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Abstract

We define the projection median of a non-empty and
finite multiset of points in R%2. We show the projec-
tion median provides a better approximation of the Eu-
clidean (¢2) median than do the rectilinear (¢;) median
or the centre of mass, both in terms of approximation
factor and stability.

1 Introduction: Euclidean Median

Definition 1 Given an arbitrary non-empty finite mul-
tiset P in R?, a Euclidean median of P is a point in
R2, M(P), that minimizes

> IM(P) —pll. (1)

peEP

If the points of P are not collinear, then the Euclidean
median is unique [17]. Furthermore, M is invariant un-
der similarity transformations.

The Euclidean median problem on three points in the
plane was first posed by Fermat and solved by Torricelli
early in the 17th century [16]. In R, the Euclidean me-
dian is easily found in ©(n) time, where n = |P|, by a
linear-time selection algorithm. In two or more dimen-
sions, the location of the Euclidean median cannot be
solved exactly when |P| > 5 [3]. No polynomial-time
algorithm is known, nor has the problem been shown
to be NP-hard [12]. The most common approximation
algorithm is Weiszfeld’s algorithm [20], an iterative pro-
cedure that converges to the Euclidean median. Bose et
al. [6] and Indyk [14] both give linear-time random-
ized algorithms for e-approximations of the Euclidean
median. Bose et al. [6] also give an O(nlogn)-time
deterministic e-approximation algorithm.

The FEuclidean median has been repeatedly rediscov-
ered under a variety of names. The most common of
these is Weber point. Other names include Torricelli
point, Fermat point, first Fermat point, isogonic cen-
tre, first isogonic centre, ¢ median, 1-median, spatial
median, Steiner point (amongst other definitions for a
Steiner point, this one derives from the Steiner tree
problem), the point of equilibrium in a Varignon frame,
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Kimberling triangle centre X (13) [15], or any combi-
nation of Fermat-Steiner-Torricelli-Weber point. An
overview of the history and solutions to the Euclidean
median problem can be found in [9, 17, 21].

2 Approximation Metrics

Point coordinates are commonly represented by dis-
cretization of real positions to nearby grid coordi-
nates. That is, each point is approximated by the
nearest grid point. Given a multiset of points P in
R2, small perturbations at only a few points of P
can result in a relatively large change (error) in the
position of the Euclidean median of P. For exam-
ple, let P = {(0,0),(0,0),(1,0),(1,¢)} and let P' =
{(0,0),(0,¢),(1,0),(1,0)}. For any ¢ > 0, M(P) =
(0,0) and M(P’") = (1,0). In this sense, the Euclidean
median is unstable.

Given this instability, the Euclidean median may be
unfit for certain applications. A function that approx-
imates the Euclidean median while maintaining some
degree of stability may be better suited. We refer to
such a function as a median function.

We formalize the notion of stability by defining x-
stability for a median function T as a bound on its
maximum volatility. This requires preliminary defini-
tions for an e-perturbation and a continuous function.

Definition 2 Given ¢ > 0, function f : P — R? is an
e-perturbation on P if for allp € P, ||p— f(p)|| <e.

Let FP denote the set of all e-perturbations on P. A
prerequisite for stability is continuity. Specifically, if the
stability of median function Y is bounded, then T must
be continuous.

Definition 3 A median function Y is continuous if
for all P in R? and all § > 0 there exists an € > 0 such
that for all f € FF,

IT(P) =Y (f(P))Il < 0. (2)
Definition 4 Median function Y is k-stable if
Ve>0, Vf e FY, w||T(P) = T(f(P)|[<e.  (3)

for all non-empty finite multisets P in R?.



The Euclidean median is not continuous. Conse-
quently, it is not k-stable for any x > 0.

Similarly, we formalize the notion of approximation
factor by defining A-approximation for a median func-
tion YT as a bound on its worst-case relative approxima-

tion of Eq. (1).

Definition 5 Median  function YT is a  A-
approximation of the Fuclidean median, M, if

Dol =P <A lla - MP)l, (4)

peP qeP

for all non-empty finite multisets P in R2.

3 Centre of Mass

Definition 6 Given an arbitrary non-empty finite mul-
tiset P in R?, the centre of mass of P is the function
whose value, C(P), is the (unique) point in R? given by

mmﬂgzp (5)
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Function C' is invariant under affine transformations.
The centre of mass is easily found in ©(n) time.

The centre of mass is also known as geometric cen-
troid, centroid, mean, 1-mean, centre of gravity, and
Kimberling triangle centre X (2) [15]. The centre of
mass is the point that minimizes the sum of the squares
of distances to the points of P [19].

We now derive tight bounds on the approximation
factor of the centre of mass. Lems. 1 and 2 and Thm. 3
refer to the following definitions for P, a, m, ¢, and z.
Let P denote a finite multiset in R? such that a # M (P)
for some a € P. Let o' = M(P), let P = (P —{a})U
{a’}, and let x = [la —d'||. Let m =3 _p |[p— M(P)||
and let ¢ = 3 p|[p — C(P)]|. Let m’ and ¢’ denote
the corresponding values for P’.

Lemma 1 Point M(P) is a Fuclidean median of P’.

Proof. Assume false. That is, M (P) is not a Euclidean
median of P’. Thus,

Dol =MEPN <Y (o~ M(P)|.

pep’ peP’
Therefore,
Yollp=MP =Y llp—MP)[+=
peEP peEP’
<> llp—MP)||+=
peEP’
= llp— M(P)||.
peP

Thus, M(P) did not minimize > . p[lp — M(P)]|], de-
riving a contradiction. Therefore M(P') = M(P). O

Lemma 2 The ratio ¢’/m’ is bounded by

c—n-Nz-(z-2) ¢ o

!/

m—-x m

Proof. Sum ¢’ can be bounded from below by the max-
imum difference in ||p — C'(P)|| for each point p € P.
For point a this change is at most +(x — x/n). For the
remaining n — 1 points it is at most +x/n. Thus,

c—(n—l)%—(m—%) <c.

By Lem. 1, m’ = m — 2 and Eq. (6) follows. |

Theorem 3 The centre of mass provides a (2 —2/n)-
approximation of the Fuclidean median.

Proof. Assume P is a multiset that maximizes the ap-
proximation factor of C' such that

2
c>m<2——),
n

x
= cr —cm > 2mx — 2m— — cm,
n

:cf(n—l)%f(x—%) >£7
m—x m
/
:>c—/>£, by Lem. 2.
m' " m

This contradicts our assumption that P maximizes
the approximation factor of C. Therefore, ¢ < (2 —
2/n)m. O

The bound is realized by n — 1 points located at the
origin and a single point located at (1,0).

As shown by Bespamyatnikh et al. [4], any func-
tion defined by a convex combination of a set of mobile
points moves with maximum relative velocity at most
one. Since the centre of mass is a convex combination
of the points of P, this result implies that the centre of
mass is 1-stable. The bound is trivially tight, as demon-
strated by any translation of the points of P.

4 Rectilinear Median

The rectilinear median is defined analogously to the Eu-
clidean median with respect to the ¢; norm instead of
the /5 norm.

Definition 7 Given an arbitrary non-empty finite mul-
tiset P in R?, a rectilinear median of P is a point in
R?, R(P), that minimizes

> IIR(P) = plh, (7)

peEP

where || - ||1 denotes the €1 norm.



Function R is invariant under translation and uniform
scaling, but not under rotation or reflection.

The rectilinear median is found in ©(n) time by solv-
ing two independent one-dimensional median problems
on the z- and y-coordinates of the points of P.

Bespamyatnikh et al. [4], show that the relative ve-
locity of the rectilinear median of a set of mobile points
in R? is at most v/2. Furthermore, this bound is tight.
It is straightforward to show that maximum relative ve-
locity is inversely related to stability, implying that R
is (1/v/2)-stable.

Bespamyatnikh et al. [4] also show that the rectilinear
median provides a v/2-approximation of the Euclidean
median. We show this bound is tight even for small
point sets in the following example. Let 2k points lie at
(1,0), let k41 points lie at (0,1), and let k41 points lie
at (0, —1). When k > 3, the Euclidean median of P lies
at (1,0) and the (unique) rectilinear median of P lies at

(0,0)- Xpep llp = RP)I| = V23 4ep lla = M(P)].

5 Projection Median

The definition of the Fuclidean median is the natural
generalization of the one-dimensional median to higher
dimensions. Eq. (1), however, suggests other possible
generalizations.

One possibility is to project points onto a line through
the origin, to find the one-dimensional median of the
projection, and to integrate these one-dimensional me-
dians for all lines through the origin.

Let lp denote the line through the origin parallel to
the unit vector ug = (cos6,sinf). Expressed in slope-
intercept form, ly is the line y = tanf z. Given a mul-
tiset of points P in R? and an angle § € [0,7), let Py
denote the multiset defined by the projection of P onto
line ly. See Fig. 1A. That is,

Py = {ug(p,up) | p € P}. (8)
Definition 8 The projection median of a non-
empty finite multiset P in R? is
2 ™
I(P) = —/ med(Pp) db, (9)
T Jo

where med(Py) is the median of the projection of P onto
the line y = tanf x.

If |P| is even, then Py may not have a unique me-
dian. In this case, let med(Py) denote the midpoint of
the region of points on [y that define medians of Pj.
It is straightforward to show that II is invariant under
similarity transformations.

The formulation of the projection median displays
some resemblance to the Steiner centre, which can be
expressed similarly to Eq. 9 in R? by replacing med(P)
with mid(Py), the midpoint of Py [10].

Figure 1: defining the projection median

Although this paper examines median functions de-
fined over finite multisets, these can also be defined over
bounded regions in R? with an associated density func-
tion. In this case, the sums in Defs. 1 and 6-8 are
replaced by integrals. This family of problems is re-
ferred to as continuous facility location. Fekete et al.
[11] examine the continuous rectilinear median.

The projection median can be found using techniques
similar to those developed by Bespamyatnikh et al. [5].
In brief, as 6 varies from 0 to =, the point(s) in P
that induce med(Py) are identified by maintaining a
line (perpendicular to ly) that partitions P into two
sets of at most |n/2] points each. The convex hull
of each partition is maintained as the line rotates, re-
quiring O(log® n) time per update [18]. Since the dual
problem to maintaining these partitions corresponds to
an n/2-level, we require at most O(n*/?) such updates
[8]. Between updates, the contribution to II(P) of the
point(s) that induce med(Pp) is calculated in O(1) time.
Together, these give an O(n*/3log® n)-time algorithm.
This can be improved to O(n*/3log’*“n) amortized
time using the dynamic convex hull data structure of
Chan [7]. Providing details of this algorithm is not the
goal of this paper; rather, we focus on the properties of
approximation factor and stability.

Theorem 4 The projection median provides a (4/7)-
approzimation of the Fuclidean median.

Proof. Let dy denote the ¢; norm relative to a rotation
by ¢ of the reference axis. That is, dg(x) = ||fs(2)]|1,
where f, is a clockwise rotation about the origin by ¢.
Since ||z||1 > [|z|| for any =, similarly, dg(x) > ||z||. Let
Ry = f(;l (R(f4(P))) denote the rectilinear median with
respect to norm dg. Observe that Ry(P) = med(Py) +
med(Py,,/2). Consequently,

2

™ /2
T(P) = %/0 med(Py) df = ;/O Ry df.

We bound the approximation factor of II:

2 m/2
Sep IUP) = pll Tper||2 1577 Ro(P) b —p]|

Ygep IM(P) —ql] > gep IM(P) — 4|
2 ™23 ,cp|[Ro(P) —pl|
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Although we do not prove that this bound is tight,
we give the following lower bound.

Theorem 5 The projection median cannot guarantee

an approzimation factor less than /4/m2+ 1 in the
worst case.

Proof. Let multiset P be defined by k points located
at (0,1), k points located at (0, —1), and a single point
located at (x,0), for some k € Nand z € RT. See Fig. 2.

Figure 2: example realizing the bound in Thm. 5

By the symmetry of P, M(P) must lie on the z-
axis. Consequently, it is straightforward to show that
M(P) = (1/v4k?> —1,0). By Eq. (9), the projection
median of P is located at II(P) = (2z arctan(1/x)/7,0).
The approximation factor A is at least

I(P) —
A> fm > pep II(P) —p|
o Ygep IM(P) — 4|

2/{\/‘%2 arctan® (1) + 1+ 2 — 2% arctan (1)

. xr
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Theorem 6 The projection median is (7/4)-stable.

Proof. Choose any non-empty and finite P in R2. Let
f : P — R? be any e-perturbation of P. Let multiset
@ = f(P). Since II is invariant under rotation and
translation, without loss of generality assume II(P) and
I1(Q) lie on the x-axis. The one-dimensional median is
1-stable. Consequently, for any e-perturbation of P, f,

[[med(Py) —med(Qp)| < max[lp — f(p)]]-

Thus, for any 6,

|med(Py), — med(Qp)z| = |cosb| - ||med(Py) — med(Qy)|]
< ol - _
< | cost| rp}leagllp Ol

< |cosf| e

)

where a, denotes the x-coordinate of a. We bound the
stability of II from below by

[ITL(P) — TI(f(P))]]
=[(P); — T(Q)q|

2 [T 2 [T
—/ med(Pp), df — —/ med(Qg)x dG‘
Vs 0 ﬂ- 0

gg/ Imed(Py)s — med(Qp).| d6
™ Jo

2 ™

§—/ |cosd] - e db
™ Jo
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™

Therefore, for all non-empty finite multisets P in R2,
Ve>0, vf € FF, ZI0(P) ~L(f(P)| <e. O (10)

The bound in Eq. (10) is shown to be tight by the fol-
lowing example. Let P be an even number of points uni-
formly distributed on the unit circle centred at the ori-
gin. Choose any € € (0,1) and define an e-perturbation
such that points above the z-axis move right (clockwise)
in a direction tangent to the circle while points below
the z-axis move right (counter-clockwise) in the oppo-
site direction. Every point p in P has a corresponding
point in P, ¢ = —p, opposite the origin from p. The
midpoint of each such pair of points p and ¢ defines
med(Py) for some Py (corresponding to the projection
onto the line perpendicular to p — ¢). The resulting
change in the position of med(Py) is identical to the
change at p and ¢q. The resulting stability corresponds
exactly to that derived in equation Eq. (10).

6 Evaluation

As shown in Sec. 2, the Euclidean median, M, is highly
unstable. Guaranteeing any degree of stability in a me-
dian function implies an increase in the sum of the dis-
tances in Eq. (1). The ratio of the sums of the distances
defines the approximation factor. In this paper we in-
troduce the projection median, II, as a stable approxi-
mation of the Euclidean median. We now compare the
stability and approximation factor of IT against those of
two common median functions: the rectlinear median,
R, and the centre of mass, C. See Tab. 1.

Observe that IT is more stable and guarantees a better
approximation factor than R. Similarly, II guarantees



median function notation approximation  stability

Euclidean median M 1 0
rectilinear median R V2 1.41 1/\/5 ~ 0.71
centre of mass C 2 1
projection median  II  [\/4/7% + 1,4/7]  7/4

~[1.18,127]  ~0.79

Table 1: comparing median functions in R?

a better approximation than C, but one that is not as
stable.

Finally, Def. 8 has a natural generalization to RY,
suggesting that the properties that make the projection
median a good median function might not be limited to
R?, but may extend to three or higher dimensions.

7 Applications to Mobile Facility Location

The projection median’s benefits extend beyond its
definition as the median of a set of static points.
Recently, several questions of facility location have
been posed within the setting of mobile facility location
(e.g., [1, 2, 4, 13]). Given a set of mobile clients moving
continuously and with bounded velocity in R?, the
fitness of a mobile facility is determined both by its
approximation factor and also by its maximum velocity
and continuity of its motion. The stability of a median
function is inversely related to the maximum velocity
of a mobile facility, providing further motivation for
the need of stability in a median function. Thus, the
projection median defines the position of a mobile
facility that approximates the mobile Euclidean median
with a factor of 4/7 while maintaining a maximum
velocity of at most 4/7 relative to the velocity of the
clients.
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