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Abstract

A cycle cover of a graph G is a collection of disjoint
cycles that spans G. Generally, a (possibly discon-
nected) cycle cover is easier to construct than a con-
nected (Hamiltonian) cycle cover. One might expect
this since the cycle cover property is local whereas
connectivity is a global constraint. We compare the
hardness of CONNECTED CYCLE COVER and CY-
CLE COVER under various constraints (both local and
global) on the orientation, crossings, and turning an-
gles of edges. Surprisingly perhaps, under specific con-
straints, the cycle cover problem is NP-hard whereas
the corresponding connected cycle cover problem can
be solved in polynomial time.

1 Definitions

A straight-line embedding of graph G = (V,E) is a one-
to-one mapping of vertices to the plane, δ : V → Z2,
where every edge (u, v) ∈ E maps to the unique line
segment between δ(u) and δ(v). Ĝ = (V,E, δ) is the
corresponding geometric graph. Two edges cross if and
only if they share an interior point. A geometric graph
Ĝ is non-crossing if no two of its edges cross.

A set S of non-degenerate line segments is an orthog-
onal set if there exists an angle φ such that all segments
in S form an angle congruent to φ mod π

2
. An orthog-

onal set is standard if φ mod π
2
= 0.

A geometric graph Ĝ is (standard) rectilinear if its
edge set is (standard) orthogonal. Embedded graph Ĝ

is weakly rectilinear if each of its connected components
is rectilinear. Obviously, weak rectilinearity is the same
as rectilinearity if Ĝ is connected.

A cycle cover (or 2-factor) of a graph G consists of
a 2-regular spanning subgraph H ⊆ G (i.e. a union
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of cycles in which every vertex is incident with exactly
two edges).

Given a cycle cover Ĥ of a geometric graph Ĝ =
(V,E, δ), the edges incident with a vertex vi ∈ V in
Ĥ form an acute angle θi ∈ (0, π] (refered to as the
turn angle) at vi. Let Θ be the set of all turn angles θi
formed at vertices vi ∈ V . Let Ψ ⊆ (0, π] be a set of
angles. Ĥ is Ψ-turn-restricted if Θ ⊆ Ψ.

While a {π
2
, π}-turn-restricted cycle cover corre-

sponds to weak rectilinearity of a cycle cover, the
stricter {π

2
}-turn-restriction describes a cycle covers

that is forced to make a right-angle bend at every ver-
tex.

The general cycle cover problem is described formally
as follows:

CYCLE COVER (2-FACTOR)
INSTANCE: Graph G = (V,E).
QUESTION: Does there exist a subgraph H = (V,E ′)
such that E′ ⊆ E and every v ∈ V is met by exactly
two edges in E′?

The connected cycle cover problem (or Hamiltonian Cy-
cle) is described formally as follows:

CONNECTED CYCLE COVER (HC)
INSTANCE: Graph G = (V,E).
QUESTION: Does there exist a connected subgraph
H = (V,E′) such that E′ ⊆ E, every v ∈ V is met by
exactly two edges in E′?

The general cycle cover problem can be reduced to a
perfect matching (or 1-factor) problem [LP86] which
is solvable in polynomial time [GJ79, Edm65, LP86].
In [LP86], Lovász and Plummer give a good survey
of the more general f -factor problem and other re-
lated matching problems. It is also well known that
the unrestricted connected cycle cover problem is NP-
complete [GJ79]. We compare the hardness of CY-



Cycle Cover Connected Cycle Cover

Standard Rectilinear Ψ = {π
2
} Ψ = {π, π

2
} Ψ = {π

2
} Ψ = {π, π

2
}

crossing P [O’R88] P [LP86] P [O’R88] NPC [IPS82]
non-crossing P [O’R88] NPC [JW93] P [O’R88] NPC [Rap86]

Weakly Rectilinear Ψ = {π
2
} Ψ = {π, π

2
} Ψ = {π

2
} Ψ = {π, π

2
}

crossing NPC F1 NPC F2 P [FW97] NPC [FW97]
non-crossing NPC F3 NPC F4 P [O’R88, FW97] NPC [Rap86]

Table 1: Overview of Complexity Results for Ψ-Turn-Restricted Cycle Covers

CLE COVER and CONNECTED CYCLE COVER un-
der standard and weak rectilinearity, under crossing or
non-crossing restrictions, and under Ψ-turn-restrictions
where Ψ = {π

2
, π} or Ψ′ = {π

2
}.

2 Related Work

O’Rourke [O’R88] shows that a set of vertices in the
plane uniquely determines a standard rectilinear polyg-
onal shape; this shape can be determined in polyno-
mial time. Each vertex must be met by two edges, one
of which is horizontal, one of which is vertical. The
uniqueness of a solution implies the cycle cover and
connected cycle cover problems can be solved in polyno-
mial time, under standard rectilinearity and turn-angle
restriction Ψ = {π

2
}, both for crossing or non-crossing

restrictions. See Table 1 for an overview of complexity
results.

The assumption that vertices represent a corner can
be relaxed to allow edges to continue straight through
a vertex. Thus, turn angles must be drawn from Ψ =
{π, π

2
}. Under {π, π

2
}-turn-restriction, standard recti-

linear connected cycle cover is NP-complete [IPS82].
The problem remains hard under the non-crossing re-
striction [Rap86]. Standard rectilinear cycle cover can
be solved by a basic 2-factor algorithm running in poly-
nomial time [LP86]. Under the non-crossing restriction,
however, the problem becomes hard [JW93].

Fekete and Woeginger [FW97] show that finding a
weakly-rectilinear connected cycle cover is solvable in
polynomial time when Ψ = {π

2
} but becomes NP-hard

when Ψ = {π, π
2
}. Weak rectilinearity in a connected

graph implies rectilinearity. Furthermore, any rectilin-
ear cycle-cover problem can be reduced to

(

n
2

)

stan-
dard rectilinear cycle-cover problem instances, each of
which can be checked for a solution using O’Rourke’s
algorithm [O’R88]. Thus, when Ψ = {π

2
}, weakly-

rectilinear non-crossing connected cycle cover can be
solved in polynomial time. Finally, it is possible to
transform any geometric graph G into a geometric
graph G′ such that G has a non-crossing connected rec-
tilinear cycle cover if and only if G′ has a non-crossing

connected standard rectilinear cycle cover. In this way,
Rappaport’s result [Rap86] can be extended to show
that when Ψ = {π, π

2
}, weakly-rectilinear non-crossing

connected cycle cover remains NP-hard.
Kratchov́ıl et al. examine the generalized problem of

non-crossing restrictions on topological graphs. Given
a topological graph G and a property P , does there ex-
ist a subgraph H ⊆ G with property P such that the
edge set of H is non-crossing? The problem is more in-
teresting when determining whether G has a subgraph
H with property P is solvable in polynomial time, but
requiring that H be non-crossing renders the prob-
lem hard. They demonstrate NP-hardness for several
properties P , including the existence of a non-crossing
cycle and the existence of a non-crossing k-factor for
k = 1, 2, 3, 4, 5 (if multi-edges are disallowed, a non-
crossing k-factor is impossible for k ≥ 6).

Formann and
Woeginger [FW90], generalize O’Rourke’s problem to
k ≥ 3 fixed side orientations. They show given a set of
points P , and a set of orientations D ⊆ [0, π

2
), |D| ≥ 3,

determining whether there exists a polygon whose ver-
tices are P and whose edges all have orientation in D

is NP-hard.

3 Overview of Proofs

All cycle cover problems discussed here can easily be
shown to be in NP. It remains to establish they are
NP-hard. Our proofs are by reduction from the follow-
ing common NP-complete problem:

4-DIMENSIONAL MATCHING (4DM)
INSTANCE: Four sets of elements W , X, Y , and Z,
and one set of quadruples T = {(wi, xj , yk, zl)} ⊆
W ×X × Y × Z.
QUESTION: Does there exist a subset T ′ ⊆ T such
that every w ∈ W , x ∈ X, y ∈ Y , and z ∈ Z appears
exactly once in T ′?

Garey and Johnson write, 3-DIMENSIONAL MATCH-
ING “also remains NP-complete if no element occurs in



more than three triples, but is solvable in polynomial
time if no element occurs in more than two triples.”
[GJ79, page 221] By a simple reduction, the analogous
proposition holds for quadruples within 4DM.

The following are overviews of the components used
to reduce 4DM to each of four variations of the orthog-
onal cycle cover problem.

F1 WEAKLY-RECTILINEAR {π
2
}-TURN-

RESTRICTED CYCLE COVER1

INSTANCE: Geometric graph Ĝ = (V,E, δ).

A

B

Figure 1: element and quadruple components

QUESTION: Does there exist a cycle cover of Ĝ such
that every vertex is met by exactly two edges with turn
angle θ = π

2
?

Unlike O’Rourke’s ORTHOGONAL CONNECT-
THE-DOTS (equivalent to STANDARD RECTILIN-
EAR {π

2
}-TURN-RESTRICTED CYCLE COVER)

which is solvable in polynomial time, F1 WEAKLY-
RECTILINEAR {π

2
}-TURN-RESTRICTED CYCLE

COVER is NP-hard. This is easily shown by reduction
from 4DM. Figure 1A displays the element component
and Figure 1B displays the quadruple component.

F2 WEAKLY-RECTILINEAR {π, π
2
}-TURN-

RESTRICTED CYCLE COVER
INSTANCE: Geometric graph Ĝ = (V,E, δ).
QUESTION: Does there exist a cycle cover of Ĝ such
that every vertex is met by exactly two edges with turn
angle θ ∈ {π, π

2
}?

Unlike the last problem, edges of the cycle cover are
allowed to pass straight through a vertex as well as turn
at right angles. The problem remains NP-hard. The
reduction is again from 4DM. First, an edge-bending
gadget is required (see Figure 2A). Within any cycle
cover, either both or neither of edges e1 and e2 may be
used. Thus, this gadget allows edges to be “bent”. The
triangular vertices in Figure 2B represent such bending
gadgets. Any instance of 4DM is reduced as follows.

1The problems are annotated with symbols F1 through F4

for quick reference with Table 1.

e1

e2

v1

v2

A B

Figure 2: edge-bending gadget

Quadruples consist of a black diagonal box (see Fig-
ure 2B). Elements consist of three vertices that align
horizontally. An element is linked to the quadruples
via a tour of grey edges whose corners consist of trian-
gular vertices. Each tour meets the element at vertices
v1 and v2.

Each of the last two problems can be further restricted
by disallowing edge-crossings. Thus, if two edges cross,
at most one of the two may be included in a cycle cover
solution.

F3 NON-CROSSING WEAKLY-REC-
TILINEAR {π

2
}-TURN-RESTRICTED CYCLE

COVER
INSTANCE: Geometric graph Ĝ = (V,E, δ).
QUESTION: Does there exist a non-crossing cycle
cover of Ĝ such that every vertex is met by exactly
two edges with turn angle θ = π

2
?

e1 e’1e2

2e’

Figure 3: crossing gadget

F3 NON-CROSSING WEAKLY-RECTILINEAR
{π

2
}-TURN-RESTRICTED CYCLE COVER can be

shown to be NP-hard by a simple modification to
the reduction used for F1 WEAKLY-RECTILINEAR
{π

2
}-TURN-RESTRICTED CYCLE COVER. When-



ever two edges cross at a right angle, their cross-
ing can be replaced by the gadget in Figure 3.
Given any F1 WEAKLY-RECTILINEAR {π

2
}-TURN-

RESTRICTED CYCLE COVER H, this gadget has
the property that e1 ∈ H ⇔ e′1 ∈ H and e2 ∈ H ⇔
e′2 ∈ H. Crossings that do not occur at a right angle
are only a concern if both edges might be included in
H. The only such occurrence would be when a hori-
zontal edge e between a quadruple q and an element
e1 crosses another element e2. Since diagonal edges
in an element occur in fours, edge e can be made to

a
b

c
d

a’
b’

c’
d’

e

a
b

c
d

a’
b’

c’
d’

e

A B

Figure 4: ensuring that edge e only crosses at right
angles

cross only vertical edges by replacing with the gad-
get in Figure 4. This gadget has the property that
{a, b, c, d} ⊂ H ⇔ {a′, b′, c′, d′} ⊂ H. Thus, all cross-
ings can be eliminated from the reduction, showing
that F3 NON-CROSSING WEAKLY-RECTILINEAR
{π

2
}-TURN-RESTRICTED CYCLE COVER is NP-

hard.

F4 NON-CROSSING WEAKLY-RECTI-
LINEAR {π, π

2
}-TURN-RESTRICTED CYCLE

COVER
INSTANCE: Geometric graph Ĝ = (V,E, δ).
QUESTION: Does there exist a non-crossing cycle
cover of Ĝ such that every vertex is met by exactly
two edges with turn angle θ ∈ {π, π

2
}?

A A’

B’

B

Figure 5: {π, π
2
}-turn-restricted crossing gadget

Again, we use a modification to the reduction
used for F2 WEAKLY-RECTILINEAR {π, π

2
}-TURN-

RESTRICTED CYCLE COVER. As we did in the last

reduction, we replace crossings with a crossing gadget.
The gadget in Figure 5 has the property that given any
weakly-rectilinear {π, π

2
}-turn-restricted cycle cover H,

A ∈ H ⇔ A′ ∈ H and B ∈ H ⇔ B′ ∈ H if crossings
are disallowed.

It is not difficult to extend these reductions such
that each problem (F1 – F4) remains NP-hard when
the input is given as set of vertex positions (as in
[O’R88, Rap86, FW97]) from which all

(

n
2

)

pairs of ver-
tices form an edge in the input graph.
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