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Guarding Orthogonal Terrains
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Abstract

A 1.5-dimensional terrain T with n vertices is an x-
monotone polygonal chain in the plane. A point guard
p on T guards a point q of T if the line segment connect-
ing p to q lies on or above T ; p is a vertex guard if it is
a vertex of T . In the Optimal Terrain Guarding (OTG)
problem on T , the objective is to guard the vertices of
T by the minimum number of vertex guards. King and
Krohn [9] showed that the OTG problem is NP-hard on
arbitrary terrains, and Gibson et al. [6] gave a PTAS for
this problem. In this paper, we introduce directed visi-
bility in which the visibility is directed only at adjacent
vertices. We give an O(n)-time algorithm that solves
the OTG problem exactly on orthogonal terrains under
directed visibility.

1 Introduction

A 1.5-dimensional terrain T is an x-monotone polyg-
onal chain in the plane, where V (T ) = {v1, . . . , vn} is
the set of vertices of T ordered from left to right, and
E(T ) = {e1 = (v1, v2), . . . , en−1 = (vn−1, vn)} is the set
of edges of T induced by the vertex set V (T ). Terrain
T is called an orthogonal terrain if each edge e ∈ E(T )
is either horizontal or vertical. Let p be a point guard
on T ; p is called a vertex guard if p ∈ V (T ). A point q
on T is seen/guarded by p (or, p sees/guards q) if and
only if every point of the line segment pq lies either on
or above T .

Given a (not necessarily orthogonal) terrain T , two
common types of guarding problems are defined on
T . In the continuous terrain guarding problem, the
objective is to find a minimum-cardinality set S of
points on T that guards T ; that is, for every point
p ∈ T , either p is in S or p is guarded by at least one
point in S. In the discrete terrain guarding problem,
on the other hand, two sets P and G of points on T are
given along the terrain T as input and the objective is
to find a subset G′ ⊆ G of minimum cardinality such
that G′ guards the points in P .

Related Work. The terrain guarding problem belongs
to the well-known family of art gallery problems. The
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objective of the art gallery problem is to guard the in-
terior of a polygon using the minimum number of point
guards. The problem was first introduced by Klee in
1973 [12] and Chvátal [2] was the first to answer Klee’s
art gallery question by giving an upper bound proving
that bn/3c point guards are always sufficient and some-
times necessary to guard a simple polygon with n ver-
tices. The orthogonal art gallery problem was first stud-
ied by Kahn et al. [7] who proved that bn/4c guards are
always sufficient and sometimes necessary to guard the
interior of a simple orthogonal polygon with n vertices.
In terms of the complexity of the art gallery problem,
Lee and Lin [11] showed that the art gallery problem is
NP-hard on simple polygons. Moreover, the problem is
also NP-hard on simple orthogonal polygons [13] and it
remains NP-hard even for monotone polygons [10]. Ei-
denbenz et al. [3] proved that the art gallery problem is
APX-hard on simple polygons. They also showed that
if the input polygon is allowed to have holes, then the
problem cannot be approximated by a polynomial-time
algorithm with factor ((1 − ε)/12) lnn for any ε > 0,
where n is the number of the vertices of the polygon.

Ben-Moshe et al. [1] gave the first constant-factor
approximation algorithm for the terrain guarding
problem and left the complexity of the problem open.
King and Krohn [9] showed that both continuous and
discrete versions of the terrain guarding problem are
NP-hard on arbitrary terrains. A 4-approximation
algorithm for the terrain guarding problem was given
by Elbassioni et al. [4], and Katz and Roisman [8]
gave a 2-approximation algorithm for the OTG prob-
lem on orthogonal terrains. Gibson et al. [6] gave a
polynomial-time approximation scheme (PTAS) for the
discrete version of the terrain guarding problem, and
a PTAS for the continuous version of the problem was
recently given by Friedrichs et al. [5]. To the best of
our knowledge, however, the complexity of the OTG
problem on orthogonal terrains remains open. We note
that the hardness result of King and Krohn [9] does not
apply to the OTG problem on orthogonal terrains due
to a number of essential differences between arbitrary
and orthogonal terrains (e.g., see Lemma 4).

Problem Definition and Our Result. In this paper,
we consider the discrete terrain guarding problem on an
orthogonal terrain T under directed visibility such that
P = G = V (T ); let n = |V (T )|. Directed visibility is
defined as follows.



27th Canadian Conference on Computational Geometry, 2015

v1 vn

x

y

z
p

q

r

s

Figure 1: An orthogonal terrain T ; throughout the pa-
per, we assume that the leftmost and rightmost edges
of T are two horizontal rays starting from v1 and vn,
respectively. (a) An illustration of directed visibility:
neither vertex y nor z can see vertex x under directed
visibility, but they can see each other. The vertex x can
see vertex y, but it cannot see vertex z because the line
segment xz is horizontal. (b) The vertices q and r are
reflex while the vertices p and s are convex. Moreover,
q and r are both right reflex, p is left convex and s is
right convex; vertex y is a left reflex vertex.

Definition 1 (Directed Visibility). Let u be a vertex
of T . If u is a reflex vertex, then u sees a vertex v of T if
and only if every point in the interior of the line segment
uv lies strictly above T . If u is a convex vertex, then u
sees a vertex v of T if and only if uv is a non-horizontal
line segment that lies on or above T .

It is possible, under directed visibility, that a vertex u
of T sees a vertex v, but vertex v cannot see u; see
Figure 1(a) for an example. Therefore, we consider the
following problem:

Definition 2 (The Directed Terrain Guarding
(DTG) Problem on Orthogonal Terrains). Given
an orthogonal terrain T , compute a subset S ⊆ V (T ) of
minimum cardinality that guards the vertices of T under
directed visibility. That is, for every vertex u ∈ V (T ),
either u ∈ S or u is guarded by at least one other vertex
in S under directed visibility.

We give an O(n)-time algorithm for the DTG problem
on orthogonal terrains under directed visibility. To this
end, we first reduce the DTG problem to two subprob-
lems such that an exact solution for the DTG problem
reduces to the union of exact solutions of the two sub-
problems. We then give an O(n)-time greedy algorithm
for solving each of the subproblems. To the best of our
knowledge, this is the first exact algorithm for a non-
trivial instance of the art gallery problem on terrains
and partially answers a question posed by Ben-Moshe
et al. [1] for orthogonal terrains.

1.1 Paper Organization

The paper is organized as follows. Section 2 presents
preliminaries and some definitions. In Section 3, we
give a characterization for an exact solution of the DTG

problem: we define two subproblems and show that
an exact solution for the DTG problem reduces to the
union of the exact solutions of the subproblems. In Sec-
tion 4, we show how to solve each subproblem in O(n)
time by a simple greedy algorithm. We conclude the
paper in Section 5.

2 Preliminaries and Definitions

We denote the x- and y-coordinates of a point p on
an orthogonal terrain T by x(p) and y(p), respectively.
We use terms “terrain” and “guard” to refer to an or-
thogonal terrain and a vertex guard, respectively, unless
otherwise stated. Moreover, we simply use “guarding”
to mean “guarding under directed visibility” unless oth-
erwise stated.

A vertex u of T is convex if the angle formed by the
edges incident to u above T is π/2 degrees, otherwise u is
reflex. We partition the vertices of T into 4 equivalences
classes right or left endpoints of a horizontal edge of
T , and whether the vertex is reflex or convex. We use
VLC(T ), VRC(T ), VLR(T ) and VRR(T ) to respectively
denote the left convex, right convex, left reflex, and right
reflex subsets of the vertices of T . See Figure 1(b) for
an example of these definitions.

For consistency, we assume that the leftmost and
rightmost edges of T are two horizontal rays starting
from v1 and vn, respectively; see Figure 1 for an illus-
tration. For a reflex vertex u of T , we denote the convex
vertex directly below u by B(u). We say that a subset
M of vertices of T guards a subset M ′ of vertices of T ,
where M ∩M ′ = ∅, if every vertex in M ′ is guarded
by at least one vertex in M . We first describe some
properties of orthogonal terrains.

Observation 1 Let u and v be two reflex vertices of
T . If vertex u sees B(v), then u must also see v; see
Figure 2 for an illustration.

Let u and v be two convex vertices of T . If y(u) =
y(v), then clearly u and v cannot see each other un-
der directed visibility because the line segment uv is
horizontal. If y(u) 6= y(v), then depending on the x-
coordinates of u and v the line segment uv will pass
through the region below the horizontal edge incident
to either u or v and, therefore, u and v cannot see each
other. This leads to the following lemma.

Lemma 1 No two convex vertices of T can see each
other under directed visibility.

Observation 2 Let u be a reflex vertex of a terrain T .
If u is right reflex and sees a right convex vertex v of
T , then x(u) < x(v) and y(u) > y(v). Similarly, if u
is left reflex and sees a left convex vertex v of T , then
x(u) > x(v) and y(u) > y(v).
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Figure 2: If a reflex vertex u sees B(v), for some reflex
vertex v, then u must also see vertex v itself.

Since directed visibility imposes a constraint relative
to the standard visibility, the visibility graph of the ver-
tices of T under directed visibility is a subgraph of that
of the vertices of T under standard visibility. Therefore,
the following property, called the order claim, still holds
under directed visibility:

Lemma 2 (Ben-Moshe et al. [1]) Let p, q, r and s
be four vertices of a terrain T such that x(p) < x(q) <
x(r) < x(s). If p sees r and q sees s, then p sees s.

Lemma 3 Let u be a reflex vertex of a terrain T . If u
is right reflex (resp., left reflex), then u cannot see any
left convex (resp., right convex) vertex of T .

Proof. We prove the lemma for when u is right reflex;
the other case is proved by a symmetric argument. Let
v be a left convex vertex of T . If x(v) = x(u), then
v = B(u) and, therefore, u cannot see v under directed
visibility. If x(v) 6= x(u), then there are three cases.

• If y(v) = y(u), then v is the adjacent vertex to
the left of u and so u cannot see v under directed
visibility.

• If y(v) > y(u), then the line segment uv passes
through the region below the horizontal edge inci-
dent to v and, therefore, vertex u cannot see v.

• If y(v) < y(u), then there are two cases: (i) if
x(v) < x(u), then the line segment uv passes
through the region below the horizontal edge in-
cident to u and, therefore, vertex u cannot see v.
(ii) If x(v) > x(u), then the line segment uv passes
through the region to the left of the vertical edge
incident to v and, therefore, vertex u cannot see v.

The three cases above complete the proof of the
lemma. �

In an arbitrary terrain, it is possible that a reflex
vertex can guard both a left and a right convex vertex.
For orthogonal terrains, however, this is not the case.
This property is stated in the following lemma.

Lemma 4 Let u be a right convex vertex and v be a
left convex vertex of a terrain T . Then, there is no
reflex vertex of T that sees both u and v under directed
visibility.

Proof. By Lemma 3, (i) no left reflex vertex of T can
see u, and (ii) no right reflex vertex of T can see v.
Therefore, no reflex vertex of T can see both u and v.
This completes the proof of the lemma. �

3 An Exact Algorithm for the DTG Problem

In this section, we present our exact O(n)-time algo-
rithm for the DTG problem on orthogonal terrains. Let
T be an orthogonal terrain with n vertices. To solve
the DTG problem on T , we first show that the DTG
problem on T can be reduced to two subproblems such
that an exact solution for the DTG problem is equiv-
alent to the union of the exact solutions for the two
subproblems. The subproblems are defined as follows.

Definition 3 (The Left-Convex Guarding
(LCG(M)) Problem). Given a set M ⊆ VLC(T ),
the objective of the LCG(M) problem is to compute
a minimum-cardinality set M ′ ⊆ V (T ) such that for
every vertex u ∈ M , either u ∈ M ′ or u is guarded by
at least one vertex in M ′.

Definition 4 (The Right-Convex Guarding
(RCG(M)) Problem). Given a set M ⊆ VRC(T ),
the objective of the RCG(M) is to compute a minimum-
cardinality set M ′ ⊆ V (T ) such that for every vertex
u ∈ M , either u ∈ M ′ or u is guarded by at least one
vertex in M ′.

To compute an exact solution for the DTG problem
on T , we first show that we can restrict our attention to
solutions that are in standard form. A feasible solution
S to the DTG problem on T is in standard form if and
only if every reflex vertex in S sees at least one convex
vertex of T .

Lemma 5 For any orthogonal terrain T , there exists
an exact solution S for the DTG problem on T that is
in standard form.

Proof. Take any exact solution S0 for the DTG prob-
lem on T . We construct a feasible solution S from S0

such that |S| ≤ |S0| and S is in standard form. To
this end, for each reflex vertex u ∈ S0 that does not see
any convex vertex of T , replace u with B(u) (i.e., the
convex vertex directly below u). Let S be the result-
ing set. Clearly, |S| ≤ |S0| and every reflex vertex in
S sees at least one convex vertex of T . We now show
that S is a feasible solution for the DTG problem on
T . Consider a reflex vertex u ∈ S0 that was replaced
by B(u) in S and let V is(u) be the set of vertices of
T that are seen by u. We next prove that every vertex
in V is(u) is still guarded by at least one vertex in S.
First, note that every vertex in V is(u) is a reflex vertex.
Let v ∈ V is(u) and consider B(v). If B(v) ∈ S, then v
is guarded by at least one vertex in S (i.e., the vertex
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B(v)). If B(v) /∈ S, then there must be a reflex vertex
w ∈ S0 that guards B(v) because no two convex vertices
of T can guard each other by Lemma 1. We note that
w ∈ S because w sees at least one convex vertex of T
and so we have not replaced it with B(w) in S. By Ob-
servation 1, vertex w ∈ S guards v and, therefore, S is a
feasible solution. Since |S| ≤ |S0|, the set S is an exact
solution for the DTG problem on T that is in standard
form. This completes the proof of the lemma. �

The following lemma, whose proof is given in Ap-
pendix A due to space constraints, states a necessary
and sufficient condition for solving the DTG problem
on T .

Lemma 6 Let S be a feasible solution for the DTG
problem on T . The set S is an exact solution if and
only if there exists a partition {SL, SR} of S such that
(i) the set SL is an exact solution for the LCG(VLC(T ))
problem on T , and (ii) the set SR is an exact solution
for the RCG(VRC(T )) problem on T .

By Lemma 6, we have the following theorem.

Theorem 7 To solve the DTG problem on T , it
is sufficient to solve the LCG(VLC(T )) and the
RCG(VRC(T )) problems on T .

4 Solving the LCG(VLC(T )) Problem

In this section, we present an O(n)-time exact algorithm
for the LCG(VLC(T )) problem on T ; an exact algorithm
for the RCG(VRC(T )) problem can be derived analo-
gously. First, by Lemma 1 (no convex vertex of T can
see one other convex vertex of T ) and Lemma 3 (no left
reflex vertex of T can see a right convex vertex of T ),
we have the following result.

Lemma 8 If M is a feasible solution for the
LCG(VLC(T )) problem on T , then M ⊆ {VLC(T ) ∪
VLR(T )}.

Next, we show that we can restrict our attention to
solutions that are in a standard form. A feasible solution
M for the LCG(VLC(T )) problem on T is in standard
form if and only if a left convex vertex u is in M if and
only if no reflex vertex of T can see u.

Lemma 9 For any orthogonal terrain T , there exists
an exact solution M for the LCG(VLC(T )) problem on
T that is in standard form.

Proof. Take any exact solution M0 for the
LCG(VLC(T )) problem on T . We construct a fea-
sible solution M from M0 such that |M | ≤ |M0| and
M is in standard form. For every left convex vertex
u ∈ M0 that is seen by at least one left reflex vertex
v of T , replace u with v; let M be the resulting set.

Clearly, |M | ≤ |M0|. Moreover, M is a feasible solution
for the LCG(VLC(T )) problem on T because (i) the
vertex u is now guarded by v, and (ii) the vertex u,
which is left convex, cannot see any other left convex
vertex of T . Therefore, every left convex vertex of T
is still guarded by at least one vertex in M . Since
|M | ≤ |M0| and no left convex vertex of T that is in M
is seen by a left reflex vertex of T , we conclude that M
is an exact solution for the LCG(VLC(T )) problem on
T that is in standard form. �

4.1 A Characterization

To solve the LCG(VLC(T )) problem on T , we
give a characterization for an exact solution of the
LCG(VLC(T )) problem on T . The following lemma,
whose proof is given in Appendix B due to space con-
straints, is similar to the one given in Lemma 6 for the
DTG problem.

Lemma 10 Let M be a feasible solution for the
LCG(VLC(T )) problem on T . The set M is an exact so-
lution if and only if there exists a partition {A,B} of M
such that (i) u ∈ A if and only if u is a left convex vertex
and no reflex vertex of T can see u, and (ii) B = M \A
is a minimum-cardinality subset of VLR(T ) that guards
VLC(T ) \A.

A similar result can be derived for an exact solution
of the RCG(VRC(T )) problem analogously.

Lemma 11 Let M be a feasible solution for the
RCG(VRC(T )) problem on T . The set M is an exact
solution if and only if there exists a partition {P,Q}
of M such that (i) u ∈ P if and only if u is a right
convex vertex and no reflex vertex of T can see u, and
(ii) Q = M \ P is a minimum-cardinality subset of
VRR(T ) that guards VRC(T ) \ P .

By Lemma 10 and Lemma 11, we have the following
theorem.

Theorem 12 To solve the LCG(VLC(T )) problem on
T , it is sufficient to first find the subset A of VLC(T ),
where u ∈ A if and only if no reflex vertex of T can see
u, and then compute a minimum-cardinality subset B
of VLR(T ) that guards VLC(T ) \ A. Similarly, to solve
the RCG(VRC(T )) problem on T , it is sufficient to first
find the subset P of VRC(T ), where u ∈ P if and only
if no reflex vertex of T can see u, and then compute
a minimum-cardinality subset Q of VRR(T ) that guards
VRC(T ) \ P .

4.2 A Greedy Algorithm

In this section, we show how to compute an exact so-
lution for the LCG(VLC(T )) problem on T ; an exact
solution for the RCG(VRC(T )) problem on T can be
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Figure 3: An illustration in support for the proof of
Lemma 13.

computed analogously. By Theorem 12, we first com-
pute the set A, where u ∈ A if and only if u is a left
convex vertex and it is not seen by any reflex vertex
of T . In Section 4.3, we give a linear-time algorithm
for computing R(u) for all the left convex vertices of u,
where R(u) is the rightmost left reflex vertex of T that
sees u (see Lemma 14). Therefore, we can use that al-
gorithm to determine whether a left convex vertex u of
T is seen by any reflex vertex of T at all and, therefore,
the set A can be computed in O(n) time overall. Now,
let C = VLC(T ) \A. In the following, we give an O(n)-
time greedy algorithm for the problem of guarding C
with the minimum-cardinality subset B of VLR(T ).

For each left convex vertex u ∈ C, let R(u) be the
righmost left reflex vertex of T (i.e., the rightmost ver-
tex in VLR(T )) that sees u. Consider the left convex
vertices of C from right to left: for each left convex ver-
tex u in order, if u is not yet guarded by a reflex vertex
in B, then we add R(u) into B. Clearly, the set B is a
feasible solution for guarding the vertices in C. Let B′

be the set of convex vertices that force the algorithm to
add a new guard into B. Clearly, |B′| = |B|. We now
show that no left reflex vertex of T can see two vertices
in B′, which proves that the set B is an exact solution.
Suppose for a contradiction that there exists a left reflex
vertex v that sees two vertices wi and wj in B′. Without
loss of generality, assume that x(wi) > x(wj); that is,
vertex wi is guarded before vertex wj in the ordering.
Since v sees wi, we must have that x(R(wi)) ≥ x(v).
Note that x(R(wi)) 6= x(v) because otherwise we would
have not added a new guard for wj . Therefore, we have
the ordering x(wj) < x(wi) < x(v) < x(R(wi)) such
that wj sees v and wi sees R(wi). But, by Lemma 2,
this means that wj is seen by R(wi) which is a contra-
diction. This proves that no left reflex vertex of T can
see two convex vertices in B′ and so the set B is an
exact solution for guarding the vertices in C.

4.3 Algorithmic Details

In this section, we show how to implement the algo-
rithm in time linear in n, the number of vertices of T .
Our implementation of the algorithm uses the following
result.

Lemma 13 Let u and v be two left convex vertices of T

such that x(v) < x(u). Then, the line segments uR(u)
and vR(v) do not intersect at an interior point.

Proof. Suppose for a contradiction that the line seg-
ments uR(u) and vR(v) intersect at an interior point
p. Since x(v) < x(u), we must have that x(R(v)) <
x(R(u)). Therefore, we have the ordering x(v) < x(u) <
x(R(v)) < x(R(u)); see Figure 3 for an example. By
Lemma 2, the vertex v must see vertex R(u), which is a
contradiction to the fact that R(v) is the righmost left
reflex vertex of T that sees v. This completes the proof
of the lemma. �

Consider the left convex vertices of T from right to
left and let u and v be two left convex vertices such
that x(v) < x(u). By Lemma 13, vertex R(v) cannot lie
between the vertices u and R(u); that is, vertex R(v)
is either R(u) or a vertex to the right of R(u), or it is
a vertex to the left of vertex u. This property leads
us to a linear-time algorithm for computing R(u) for
all the left convex vertices u in C as follows. Consider
the vertices in {C ∪VLR(T )} from right to left in order.
Note that the first vertex must be a left reflex vertex
r. Moreover, we assume that the second vertex is also
left reflex; otherwise, we set R(u) to r for every visited
left convex vertex until we reach to a left reflex vertex
s; we push r and s into a stack S in the order they
have been visited. In the following, let s and r be the
vertices on top of the stack S. Moreover, let t be the
next visited vertex and let α be the angle formed by the
line segments ts and sr that faces above T :

• if t is left reflex, then we pop the two vertices s
and r from S. If α > π, then we push the three
vertices r, s and t into the stack S; otherwise, we
ignore vertex s and push only vertex r into S. Now,
we repeat the same procedure with the current two
top vertices s′ and r′ of S until α becomes greater
than π in which case we push the three vertices r′,
s′ and t into S.

• if t is left convex, then we pop the two vertices s and
r from S. If α > π, then we set R(t) to s and push
vertices r and s back into the stack S; otherwise, we
ignore vertex s and push only vertex r into S. Now,
we repeat the same procedure with the current two
top vertices s′ and r′ of S until α becomes greater
than π in which case we set R(t) to s′ and push r′

and s′ into the stack S.

See Figure 4 for an example of the algorithm. Let u
be a left reflex vertex of T . If α > π, then we process
u in O(1) time and move to the next vertex. If α ≤ π,
then one vertex is removed from the stack S and we then
repeat the same procedure which may consist of remov-
ing further vertices from S. Therefore, at each left reflex
vertex u, either we perform an O(1)-time operation or
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Figure 4: An example illustrating the computation of
R(v), R(w) and R(x). After processing vertex u, the
status of the stack S from top to bottom is: [u, s, r].
When processing vertex v, vertex u is removed from S

since α < π for the line segments vu and us; then R(v)
is set to s. Vertex R(w) is also set to s because α > π
for the line segments ws and sr. Finally, vertex s is
removed from S and R(x) is set to r. The final status
of S is: [r].

we remove a set Su of vertices from S permanently. Note
that by Lemma 13, the vertices in Su will not be pushed
back into S in the future. We can show using an anal-
ogous argument that at each left convex vertex, either
we perform an O(1)-time operation or we remove a set
of vertices from S permanently.

Although this procedure was described for computing
R(u) for all the left convex vertices in C, in fact it can
be used to compute R(u) for all the left convex vertices
of T in O(n) time. This leads us to the following lemma:

Lemma 14 Given an orthogonal terrain T , the over-
all procedure of computing R(u) for all the left convex
vertices u of T can be completed in O(n) time, where
|V (T )|.

By Lemma 14, we have the following theorem.

Theorem 15 The LCG(VLC(T )) problem on T can be
solved exactly in O(n) time, where n = |V (T )|.

We note that the RCG(VRC(T )) problem on T can
be solved analogously in O(n) time. Let S1 and S2

be the exact solutions for the LCG(VLC(T )) and the
RCG(VRC(T )) problems on T , respectively. By Theo-
rem 7, the set S = {S1 ∪ S2} is an exact solution for
the DTG problem on T . Therefore, by Theorem 15, we
have the main result of this paper.

Theorem 16 There exists an O(n)-time exact algo-
rithm for the DTG problem on any orthogonal terrain
T with n vertices.

5 Conclusion

In this paper, we considered the problem of guarding the
vertices of an orthogonal terrain T with the minimum
number of vertex guards under directed visibility (i.e.,
the DTG problem). We showed that the DTG problem

on T is linear-time tractable by first reducing the prob-
lem to two subproblems (i.e., the LCG(VLC(T )) and
RCG(VRC(T )) problems) and then solving each sub-
problem by a greedy algorithm that runs in O(n) time,
where n is the number of the vertices of T . Our al-
gorithm assumes the directed visibility and it does not
apply to the DTG problem under standard visibility.
The complexity of the problem remains open without
the directed visibility constraint.
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Appendix A: Proof of Lemma 6

Proof. (⇒) Let S be an exact solution for the DTG problem
on T ; by Lemma 5, we assume that S is in standard form.
Let SL ⊆ S such that u ∈ SL if and only if u is either a left
convex vertex or it is a left reflex vertex of T . Similarly, let
SR ⊆ S such that v ∈ SR if and only if v either is a right
convex vertex or it is a right reflex vertex of T that sees at
least one right convex vertex. Since S is in standard form,
{SL, SR} is a partition of S.

We first prove that SL is a feasible solution for the
LCG(VLC(T )) problem on T . Let a be a left convex ver-
tex of T . If a ∈ S, then a ∈ SL. If a /∈ S, then by Lemma 3
and the fact that no convex vertex can see another convex
vertex (see Lemma 1), we conclude that there must be a left
reflex vertex b ∈ S that guards a and, therefore, b ∈ SL.
This means that for every left convex vertex a of T , we have
either a ∈ SL or a is guarded by at least one vertex in SL.
Therefore, SL is a feasible solution for the LCG(VLC(T ))
problem on T . By an analogous argument, we can show
that SR is a feasible solution for the RCG(VRC(T )) problem
on T .

We next prove that SL is an exact solution for the
LCG(VLC(T )) problem on T . Suppose for a contradiction
that there exists a feasible solution S′L for the LCG(VLC(T ))
problem on T such that |S′L| < |SL|. In the following, we
prove that the set {S′L ∪ SR} is a feasible solution for the
DTG problem on T , which is a contradiction to the fact that
S is an exact solution for the DTG problem on T because
|S′L∪SR| ≤ |S′L|+ |SR| < |SL|+ |SR| = |S| (the last equality
follows from the fact that {SL, SR} is a partition of S). Let
u be a vertex of T . If u is left convex, then u is either in
S′L or it is guarded by a left reflex vertex in S′L because S′L
is a feasible solution for the LCG(VLC(T )) problem on T .
Similarly, if u is a right convex vertex, then u is either in SR

or it is guarded by a right reflex vertex in SR because SR

is a feasible solution for the RCG(VRC(T )) problem on T .
Now, suppose that u is a reflex vertex that is not in S′L∪SR.
Then, consider the vertex B(u). If B(u) ∈ {S′L∪SR}, then u
is guarded by at least one vertex in S′L ∪SR (i.e., the vertex
B(u)). If B(u) /∈ {S′L ∪ SR}, then it must be guarded by a
reflex vertex w ∈ {S′L ∪ SR} because no two convex vertices
of T can see each other by Lemma 1. By Observation 1,
vertex w must also guard the vertex u. This proves that
every vertex of T that is not in S′L ∪ SR is guarded by at
least one vertex in S′L ∪ SR and, therefore, S′L ∪ SR is a fea-
sible solution for the DTG problem on T . By an analogous
argument, we can show that SR is an exact solution for the
RCG(VRC(T )) problem on T .

(⇐) Suppose that there exists a partition {SL, SR} of S
such that SL is an exact solution for the LCG(VLC(T )) prob-
lem on T and SR is an exact solution for the RCG(VRC(T ))
problem on T . We now prove that S = {SL ∪ SR} is an
exact solution for the DTG problem on T . Suppose for a
contradiction that there exists a feasible solution S′ for the
DTG problem on T such that |S′| < |S|; by Lemma 5, we
assume that S′ is in standard form. Let X be a subset of
S′ such that u ∈ X if and only if u is either a left convex
vertex or it is a left reflex vertex of T . Similarly, let Y be
a subset of S′ such that v ∈ Y if and only if v is either a
right convex vertex or it is a right reflex vertex of T . Since

S′ is in standard form, {X,Y } is a partition of S′. Since
|S′| < |S|, we must have |X| < |SL| or |Y | < |SR|. Without
loss of generality, assume that |X| < |SL|. In the following,
we show that X is a feasible solution for the LCG(VLC(T ))
problem on T , which is a contradiction to the fact that SL

is an exact solution for the LCG(VLC(T )) problem on T . To
show the feasibility of X, let x be a left convex vertex of
T . If x ∈ S′, then x ∈ X. If x /∈ S′, then we conclude by
Lemma 3 that there must be a left reflex vertex y ∈ S′ that
guards x. Since y guards at least one left convex vertex of
T , we have y ∈ X. This means that every left convex vertex
of T is either in X or it is guarded by at least one left reflex
vertex in X. Therefore, the set X is a feasible solution for
the LCG(VLC(T )) problem on T .

We have proved that it is not possible that |S′| < |S| and,
therefore, the set S is an exact solution for the DTG problem
on T . This completes the proof of the lemma. �

Appendix B: Proof of Lemma 10

Proof. (⇒) Suppose that M is an exact solution for the
LCG(VLC(T )) problem on T ; by Lemma 9, we assume that
M is in standard form. Let A be the subset of M such
that u ∈ A if and only if u is a left convex vertex of T ,
and let B = M \ A. Clearly, {A,B} is a partition of M .
Also, no reflex vertex of T can see a vertex in A because M
is in standard form and, by Lemma 8, we have that B ⊆
VLR(T ). Moreover, since M is a feasible solution for the
LCG(VLC(T )) problem, every left convex vertex of T that
is not in A is guarded by at least one left reflex vertex in
B. Therefore, it only remains to show that B has minimum
cardinality among all subsets of VLR(T ) that guard VLC(T )\
A. Suppose for a contradiction that B′ ⊆ VLR(T ) guards
VLC(T ) \ A such that |B′| < |B|. Then, {A ∪ B′} is a
feasible solution for the LCG(VLC(T )) problem on T , but
|A ∪ B′| ≤ |A| + |B′| < |A| + |B| = |M | (the last equality
is due to the fact that {A,B} is a partition of M); this is a
contradiction to the fact that M is an exact solution for the
LCG(VLC(T )) problem on T .

(⇐) Suppose that there exists a partition {A,B} of M
such that (i) u ∈ A if and only if u is a left convex vertex
and no reflex vertex of T can see u, and (ii) B = M \ A
is a minimum-cardinality subset of VLR(T ) that guards
VLC(T ) \ A. We now show that M = {A ∪ B} is an ex-
act solution for the LCG(VLC(T )) problem on T . Suppose
for a contradiction that there exists a feasible solution M ′ for
the LCG(VLC(T )) problem on T such that |M ′| < |M |. By
Lemma 8, we have that M ′ ⊆ {VLC(T )∪VLR(T )}. Partition
M ′ into two sets X and Y such that x ∈ X if and only if x is
a left convex vertex that is not seen by any left reflex vertex
of T , and let Y = M ′ \X. We can assume that Y ⊆ VLR(T )
because otherwise we can replace every left convex vertex y
in Y with a left reflex vertex of T that sees y.1 Recall that
if x ∈ X, then no left reflex vertex of T can see x and, by
Lemma 3, no right reflex vertex of T can see x. Therefore,
x ∈ A because no reflex vertex of T can see x and M is a
feasible solution for the LCG(VLC(T )) problem on T . By
an analogous argument, we can show that if x ∈ A, then

1Note that at least one such left reflex vertex of T exists be-
cause otherwise we would have added y into X.
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x ∈ X. Therefore, X = A. This means that Y is a subset of
VLR(T ) that guards VLC(T )\X = VLC(T )\A. Since X = A
and |M ′| < |M |, we must have that |Y | < |B|, which is a
contradiction to the fact that B is a minimum-cardinality
subset of VLR(T ) that guards VLC(T ) \ A. This completes
the proof of the lemma. �


