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Minimizing the Number of Arcs Linking a Permutation of Points in the Plane
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Abstract

Given a finite set of points P in R2 and a permutation
of P , f : P → P , what is the minimum number of
arcs required to connect the points of P such that every
point p ∈ P is adjacent to f(p) along an arc and no two
arcs cross? We show this question is NP-complete.

1 Problem Definition

An arc consists of a closed continuous subset of a circle
in the plane (the subset may be a complete circle). We
generalize this definition to include arcs of a circle of
infinite radius, namely, line segments.

For a finite set P , function f : P → P defines a
permutation of P if and only if f is a bijection. That is,
f partitions P into ordered cycles.

Definition 1 Let P be a � nite set of points in R2. Let
f : P → P de� ne a permutation of P . Let A be a set
of arcs in R2. Set A is an arc link of (P, f) if for every
p ∈ P , p and f(p) are adjacent along some arc a ∈ A.

Definition 2 Let P be a � nite set of points in R2. Let
f : P → P de� ne a permutation of P . Let A be an
arc link of (P, f). If for all a1, a2 ∈ A, a1 #= a2 implies
a1 and a2 do not intersect (except possibly at their end-
points) then set A is a non-crossing arc link of (P, f).

Definition 3 Let P be a � nite set of points in R2. Let
f : P → P de� ne a permutation of P . Let A be a non-
crossing arc link of (P, f). If |A| ≤ |B| for any set B
that is a non-crossing arc link of (P, f), then set A is a
minimum non-crossing arc link of (P, f).

See Figure 1. The question can be phrased as a deci-
sion problem by including the value k:

MINIMUM NON-CROSSING ARC LINK
INSTANCE:
Let P be a finite set of points in R2. Let f : P → P
define a permutation of P . Let k ∈ Z+ be fixed.
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Figure 1: (A) a set of points P = {p1, . . . , p7} with
a simple cyclic permutation, f(pi) = pj , where j =
i + 1 mod 7, (B) an arc link of (P, f), (C) and (D) non-
crossing arc links of (P, f), and (E) a minimum non-
crossing arc link of (P, f) consisting of three arcs

QUESTION:
Does there exist a set A that is a non-crossing arc link
of (P, f) such that |A| ≤ k?

2 Related Work

Given a set of points P and a permutation f : P → P , a
simple related problem would be to determine whether
a non-crossing edge link exists, where edges are line seg-
ments. At most one solution exists if only straight edges
are allowed and minimizing the cardinality of the edge
link is unnecessary. The existence of a solution is eas-
ily verified in O(n log n) time by running a sweep-line
algorithm [1] to detect intersections among the edges.

A related problem is given by removing the require-
ment that points of P be linked in order according
to permutation f . The corresponding questions asks
whether there exists an arc cover of P , regardless of the
order in which points are linked (the cover need not be
a cycle cover). That is, given a set of points P in R2

and an integer k, can P be covered by a set of k line
segments? This problem was shown to be NP-hard by
Megiddo and Tamir [6]. Algorithms solving this prob-
lem in time exponential in k are given by Langerman
and Morin [4].

3 Reduction from P3SAT

We show MINIMUM NON-CROSSING ARC LINK is
NP-hard by a polynomial-time reduction from P3SAT
(planar 3-satisfiability).

P3SAT
INSTANCE:
Let L = {x1, . . . , xn} be a finite set of literals and let
L = {x1, . . . , xn} be the corresponding set of negated
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Figure 2: non-crossing embedding of P3SAT instance

literals. Let C ⊆ (L ∪ L) × (L ∪ L) × (L ∪ L) be a set
of clauses, where each clause c ∈ C is a disjunction of
three literals drawn from L ∪ L such that the induced
bipartite graph, G = (L,C,E), is planar, where the
edge set E ⊆ L × C is defined by E = {(x, c)}, where
literal x or x appears in clause c.

QUESTION:
Does there exist a set of literal truth values L ⊆ {T, F}n

such that all clauses in C are satisfied?

There exists a non-crossing embedding of G in
the plane such that all literal vertices (set L) are
positioned along the x-axis on a unit grid [3, 5]. We
will assume that an instance of P3SAT refers to such an
embedding; that is, the three literals of each clause are
connected by three vertical line segments and at most
three horizontal line segments. The meeting point of
the edges forms a vertex of degree three corresponding
to the clause. See Figure 2A.

Deciding whether an instance of P3SAT has a satis-
fying truth assignment is NP-complete [5].

Theorem 1 MINIMUM NON-CROSSING ARC
LINK is NP-complete.

Proof. We describe a polynomial-time reduction from
P3SAT to MINIMUM NON-CROSSING ARC LINK
and show that a solution can be verified in polynomial
time.

Choose any instance I of P3SAT (we may assume
each literal is contained within at most five clauses
[2, 5]). Let GI = (L,C,E) denote a non-crossing em-
bedding in the plane of the bipartite graph induced by

I such that the vertices of L lie on the unit grid along
the x-axis, the vertices of C lie at grid points above or
below the x-axis, and all edges (x, c) ∈ E consist of one
vertical line segment and at most one horizontal line
segment whose union connects x ∈ L and c ∈ C.

We build a point set P and an associated permutation
f in polynomial time such that, for a certain integer k
that we determine, (P, f) has a non-crossing arc link of
size less than or equal to k if and only if I is satisfiable.

We construct gadgets, where each gadget consists of
a point set along with a permutation of that point set.
We build a gadget for each clause and a gadget for each
literal. As for edges, every edge in GI has one literal
endpoint and one clause endpoint. The edges will not
have their own gadgets, but rather these will be like
tentacles extending from the literal gadgets (see Fig-
ure 2B). These tentacles will reach out and interact with
the appropriate clause gadgets.

The gadget (Px, fx) for the literal x will admit exactly
two minimum arc links, Ax (black) and A′

x (grey), each
of size |Px|/2. These arc links represent the use of x
and x respectively. The gadget (Pc, fc) for the clause c
will admit a non-crossing arc link of size 11 if and only
if our choice of arc links for the literal gadgets satisfies
the clause. For an unsatisfied clause, the corresponding
clause gadget will only admit arc links of size strictly
greater than 11. Our problem instance will simply be
the union of the gadgets, i.e.,

P =

[

⋃

x∈L

Px

]

∪

[

⋃

c∈C

Pc

]

and

f =

[

⋃

x∈L

fx

]

∪

[

⋃

c∈C

fc

]

.

We set our integer k as

k = 11|C| +
1

2

∑

x∈L

|Px|.

This value of k means that (P, f) will admit a non-
crossing arc link of size k if and only if, for every literal
x either Ax or A′

x is used, and every clause gadget is
satisfied by this assignment and uses an arc link of size
11.

The gadget (Px, fx) for the literal x is such that no
four consecutive points are co-circular. Ax and A′

x are
both such that any arc connects at most three consecu-
tive points. Therefore Ax and A′

x must be the only two
minimum arc links for (Px, fx). Ax and A′

x both fol-
low the horizontal and vertical edges between literal x
and the clause vertices for all clauses to which x belongs
(see Figures 2B and 3). Ax and A′

x essentially trace the
same shape, with only minor differences. The differ-
ences come into play only when the tentacles interact
with the clause gadgets.
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Figure 3: The point set Px representing the vertex x
and all adjacent edges in the P3SAT graph. The grey
strips extending out of the frame in (B) represent edges
going from x to clause vertices. Ax and A′

x are shown
in (B) outlining the shape of the gadget.

Following the outline of the desired shape of the gad-
get for a literal x requires some of the tricks shown in
Figure 4. When a clause includes the negation of a lit-
eral, we negate the polarity using the inverter gadget
displayed in Figure 4C.

For our clause gadgets we translate each clause into
the negation of a disjunction. For example, take the
clause c = x1 ∨ x2 ∨ x3 and rewrite it as x1 ∧ x2 ∧ x3.
The permutation for the clause gadget consists of three
3-cycles. The corresponding points are positioned such
that the circles induced by the 3-cycles intersect each
other (see Figures 5 and 6). Each clause is met by three
literals, each of which interacts with one of the three
circles. That is, each circle is intersected by exactly one
of the minimum arc links for the corresponding literal
gadget (see Figure 6). For a literal x, this is where the
difference between Ax and A′

x actually matters. Finally,
a blocking gadget is inserted along the circle between
two of the points in each 3-cycle. This blocking gadget
prevents these two points from being linked by an arc
of the circle (see Figure 5B).

Thus, for each clause c ∈ C, the clause gadget consists

C

B

A

D

Figure 4: (A) a literal gadget xi and xi, (B) an offset
gadget, (C) a polarity inverter gadget, and (D) a right-
angle turn gadget

A

B

Figure 5: (A) clause gadget component and (B) blocking
gadget

of the set Pc of 18 points and the permutation fc. A
minimum arc link of (Pc, fc) must include one of the
three circular arcs. This means that at least one of
the three literal gadgets must have the desired truth
assignment, i.e., the desired minimum arc link. Observe
that a minimum arc link of (Pc, fc) consists of 11 arcs.

The clause gadget will admit a non-crossing arc link of
size 11 if and only if the variable assignment (i.e., choice
of minimum arc links for the literal gadgets) satisfies the
clause. Thus, (P, f) will admit a non-crossing arc link
of size k if and only if the original P3SAT instance is
satisfiable.

It is not difficult to see that the reduction can be
done in polynomial time. A solution can be verified in
O(n2) time by examining every pair of arcs and checking
whether they intersect. Therefore MINIMUM NON-
CROSSING ARC LINK is NP-complete. �

4 Open Problems

Given a set of points P and a permutation f , we have
shown that the problem of finding a minimum non-
crossing arc link is NP-complete.
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Figure 6: clause x1 ∨ x2 ∨ x3 ≡ x1 ∧ x2 ∧ x3

                                      183



18th Canadian Conference on Computational Geometry, 2006

a

Figure 7: There exists a set P and a permutation f such
that any non-crossing arc link of (P, f) must include a
curved arc that only meet two points of P .

For some sets of points P and permutations f no non-
crossing arc link of (P, f) consists only of line segments
(see Figure 7). Furthermore, for some sets of points P
and permutations f , no non-crossing arc link of (P, f)
exists (see Figure 8).

To our knowledge, given a set of points P in R2 and
a permutation f : P → P , the complexity of determin-
ing whether there exists any (not necessarily minimum)
non-crossing arc link of (P, f) is open. We formally state
the problem below:

NON-CROSSING ARC LINK
INSTANCE:
Let P be a finite set of points in R2. Let f : P → P
define a permutation of P .

QUESTION:
Does there exist a non-crossing arc link of (P, f)?

Whether NON-CROSSING ARC LINK is NP-hard
or polynomial-time solvable remains an open question.

Acknowledgements

The authors would like to thank the members of the
theory group in the Department of Computer Science at
the University of British Columbia where this problem
was initially discussed at a problem-solving session.

x

y

Figure 8: No non-crossing arc link exists if p(x) = y
completes the cycle.
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