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Abstract

We define the projection median of a non-empty and
finite multiset of points in R

2. We show the projec-
tion median provides a better approximation of the Eu-
clidean (`2) median than do the rectilinear (`1) median
or the centre of mass, both in terms of approximation
factor and stability.

1 Introduction: Euclidean Median

Definition 1 Given an arbitrary non-empty finite mul-
tiset P in R

2, a Euclidean median of P is a point in
R

2, M(P ), that minimizes

∑

p∈P

||M(P ) − p||. (1)

If the points of P are not collinear, then the Euclidean
median is unique [17]. Furthermore, M is invariant un-
der similarity transformations.

The Euclidean median problem on three points in the
plane was first posed by Fermat and solved by Torricelli
early in the 17th century [16]. In R, the Euclidean me-
dian is easily found in Θ(n) time, where n = |P |, by a
linear-time selection algorithm. In two or more dimen-
sions, the location of the Euclidean median cannot be
solved exactly when |P | ≥ 5 [3]. No polynomial-time
algorithm is known, nor has the problem been shown
to be NP-hard [12]. The most common approximation
algorithm is Weiszfeld’s algorithm [20], an iterative pro-
cedure that converges to the Euclidean median. Bose et
al. [6] and Indyk [14] both give linear-time random-
ized algorithms for ε-approximations of the Euclidean
median. Bose et al. [6] also give an O(n log n)-time
deterministic ε-approximation algorithm.

The Euclidean median has been repeatedly rediscov-
ered under a variety of names. The most common of
these is Weber point. Other names include Torricelli
point, Fermat point, first Fermat point, isogonic cen-
tre, first isogonic centre, `2 median, 1-median, spatial
median, Steiner point (amongst other definitions for a
Steiner point, this one derives from the Steiner tree
problem), the point of equilibrium in a Varignon frame,
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Kimberling triangle centre X(13) [15], or any combi-
nation of Fermat-Steiner-Torricelli-Weber point. An
overview of the history and solutions to the Euclidean
median problem can be found in [9, 17, 21].

2 Approximation Metrics

Point coordinates are commonly represented by dis-
cretization of real positions to nearby grid coordi-
nates. That is, each point is approximated by the
nearest grid point. Given a multiset of points P in
R

2, small perturbations at only a few points of P
can result in a relatively large change (error) in the
position of the Euclidean median of P . For exam-
ple, let P = {(0, 0), (0, 0), (1, 0), (1, ε)} and let P ′ =
{(0, 0), (0, ε), (1, 0), (1, 0)}. For any ε > 0, M(P ) =
(0, 0) and M(P ′) = (1, 0). In this sense, the Euclidean
median is unstable.

Given this instability, the Euclidean median may be
unfit for certain applications. A function that approx-
imates the Euclidean median while maintaining some
degree of stability may be better suited. We refer to
such a function as a median function.

We formalize the notion of stability by defining κ-
stability for a median function Υ as a bound on its
maximum volatility. This requires preliminary defini-
tions for an ε-perturbation and a continuous function.

Definition 2 Given ε > 0, function f : P → R
2 is an

ε-perturbation on P if for all p ∈ P , ||p − f(p)|| ≤ ε.

Let FP
ε denote the set of all ε-perturbations on P . A

prerequisite for stability is continuity. Specifically, if the
stability of median function Υ is bounded, then Υ must
be continuous.

Definition 3 A median function Υ is continuous if
for all P in R

2 and all δ > 0 there exists an ε > 0 such
that for all f ∈ F P

ε ,

||Υ(P ) − Υ(f(P ))|| < δ. (2)

Definition 4 Median function Υ is κ-stable if

∀ε > 0, ∀f ∈ F P
ε , κ||Υ(P ) − Υ(f(P ))|| ≤ ε, (3)

for all non-empty finite multisets P in R
2.
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The Euclidean median is not continuous. Conse-
quently, it is not κ-stable for any κ > 0.

Similarly, we formalize the notion of approximation
factor by defining λ-approximation for a median func-
tion Υ as a bound on its worst-case relative approxima-
tion of Eq. (1).

Definition 5 Median function Υ is a λ-

approximation of the Euclidean median, M , if
∑

p∈P

||p − Υ(P )|| ≤ λ
∑

q∈P

||q − M(P )||, (4)

for all non-empty finite multisets P in R
2.

3 Centre of Mass

Definition 6 Given an arbitrary non-empty finite mul-
tiset P in R

2, the centre of mass of P is the function
whose value, C(P ), is the (unique) point in R

2 given by

C(P ) =
1

|P |
∑

p∈P

p. (5)

Function C is invariant under affine transformations.
The centre of mass is easily found in Θ(n) time.

The centre of mass is also known as geometric cen-
troid, centroid, mean, 1-mean, centre of gravity, and
Kimberling triangle centre X(2) [15]. The centre of
mass is the point that minimizes the sum of the squares
of distances to the points of P [19].

We now derive tight bounds on the approximation
factor of the centre of mass. Lems. 1 and 2 and Thm. 3
refer to the following definitions for P , a, m, c, and x.
Let P denote a finite multiset in R

2 such that a 6= M(P )
for some a ∈ P . Let a′ = M(P ), let P ′ = (P − {a}) ∪
{a′}, and let x = ||a− a′||. Let m =

∑

p∈P ||p−M(P )||
and let c =

∑

p∈P ||p − C(P )||. Let m′ and c′ denote
the corresponding values for P ′.

Lemma 1 Point M(P ) is a Euclidean median of P ′.

Proof. Assume false. That is, M(P ) is not a Euclidean
median of P ′. Thus,

∑

p∈P ′

||p − M(P ′)|| <
∑

p∈P ′

||p − M(P )||.

Therefore,

∑

p∈P

||p − M(P ′)|| =
∑

p∈P ′

||p − M(P ′)|| + x

<
∑

p∈P ′

||p − M(P )|| + x

=
∑

p∈P

||p − M(P )||.

Thus, M(P ) did not minimize
∑

p∈P ||p − M(P )||, de-
riving a contradiction. Therefore M(P ′) = M(P ). ¤

Lemma 2 The ratio c′/m′ is bounded by

c − (n − 1) x
n − (x − x

n )

m − x
≤ c′

m′ . (6)

Proof. Sum c′ can be bounded from below by the max-
imum difference in ||p − C(P )|| for each point p ∈ P .
For point a this change is at most ±(x − x/n). For the
remaining n − 1 points it is at most ±x/n. Thus,

c − (n − 1)
x

n
−
(

x − x

n

)

≤ c′.

By Lem. 1, m′ = m − x and Eq. (6) follows. ¤

Theorem 3 The centre of mass provides a (2 − 2/n)-
approximation of the Euclidean median.

Proof. Assume P is a multiset that maximizes the ap-
proximation factor of C such that

c > m

(

2 − 2

n

)

,

⇒ cx − cm > 2mx − 2m
x

n
− cm,

⇒ c − (n − 1) x
n − (x − x

n )

m − x
>

c

m
,

⇒ c′

m′ >
c

m
, by Lem. 2.

This contradicts our assumption that P maximizes
the approximation factor of C. Therefore, c ≤ (2 −
2/n)m. ¤

The bound is realized by n − 1 points located at the
origin and a single point located at (1, 0).

As shown by Bespamyatnikh et al. [4], any func-
tion defined by a convex combination of a set of mobile
points moves with maximum relative velocity at most
one. Since the centre of mass is a convex combination
of the points of P , this result implies that the centre of
mass is 1-stable. The bound is trivially tight, as demon-
strated by any translation of the points of P .

4 Rectilinear Median

The rectilinear median is defined analogously to the Eu-
clidean median with respect to the `1 norm instead of
the `2 norm.

Definition 7 Given an arbitrary non-empty finite mul-
tiset P in R

2, a rectilinear median of P is a point in
R

2, R(P ), that minimizes

∑

p∈P

||R(P ) − p||1, (7)

where || · ||1 denotes the `1 norm.
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Function R is invariant under translation and uniform
scaling, but not under rotation or reflection.

The rectilinear median is found in Θ(n) time by solv-
ing two independent one-dimensional median problems
on the x- and y-coordinates of the points of P .

Bespamyatnikh et al. [4], show that the relative ve-
locity of the rectilinear median of a set of mobile points
in R

2 is at most
√

2. Furthermore, this bound is tight.
It is straightforward to show that maximum relative ve-
locity is inversely related to stability, implying that R
is (1/

√
2)-stable.

Bespamyatnikh et al. [4] also show that the rectilinear
median provides a

√
2-approximation of the Euclidean

median. We show this bound is tight even for small
point sets in the following example. Let 2k points lie at
(1, 0), let k+1 points lie at (0, 1), and let k+1 points lie
at (0,−1). When k ≥ 3, the Euclidean median of P lies
at (1, 0) and the (unique) rectilinear median of P lies at
(0, 0).

∑

p∈P ||p − R(P )|| =
√

2
∑

q∈P ||q − M(P )||.

5 Projection Median

The definition of the Euclidean median is the natural
generalization of the one-dimensional median to higher
dimensions. Eq. (1), however, suggests other possible
generalizations.

One possibility is to project points onto a line through
the origin, to find the one-dimensional median of the
projection, and to integrate these one-dimensional me-
dians for all lines through the origin.

Let lθ denote the line through the origin parallel to
the unit vector uθ = (cos θ, sin θ). Expressed in slope-
intercept form, lθ is the line y = tan θ x. Given a mul-
tiset of points P in R

2 and an angle θ ∈ [0, π), let Pθ

denote the multiset defined by the projection of P onto
line lθ. See Fig. 1A. That is,

Pθ = {uθ〈p, uθ〉 | p ∈ P}. (8)

Definition 8 The projection median of a non-
empty finite multiset P in R

2 is

Π(P ) =
2

π

∫ π

0

med(Pθ) dθ, (9)

where med(Pθ) is the median of the projection of P onto
the line y = tan θ x.

If |P | is even, then Pθ may not have a unique me-
dian. In this case, let med(Pθ) denote the midpoint of
the region of points on lθ that define medians of Pθ.
It is straightforward to show that Π is invariant under
similarity transformations.

The formulation of the projection median displays
some resemblance to the Steiner centre, which can be
expressed similarly to Eq. 9 in R

2 by replacing med(Pθ)
with mid(Pθ), the midpoint of Pθ [10].

θ

θ

θ θθ
A B Cθ

θ

u

l

P(   )medP

P
PP

Figure 1: defining the projection median

Although this paper examines median functions de-
fined over finite multisets, these can also be defined over
bounded regions in R

d with an associated density func-
tion. In this case, the sums in Defs. 1 and 6–8 are
replaced by integrals. This family of problems is re-
ferred to as continuous facility location. Fekete et al.
[11] examine the continuous rectilinear median.

The projection median can be found using techniques
similar to those developed by Bespamyatnikh et al. [5].
In brief, as θ varies from 0 to π, the point(s) in P
that induce med(Pθ) are identified by maintaining a
line (perpendicular to lθ) that partitions P into two
sets of at most bn/2c points each. The convex hull
of each partition is maintained as the line rotates, re-
quiring O(log2 n) time per update [18]. Since the dual
problem to maintaining these partitions corresponds to
an n/2-level, we require at most O(n4/3) such updates
[8]. Between updates, the contribution to Π(P ) of the
point(s) that induce med(Pθ) is calculated in O(1) time.
Together, these give an O(n4/3 log2 n)-time algorithm.
This can be improved to O(n4/3 log1+ε n) amortized
time using the dynamic convex hull data structure of
Chan [7]. Providing details of this algorithm is not the
goal of this paper; rather, we focus on the properties of
approximation factor and stability.

Theorem 4 The projection median provides a (4/π)-
approximation of the Euclidean median.

Proof. Let dφ denote the `1 norm relative to a rotation
by φ of the reference axis. That is, dφ(x) = ||fφ(x)||1,
where fφ is a clockwise rotation about the origin by φ.
Since ||x||1 ≥ ||x|| for any x, similarly, dφ(x) ≥ ||x||. Let
Rφ = f−1

φ (R(fφ(P ))) denote the rectilinear median with
respect to norm dφ. Observe that Rφ(P ) = med(Pφ) +
med(Pφ+π/2). Consequently,

Π(P ) =
2

π

∫ π

0

med(Pθ) dθ =
2

π

∫ π/2

0

Rθ dθ.

We bound the approximation factor of Π:

∑

p∈P ||Π(P ) − p||
∑

q∈P ||M(P ) − q|| =

∑

p∈P

∣

∣

∣

∣

∣

∣

2

π

∫ π/2

0
Rθ(P ) dθ − p

∣

∣

∣

∣

∣

∣

∑

q∈P ||M(P ) − q||

≤ 2

π

∫ π/2

0

∑

p∈P ||Rθ(P ) − p||
∑

q∈P ||M(P ) − q|| dθ
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≤ 2

π

∫ π/2

0

∑

p∈P dθ(Rθ(P ) − p)
∑

q∈P ||M(P ) − q|| dθ

≤ 2

π

∫ π/2

0

∑

p∈P dθ(M(P ) − p)
∑

q∈P ||M(P ) − q|| dθ

=
2

π

∫ π/2

0

∑

p∈P (| sin θ| + | cos θ|)||M(P ) − p||
∑

q∈P ||M(P ) − q|| dθ

=
2

π

∫ π/2

0

| sin θ| + | cos θ| dθ

=
4

π
. ¤

Although we do not prove that this bound is tight,
we give the following lower bound.

Theorem 5 The projection median cannot guarantee
an approximation factor less than

√

4/π2 + 1 in the
worst case.

Proof. Let multiset P be defined by k points located
at (0, 1), k points located at (0,−1), and a single point
located at (x, 0), for some k ∈ N and x ∈ R

+. See Fig. 2.

(P)Π

(0,−1)

α

M(P)

(0,1)

(x,0)

Figure 2: example realizing the bound in Thm. 5

By the symmetry of P , M(P ) must lie on the x-
axis. Consequently, it is straightforward to show that
M(P ) = (1/

√
4k2 − 1, 0). By Eq. (9), the projection

median of P is located at Π(P ) = (2x arctan(1/x)/π, 0).
The approximation factor λ is at least

λ ≥ lim
x→∞

k→∞

∑

p∈P ||Π(P ) − p||
∑

q∈P ||M(P ) − q||

= lim
x→∞

k→∞

2k
√

4x2

π2 arctan2
(

1

x

)

+ 1 + x − 2x
π arctan

(

1

x

)

2k
√

1

4k2−1
+ 1 + x − 1√

4k2−1

=

√

4

π2
+ 1. ¤

Theorem 6 The projection median is (π/4)-stable.

Proof. Choose any non-empty and finite P in R
2. Let

f : P → R
2 be any ε-perturbation of P . Let multiset

Q = f(P ). Since Π is invariant under rotation and
translation, without loss of generality assume Π(P ) and
Π(Q) lie on the x-axis. The one-dimensional median is
1-stable. Consequently, for any ε-perturbation of P , f ,

||med(Pθ) − med(Qθ)|| ≤ max
p∈P

||p − f(p)||.

Thus, for any θ,

|med(Pθ)x − med(Qθ)x| = | cos θ| · ||med(Pθ) − med(Qθ)||
≤ | cos θ| · max

p∈P
||p − f(p)||

≤ | cos θ| · ε,

where ax denotes the x-coordinate of a. We bound the
stability of Π from below by

||Π(P ) − Π(f(P ))||
=|Π(P )x − Π(Q)x|

=

∣

∣

∣

∣

2

π

∫ π

0

med(Pθ)x dθ − 2

π

∫ π

0

med(Qθ)x dθ

∣

∣

∣

∣

≤ 2

π

∫ π

0

|med(Pθ)x − med(Qθ)x| dθ

≤ 2

π

∫ π

0

| cos θ| · ε dθ

=
4ε

π
.

Therefore, for all non-empty finite multisets P in R
2,

∀ε > 0, ∀f ∈ F P
ε ,

π

4
||Π(P ) − Π(f(P ))|| ≤ ε. ¤ (10)

The bound in Eq. (10) is shown to be tight by the fol-
lowing example. Let P be an even number of points uni-
formly distributed on the unit circle centred at the ori-
gin. Choose any ε ∈ (0, 1) and define an ε-perturbation
such that points above the x-axis move right (clockwise)
in a direction tangent to the circle while points below
the x-axis move right (counter-clockwise) in the oppo-
site direction. Every point p in P has a corresponding
point in P , q = −p, opposite the origin from p. The
midpoint of each such pair of points p and q defines
med(Pθ) for some Pθ (corresponding to the projection
onto the line perpendicular to p − q). The resulting
change in the position of med(Pθ) is identical to the
change at p and q. The resulting stability corresponds
exactly to that derived in equation Eq. (10).

6 Evaluation

As shown in Sec. 2, the Euclidean median, M , is highly
unstable. Guaranteeing any degree of stability in a me-
dian function implies an increase in the sum of the dis-
tances in Eq. (1). The ratio of the sums of the distances
defines the approximation factor. In this paper we in-
troduce the projection median, Π, as a stable approxi-
mation of the Euclidean median. We now compare the
stability and approximation factor of Π against those of
two common median functions: the rectlinear median,
R, and the centre of mass, C. See Tab. 1.

Observe that Π is more stable and guarantees a better
approximation factor than R. Similarly, Π guarantees
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median function notation approximation stability
Euclidean median M 1 0

rectilinear median R
√

2 ≈ 1.41 1/
√

2 ≈ 0.71
centre of mass C 2 1

projection median Π [
√

4/π2 + 1, 4/π] π/4
≈ [1.18, 1.27] ≈ 0.79

Table 1: comparing median functions in R
2

a better approximation than C, but one that is not as
stable.

Finally, Def. 8 has a natural generalization to R
d,

suggesting that the properties that make the projection
median a good median function might not be limited to
R

2, but may extend to three or higher dimensions.

7 Applications to Mobile Facility Location

The projection median’s benefits extend beyond its
definition as the median of a set of static points.
Recently, several questions of facility location have
been posed within the setting of mobile facility location
(e.g., [1, 2, 4, 13]). Given a set of mobile clients moving
continuously and with bounded velocity in R

2, the
fitness of a mobile facility is determined both by its
approximation factor and also by its maximum velocity
and continuity of its motion. The stability of a median
function is inversely related to the maximum velocity
of a mobile facility, providing further motivation for
the need of stability in a median function. Thus, the
projection median defines the position of a mobile
facility that approximates the mobile Euclidean median
with a factor of 4/π while maintaining a maximum
velocity of at most 4/π relative to the velocity of the
clients.
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