulting collection of segments return k-nearest
distinct ancestor results.

We can build a hive graph on these segments, as described by Chazelle [11], and
answer queries in the required time. The query procedure requires an initial point
location query, which might be more than constant time in general, but because we
only have n distinct query rays, we can precompute the point-location queries and
store them in linear space for constant-time lookup. The remainder of the query pro-
cess is constant time per ancestor returned. ut

Lemmas 8 and 13 give the following theorem.

Theorem 6 Given any tree T with n nodes, there exists an O(n)-word space data
structure that supports path α-minority queries on T in O(α−1 log logn) time, where
α is specified at query time.

Proof We construct the data structures of Lemma 8 and Lemma 13, both of which
use linear space. To answer a path α-minority query between two nodes i and j, we
find the α−1 nearest distinct ancestors (or as many as exist, if that is fewer) above
each of i and j. That takes α−1 time. If an α-minority exists between i and j, then
one of these candidates must be an α-minority. We can test each one in O(log logn)
using the path frequency data structure, and the result follows. ut

7 Path Top-k Queries on Trees

Suppose each node in a tree T of n nodes is assigned a color from the alphabet
{0, . . . ,σ−1}. Let T [a : b] denote the unique path connecting the nodes with preorder
ranks a and b in T . Then the tree path top-k color query problem is to report, given
indices a and b and a count k, the k greatest distinct color values to occur in T [a : b],
in descending order. We will prove the following result.
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Theorem 7 Given any tree T with n nodes, there exists an O(n)-word space data
structure that supports path top-k color queries on T in O(k) time, where k is specified
at query time.

We begin by defining some useful concepts. Let T be a tree with n nodes. We
define the size of a node v to be the number of leaves in the subtree rooted at v. A
heavy path of a subtree T ′ ⊆ T is a root-to-leaf path in T ′, in which each node v on the
path has size at least as large as that of its largest sibling. Let the root of a heavy path
be its highest node, that is, closest to the root of T . A heavy path decomposition of the
tree T is a partition of the edges of T induced by recursively constructing the heavy
path of each subtree that branches off the heavy path; thus, edges in T are partitioned
into disjoint heavy paths. Each leaf node belongs to a unique path in the heavy path
decomposition, and each heavy path contains exactly one leaf. Therefore the number
of heavy paths is equal to the number of leaves. This decomposition will allow us to
subdivide query paths into a small number of components by the following lemma.

Lemma 14 (Sleator and Tarjan [41]) Any path from the root to a leaf in T intersects
at most logn paths of the heavy path decomposition.

We will also use a data structure of Navarro and Nekrich for three-sided two-
dimensional top-k queries [36]. Given a set of n points on an n×n grid, each having
a weight, this data structure can report the k points of greatest weight in a query region
of the form [a,b]× [0,h], in O(h+ k) time, where a, b, h, and k are specified at query
time. Furthermore, it reports the points in order of decreasing weight, and it reports
them online, that is, O(h) time to report the first point and O(1) time per point for
subsequent points.

Any tree path T [a : b] can be divided into two overlapping paths T [a : z] and
T [z : b], where z is the lowest common ancestor (LCA) of a and b. Since O(n)-space
data structures exist to support O(1)-time LCA queries (e.g., [5]), if we can answer
tree path top-k color queries on these two paths in O(k) time, then we can merge
the answers to answer such queries on arbitrary paths in the tree in the same time.
Therefore, it suffices to solve the following restricted problem.

Problem 1 Preprocess T to efficiently answer tree path top-k color queries on paths
of the form T [a : z] where z is an ancestor of a.

We begin with a data structure providing O(k logn) query time, which is improved
to O(k+ logO(1) n) time, and finally to optimal O(k) query time. Each of these data
structures can be stored in O(n) space.

A tree path top-k query involves three constraints. Each element returned must
be (1) on the query path; (2) among the top k; and (3) of a distinct color. In other
words, each color must be reported, and counted towards the top k, only once, even
if multiple instances of that color appear on the query path. We eliminate duplicates
using an adaptation of Muthukrishnan’s chaining approach to reporting distinct colors
in array ranges [35].

Let depth(i) denote the number of nodes on the path from the root to a node i. Let
chain(i) denote the depth of the lowest ancestor of i that has the same color as i, with
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chain(i) = 0 if there is no such ancestor. If there exists at least one node with color c
in T [a : z], z being an ancestor of a, then there exists a unique node i in T [a : z] with
color c and chain(i)< depth(z). Therefore, Problem 1 can be restated as follows:

Problem 2 Preprocess T to efficiently find, given a node a, one of its ancestors z,
and a count k, the top k colors in decreasing order among the nodes {i ∈ T [a : z] |
chain(i)< depth(z)}.

Given any node labelled by its preorder rank i, let φ(i) denote the root of the path
containing i in the heavy path decomposition of T . Let ` j denote the preorder rank of
the jth leftmost leaf in T . We can transform T to another tree T ′, which is actually
a path, by concatenating the paths T [`i,φ(`i)] for each i up to the number of leaves.
Then we can define an array A[1 : n] containing the colors of nodes in T ′, in order
along the path starting from the root. The following property is ensured: any subpath
of a path in the heavy path decomposition must correspond to a contiguous range of
A.

We build the optimal array range top-k color query data structure of Karpinski
and Nekrich on A, and store it using O(n logσ) bits [32]. From each node i in T , we
store the index of the corresponding entry in A. The total space used is O(n) words,
assuming σ ∈ O(n). Because heavy paths are contiguous in A, the special case in
which both a and z are on the same heavy path can be handled optimally by first
finding the corresponding range in A, and then performing a top-k color query on the
array range top-k color query data structure.

For the case in which a and z are not on the same path of the decomposition, we
map each node i in T to a weighted two-dimensional point (xi,yi) with weight wi, let-
ting wi be the color of node i, xi be the index in A corresponding to that node, and yi be
the number of paths of the heavy path decomposition intersected by the path from the
root to chain(i). We build the data structure of Navarro and Nekrich for three-sided
two-dimensional top-k queries on these weighted points [36, Theorem 2.1]. Because
yi ≤ logn, the query time to return k points from this data structure is O(logn+ k).

To answer a general tree path top-k color query, we first find the lowest common
ancestor of the endpoints and split the query path into two queries of the form T [a : z]
with z an ancestor of a. Then for each of the two, we partition the query path T [a : z]
into at most logn disjoint subpaths T [a1 : φ(a1)], T [a2 : φ(a2)], . . . , T [ar : z], where
a1 = a, ai is the parent of φ(ai−1) for i = 2, . . . ,r, and r ≤ logn is such that z is on
the subpath T [ar : φ(ar)]. This step takes only O(r)⊆ O(logn) time, by consulting a
stored copy of the heavy path decomposition.

The query T [ar : z] corresponds to a contiguous range in A, so we can find its
top k colors in O(k) time and merge them in O(k) time with the top k colors for
T [a1 : φ(ar−1)]. It only remains to query T [a1 : φ(ar−1)] efficiently.

From the definition in Problem 2, we have that if a node i is included in the result
for T [a1 : φ(ar−1)] then chain(i) < depth(φ(ar−1)). In fact, it suffices to check that
the number of heavy paths intersected by the path from the root of T to chain(i) is less
than the number intersected from the root to φ(ar−1). Since φ(ar−1) and its parent
cannot be on the same path of the decomposition, any ancestor of it must be in a path
nearer to the root.
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Let h be the number of paths of the heavy path decomposition that are intersected
by the path from φ(ar−1) to the root, and let A[si : ei] be the range of A associated
with T [ai : φ(ai)]. Then for each i ∈ {1, . . . ,r− 1}, the weighted points (x j,y j) ∈
[si,ei]× [0,h] correspond to nodes with distinct colors on the path T [a1 : φ(ar−1)].
The union of those lists would include the top k colors in T [a1 : φ(ar−1)], but we
must still merge the lists.

We issue r−1 simultaneous queries to the top-k geometric data structure, corre-
sponding to the query regions [si,ei]× [0,h] for i = 1, . . . ,r− 1. The answers can be
merged using a max-heap H with its size limited to at most r− 1 ∈ O(logn) points.
We insert the first point returned from each Ri into H. Then we repeat the following
steps until we have reported k colors:

1. Extract the highest weighted point in H and report it.
2. If the reported point was from the query box Ri, then fetch the next highest

weighted point from Ri and insert it into H.

Since the size of H is always logO(1) n, we can use an atomic heap, which can
perform all heap operations in constant time in the Word RAM model [22]. Therefore,
the number of heap operations, and the required time, can be bounded by O(k+ logn).
Each three-sided two-dimensional top-k query takes O(logn) time in addition to the
number of points it returns. Therefore the total time for query is O(k+ log2 n), giving
the following result.

Lemma 15 There exists an O(n)-space data structure that supports tree path top-k
color queries in O(k+ log2 n) time.

For k ∈Ω(log2 n), the query time above is optimal. We apply different techniques
for the case k ∈ o(log2 n). First, we identify a subset of the nodes in T , called the
marked nodes, as follows. Let g denote an integer (whose value we specify later)
called the grouping factor, and mark every node i in T such that i≡ 0 (mod g). Also
mark the lowest common ancestor of any pair of marked nodes. This is a simplified
version of the scheme introduced by Hon et al. [30] for identifying marked nodes in
a suffix tree. It has the properties given in Lemma 9.

We mark nodes in T using g = log3 n. For every marked node i and every j such
that j is an ancestor of i and j is the root of a path in the heavy path decomposition,
we store explicitly a precomputed sorted list of the top O(log2 n) colors on the path
T [i : j]. The space is bounded by O((n/ log3 n) log2 n logn)=O(n) words. Using these
precomputed lists we can find the top k colors in T [a : z], where a is a marked node
and z is one of its ancestors, by splitting the query, as before, into T [a1 : φ(ar−1)] and
T [ar : z]. The former is precomputed and the latter corresponds to a contiguous range
of A. We can find the top k colors in both paths and merge the lists in O(k) time,
giving the following result.

Lemma 16 There exists an O(n)-space data structure that supports tree path top-k
color queries of the form T [a : z] in O(k) time, where a is a marked node and z is one
of its ancestors.
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Next we must handle the case in which a is not a marked node. For any node i
such that i is not marked but its parent is marked, define the mini-tree T i to be the
subtree rooted at i but excluding any descendants of the highest marked descendant
of i, if any. By Lemma 9, T i is of size O(g). We choose a grouping factor g′ =
log3 g ∈Θ(log3 logn) which we use to mark nodes within each mini-tree, and build
the data structure of Lemma 16 for each mini-tree. The total space is bounded by
O(n) because each node in T belongs to exactly one mini-tree. By querying from a to
the root of its mini-tree, and from the parent of that root to z, and merging the results,
we can answer top-k color queries of the form T [a : z] in O(k) time when a is marked
in its mini-tree and z is its ancestor, even if a is not marked in T .

Finally, we generalize the optimal-time solution to arbitrary a. For any i not
marked in T nor in the mini-tree that contains i, let j be the lowest marked node
above i in the same mini-tree. The node j is at most g′ ∈ O(log3 logn) nodes above
i. Therefore the top k colors on the path T [i : j], for all choices of i, can be stored in
O(n(log3 logn)2 log loglogn) bits: there are n choices of i, O(log3 logn) lists, each of
length at most O(log3 logn), and only O(log loglogn) bits are needed (as indices into
the mini-block) to store the entries in the lists. That is a total of o(n) words.

Then to answer an arbitrary query T [a : b], we first split into two queries T [a : z]
and T [b : z] with z the lowest common ancestor of a and b. We can find the top k colors
from a to its lowest marked ancestor within its mini-tree, and from there to the root of
the mini-tree, using the precomputed lists. From the lowest marked ancestor of a in
T to the highest marked ancestor of a below z, we use Lemma 16; and from there to
z we do an array range query in A. We do the same with the query T [b : z]. All these
queries can be performed, and their results merged, in O(k) time. This completes the
proof of Theorem 7.

8 Discussion and Directions for Future Research

The asymptotic difference in query times for a range query on arrays and the corre-
sponding path query on trees can often be eliminated. This is the case for range/path
minimum [13], range/path selection [28,29,37], and range/path top-k queries (this
paper, Section 7). At present, the query times for mode, least frequent element, and
α-minority path queries on trees remain slower by a factor of O(log logn). Can these
gaps be closed? These last three data structures for path queries refer to Lemma 8,
resulting in query time O(log logn) times greater than the corresponding time on ar-
rays. For arrays, Chan et al. [8] use O(1)-time range frequency queries for the case in
which the element whose frequency is being measured is at an endpoint of the query
range. Generalizing this technique to path queries on trees should allow each data
structure’s query time to be decreased accordingly.

Additional possible directions for future research include making these data struc-
tures succinct or dynamic. The path top-k query data structure presented in Section 7
requires O(n) words of space. The range top-k query data structure of Karpinski and
Nekrich [32] requires only O(n logσ) bits of space. It seems feasible that the space
requirement for the path query data structure could be reduced to O(n logσ) bits, but
this remains to be determined.
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