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On the Biplanar Crossing Number of Kn

Stephane Durocher∗ Ellen Gethner† Debajyoti Mondal‡

Abstract

The crossing number cr(G) of a graph G is the minimum
number of edge crossings over all drawings of G in the
Euclidean plane. The k-planar crossing number crk(G)
of G is min{cr(G1) + cr(G2) + . . .+ cr(Gk)}, where the
minimum is taken over all possible decompositions of G
into k subgraphs G1, G2, . . . , Gk. The problem of com-
puting the crossing number of complete graphs, cr(Kn),
exactly for small n and bounding its value for large n
has been the subject of extensive recent research. In this
paper we examine the biplanar crossing number of com-
plete graphs, cr2(Kn). Since 1971, Owens’ construc-
tion [IEEE Transactions on Circuit Theory, 18(2):277–
280, 1971] has been the best known construction for
biplanar drawings of Kn for large values of n. We pro-
pose an improved technique for constructing biplanar
drawings of Kn, which reduces the lower order terms of
Owens’ upper bound. For small fixed n, we show that
cr2(K10) = 2, cr2(K11) ∈ {4, 5, 6}, and for n ≥ 12, we
improve previous upper and lower bounds on cr2(Kn).

1 Introduction

A drawing of a graph G on R2 is a mapping of each
vertex of G to a distinct point in R2 and each edge of G
to a simple continuous curve between its corresponding
endpoints. Throughout the paper we assume that the
drawings are nice, i.e., the interiors of edges do not pass
through vertices, edges may create crossings but do not
touch otherwise, and finally, no three edges cross in a
point. The crossing number of G is the smallest integer,
denoted by cr(G), such that G admits a drawing with
cr(G) edge crossings.

Determining the crossing numbers of complete graphs
is one of the most studied problems in combinatorial
geometry (e.g., [2, 4, 8, 15, 18, 19]). The problem
of determining cr(Kn), i.e., the crossing number of a
complete graph with n vertices, has been studied since
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the early 1960s [11, 12, 21]. From that time it was
known [11] that cr(Kn) is bounded from above by Zn,
where Zn = 1
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. Given a com-

plete graph of n vertices, there are several construction
techniques [9] to produce a drawing of the graph with
exactly Zn crossings. In fact, it is conjectured that the
equality cr(Kn) = Zn holds in general [12, 21]. Pan
and Richter [17] showed that the conjecture holds for
the case when n ≤ 12.

The definition of crossing number naturally extends
to an arbitrary number of planes. Given a graph
G = (V,E), the k-planar crossing number crk(G) of G
is equal to min{cr(G1) + cr(G2) + . . .+ cr(Gk)}, where
the minimum is taken over all possible decompositions
of G into k subgraphs Gi = (Vi, Ei), 1 ≤ i ≤ k, such
that V = {V1 ∪ . . . ∪ Vk} and E = {E1 ∪ . . . ∪ Ek}. In
1971, Owens [16] showed that cr2(Kn) is bounded from
above by Wn, where Wn =
Zdn/2e + Zbn/2c + n2(n−4)(n−8)

384 , if n = 4m.

Zdn/2e + Zbn/2c + (n−1)(n−3)2(n−5)
384 , if n = 4m+ 1.

Zdn/2e + Zbn/2c + n(n−2)(n−4)(n−6)
384 , if n = 4m+ 2.

Zdn/2e + Zbn/2c + (n+1)(n−3)2(n−7)
384 , if n = 4m+ 3.

A rich body of research examines the asymptotic
behaviour of the k-planar crossing numbers of com-
plete and complete bipartite graphs [3, 20], and there
have also been significant efforts to determine tight
bounds on biplanar crossing numbers for these classes
of graphs [6, 7, 10]. While tight bounds for cr(Kn)
are known for n ≤ 12 [11, 17], the value of cr2(Kn) is
known only when n ≤ 9, i.e., cr2(Kn) = 0 if n < 9, and
cr2(K9) = 1 [14]. In a survey on the biplanar crossing
number, Czabarka et al. [6] posed an open question that
asks to determine cr2(Kn) when n is small.

A 1-page drawing Γ of G is a drawing of G on the Eu-
clidean plane such that all the vertices lie on a circle C in
Γ and the edges that do not belong to the boundary of C
lie interior to C. The 1-page crossing number ν(G) of G
is the minimum number of crossings over all the 1-page
drawings of G. The k-page crossing number νk(G) of G
is min{ν(G1)+ν(G2)+. . .+ν(Gk)}, where the minimum
is taken over all possible decompositions of G into k sub-
graphs G1, . . . , Gk, and the order of vertices along C is
the same for all these subgraphs. Observe that a 2-page
drawing of Kn with t crossings determines a drawing of
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Kn into a single plane with exactly t crossings1. Recall
that the currently best known upper bound on cr(Kn)
is Zn. Several studies proved that ν2(Kn) = Zn for dif-
ferent values of n [5, 8, 9], and very recently Ábrego et
al. [1] proved the equality for every n ∈ Z+. However, it
is still unknown whether cr(Kn) is strictly smaller than
ν2(Kn), i.e., we only know that cr(Kn) ≤ ν2(Kn) = Zn.

An analogous relationship between the k-planar cross-
ing number and 2k-page drawings of Kn is crk(Kn) ≤
cp2k(Kn). Interestingly, we observe that Wn, which is
the best known upper bound on cr2(Kn) for large val-
ues of n, is equal to the best known upper bound [9]
on ν4(Kn), when n = 4m for some m ∈ Z+; see Sec-
tion 2. However, the equality does not hold in general
since cr2(K9) = 1 < cp4(K9) = 3 [9].

In this paper we propose an improved technique
for constructing biplanar drawings, which reduces
Owens’ [16] upper bound on cr2(Kn). Although the
improvement is obtained by a slight modification of the
Owens’ construction, this is interesting since no such
perturbation is known that can improve the conjec-
tured value of cr(Kn). For small fixed n, we show that
cr2(K10) = 2, cr2(K11) ∈ {4, 5, 6}, and for n ≥ 12, we
improve previous upper and lower bounds on cr2(Kn).

2 Technical Details

De Klerk et al. [9] gave a generalized construction for
k-page drawings of complete graphs. For some cases,
e.g., when n = 4m and m ∈ Z+, their upper bound
on 4-page crossing number (thus the biplanar crossing
number) of Kn, matches exactly the upper bound ob-
tained by Owens [16] for biplanar drawings of complete
graphs. We first briefly recall the construction given by
Owens [16], and then the construction given by de Klerk
et al. [9].

2.1 Owens’ [16] Construction

Given a complete graph Kn (assume for convenience
that n = 4m, where m ∈ Z+), in each plane Owens
constructed two vertex disjoint cycles C = (v1, . . . , vn/2)
and C ′ = (u1, . . . , un/2), each with n/2 vertices. He
constructed the complete graph induced by the vertices
on C using a 2-page drawing of Kn/2, i.e., placing the
edges of the ith page, i ∈ {1, 2}, interior to the cycle
C in the ith plane. The complete graph induced by
the vertices on C ′ was constructed exterior to C ′ in a
similar way. The remaining edges that form a complete
bipartite graph Kn/2,n/2 connecting the vertices of C
with the vertices of C ′, were drawn as follows: for each
vj on C, the first plane contains the edges from vj to n/4
consecutive vertices on C ′ starting at uj in clockwise

1Imagine the drawing on a sphere, where the first page is drawn
on the upper hemisphere, and the second page is drawn on the
lower hemisphere.
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Figure 1: (a)–(b) Owens’ [16] Construction. (c) De
Klerk et al.’s [9] Construction.

order. The remaining edges of Kn/2,n/2 are drawn in the
second plane symmetrically. Figures 1 (a)–(b) illustrate
such a construction for K16.

2.2 De Klerk et al.’s [9] Construction

De Klerk et al. [9] showed that for complete graphs Kn,
where n = km with m, k ∈ Z+, the k-page crossing
number of Kn is νk(Kn) = 1

12k2

(
1− 1

2k

)
n4 − 1

4kn
3 +(

7
24k + 1

6

)
n2 − 1

4n. We can observe that this is equal to
the Owens’ [16] upper bound when k = 4, as shown in
Appendix A.

To construct the k-page drawing, let the vertices
of Kn be v1, . . . , vn, and let Mi be the set of edges
{(va, vb) : 1 ≤ a, b ≤ n, and i = (a + b − 2) mod n}.
Now draw the edges M(j−1)n/k ∪ . . . ∪Mjn/k−1 in the
jth page. Figure 1 (c) illustrates the construction for
K12 on 4 pages. Pairing the k pages and placing them
in each side of a circle yields a dk/2e-planar drawing,
which implies that crk(Kn) ≤ cp2k(Kn).

3 Biplanar Crossing Number for Small Values of n

In this section we establish some tight bounds on the
biplanar crossing number of Kn when n is small. It
has been known for a long time that cr2(Kn) = 0 if
n < 9, and cr2(K9) = 1 [16]. We may thus assume
that n > 9. We first prove that cr2(K10) = 2 and
cr2(K11) ∈ {4, 5, 6}, and then provide a technique to
compute good upper bounds on cr2(Kn), when n > 9.

Biplanar Crossing Numbers of K10 and K11.
We construct biplanar drawings of K10 and K11 with
exactly 2 and 6 edge crossings, respectively, as shown
in Figure 2. We now show that 2 and 4 edge crossings
are necessary for K10 and K11, respectively. Suppose
for a contradiction that K10 admits a biplanar drawing
with fewer than two edge crossings, and let Γ be such a
biplanar drawing. Since K10 contains K9 as a subgraph,
Γ must contain exactly one edge crossing. Let (u, v) be
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Figure 2: Biplanar drawings of K10 and K11 with two
and six edge crossings, respectively.

an edge on Γ that is involved in this crossing. Then the
deletion of v and its incident edges from Γ would give
a biplanar drawing of K9 without any edge crossing,
which contradicts that cr2(K9) = 1.

For cr2(K11), we prove a lower bound of 4 as follows:
Let Γ be an optimal biplanar drawing with at most 3
crossings. Observe that Γ must have at least 3 crossings,
otherwise we can delete some vertex which is incident to
some crossing in Γ to obtain a biplanar drawing of K10

with at most one edge crossing. Observe that no vertex
v in Γ can be adjacent to two or more edge crossings,
because otherwise deletion of v from Γ would yield a
biplanar drawing of K10 with at most 1 crossing, which
contradicts that cr2(K10) = 2. Since every crossing
involves four distinct vertices and every vertex in Γ is
incident to at most one crossing, Γ must have at least
12 distinct vertices, which is a contradiction.

Biplanar Crossing Numbers of Kn, where n ≥
12. Let Γ be a biplanar drawing of Kn. Observe that
one can construct a biplanar drawing of Kn+1 by exe-
cuting the following steps:

S1. Pick a vertex v in Γ and create a copy v′ of v in
each of the two layers of Γ.

S2. In each layer of Γ, place v′ arbitrarily close to v
and add the edge (v, v′) so that this edge does not
introduce any new crossing.

S3. Let W = {w1, w2, . . . , wbdi
v/2c} be the neighbors of

v in clockwise order in the ith layer of Γ, where
div denotes the degree of v in the ith layer. For
each w ∈ W , we add the edge (v′, w) closely fol-
lowing the edge (v, w) such that v′ appears after v
while examining the neighbors of w in clockwise or-
der. The edges from v′ to the remaining neighbors

{wbdi
v/2c+1, . . . , wdi

v
} of v are added symmetrically.

S4. Remove the edge (v, v′) from the second layer.

Let the resulting drawing be Γ′. It is straightfor-
ward to verify that the number of newly created cross-
ings among the edges incident to v and v′ is exactly∑

i∈[1,2]

(
bdi

v/2c(bd
i
v/2c−1)+(ddi

v/2e−1)dd
i
v/2e

2

)
. Moreover,

a crossing between two edges (v, w) and (x, y), where
v 6∈ {x, y}, corresponds to a crossing between (v′, w)
and (x, y). Therefore, if v is adjacent to civ crossings
in the ith layer, then the number of crossings in Γ′

is
∑

i∈[1,2]

(
bdi

v/2c(bd
i
v/2c−1)+(ddi

v/2e−1)dd
i
v/2e

2 + civ

)
more

than the number of crossings in Γ.
To obtain better drawings, we choose the vertex v

that minimizes the number of newly introduced cross-
ings (break ties arbitrarily). Table 1 shows the number
of crossings obtained by the above construction tech-
nique, when n ∈ [12, 30], and the lower bounds us-

ing the inequality cr2(Kn) ≥ cr2(Kn−1)(n
4)

(n−1
4 )

, which is

widely used to establish lower bounds on crossing num-
ber [7]. Note that the upper bounds of Table 1 are sig-
nificantly smaller than the values 18, 37, 53, 75, 100, 152,
for n = 12, . . . , 17, obtained by Owens’ construction.

4 Upper Bounds on cr2(Kn)

Assume that n = 8m+4, where m ∈ Z+. We begin with
the construction of Owens [16], and later we modify the
drawing to improve the number of crossings. We use a
slightly different presentation for Owens’ [16] construc-
tion, which will be more convenient for the subsequent
description.

4.1 Basic Construction

Let the planar layers of the drawing be Lj , where
j ∈ [1, 2]. In layer Lj , we arrange the vertices into

two circles: Cj
in and Cj

out, where each of them contains

n/2 vertices. We then embed the cycle Cj
in interior to

the cycle Cj
out such that the resulting embedding of the

cycles remains crossing free, as shown in Figures 3(a)–
(b). We now draw the edges that connects the vertices
of Cj

in and Cj
out.

In L1, let the vertices on C1
in be v1, v2, . . . , v4m+2 and

the vertices on C1
out be u1, u2, . . . , u4m+2 in clockwise

order. For each j ∈ {1, 2, . . . , 4m + 2}, connect uj
to the vertices vj−m, . . . , vj , . . . , vj+m. Note that the
indices wrap around, i.e., for any vj′ , if j′ < 1 (re-
spectively, j′ > n/2), then vj′ = vn/2+j′ (respectively,
vj′ = vj′−n/2). In the other planar layer L2, let the
vertices on C2

in be u1, u2, . . . , u2m+1 and the vertices on
C2

out be v1, v2, . . . , v2m+1 in clockwise order. For each
j ∈ {1, 2, . . . , 4m + 2}, connect vj to those vertices of
C2

in that are not incident to vj in L1. As illustrated in
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Table 1: Upper and lower bounds on cr2(Kn), where n ∈ [12, 30].
n 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

U.B. 14 26 43 62 81 103 148 176 226 332 469 652 717 958 1261 1399
L.B. 6 9 13 19 26 35 46 60 76 95 118 145 176 212 253 299
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Figure 3: (a)–(b) Basic construction with 324 crossings. (c)–(d) Modification of Γ with 322 crossings. The blue and
red edges are shown in bold and dashed lines, respectively.

Figures 3(a)–(b), all these edges lie in the closed region
between Cj

in and Cj
out.

Note that we may now complete the drawing of Kn

by adding the edges among {u1, . . . , un/2} and the edges
among {v1, . . . , vn/2}. For the set {v1, . . . , vn/2}, we
construct a 2-page drawing of Kn/2, where the edges of
one page lie inside C1

in and the edges of the other page
lie outside of C2

out. Similarly, for the set {u1, . . . , un/2},
we construct a 2-page drawing of Kn/2, where the edges
of one page lie inside C2

in and the edges of the other page
lie outside of C1

out. Let the resulting drawing be Γ. Since
this construction is equivalent to that of Owens [16], the
number of crossings in Γ is Wn.

4.2 Improvement

We now modify the drawing Γ to obtain a biplanar
drawing with fewer crossings, as illustrated in Fig-
ures 3(c)–(d).

We first delete the incident edges of v2 that lie in-
side C1

in, and then add these edges outside of C2
out, as

illustrated in thick lines (blue) in Figure 3. We then

remove the edges that lie on the boundary of C1
in, and

finally, move the vertex v2 infinitesimally close to u2 in-
side the cycle u2, v1, v3, as shown in dashed lines (red)
in Figure 3. Let the resulting drawing be Γ′, which has
smaller number of crossings than Γ. We now show how
to modify the drawing for larger values of n.

Let n = 16m + 4, n′ = n/2, p = bn′/4c + 1 and q =
dp/2e. We now choose vq to carry out the modifications,
note that for n = 20, we have vq = v2. Let the edges
incident to vq that lie inside C1

in in Γ but moved outside
of C2

out in Γ′, be the blue edges. Denote the incident
edges of vq that lie outside of C1

in in Γ as the red edges.
Let the number of edge crossings on the blue edges in
Γ and Γ′ be α and α′, respectively. Similarly, let the
number of edge crossings on the red edges in Γ and Γ′

be β and β′, respectively. Then the number of edge
crossings in Γ′ is Wn + (α′ + β′) − (α + β). We now
briefly describe the computation of α, α′, β, β′.

Crossings on the Blue Edges in Γ (i.e., α): We
partition edge crossings into the following three types.

- A denotes the number of crossings between the edges
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(vq, vw) and (x, y), where w ∈ {q + 2, . . . , 2p − q},
x ∈ {vq+1, . . . , vw−1}, and y ∈ {v2p, . . . , vn′}. There-

fore, A =
∑2p−q

i=q+2

∑i−1
j=q+1(j + (q − 2)), as shown in

Figure 4(a).

- B denotes the number of crossings between the edges
(vq, vw) and (x, y), where w ∈ {q + 2, . . . , p}, x ∈
{vq+1, . . . , vw−1}, and y ∈ {vw+1, . . . , v2p}. There-

fore, B =
∑p

i=q+2

∑i−1
j=q+1((2p − j) − i), as shown in

Figure 4(b).

- C denotes the number of crossings between the edges
(vq, vw) and (x, y), where w ∈ {p + 1, . . . , 2p − q},
x ∈ {vq+1, . . . , vp}, and y ∈ {vw+1, . . . , v2p}. There-

fore, C =
∑2p−q

i=p+1
(2p−q−i−1)(2p−q−i)

2 , as shown in Fig-
ure 4(c).

The drawing is symmetric with respect to the axis
through vq and its diametrically opposite vertex. Thus
the number of crossings removed from Γ by moving
the blue edges from the inner layer is exactly α =
2(A+B + C).

Crossings on the Blue Edges in Γ′ (i.e., α′): We
partition these edge crossings into the following three
types.

- A′ denotes the number of crossings between the edges
(vq, vw) and (x, y), where w ∈ {q + 2, . . . , p}, x ∈
{vq+1, . . . , vw−1}, and y ∈ {vw+1, . . . , vn′}. Therefore,

A′ =
∑p

i=q+2

∑i−1
j=q+1 2p−1, as shown in Figure 4(d).

- B′ is an upper bound on the number of cross-
ings between the edges (vq, vw) and (x, y), where
w ∈ {p + 1, . . . , 2p − q}, x ∈ {vq+1, . . . , vp},
and y ∈ {vw+1, . . . , vn′}. Therefore, B′ =∑2p−q

i=p+1

(
(p− q)(2p− 1)− (i−p)(i−p+1)

2

)
, as shown in

Figure 4(e).

- C ′ denotes the number of crossings between the edges
(vq, vw) and (x, y), where w ∈ {p+ 2, . . . , 2p− q}, x ∈
{vp+1, . . . , vw−1}, and y ∈ {vw+1, . . . , vn′}. There-

fore, C ′ =
∑2p−q

i=p+2

∑i−1
j=p+1((2p−1)−2(j−p)−(i−j)),

as shown in Figure 4(f).

The drawing is symmetric with respect to the axis
through vq and its diametrically opposite vertex. Hence
the number of crossings introduced in Γ′ by moving the
blue edges to the outer layer is at most α′ = 2(A′+B′+
C ′).

Crossings on the Red Edges in Γ (i.e., β): The
number of crossings created by the edges (vq, u

′) and
(vq+j , u

′′), where 1 ≤ j ≤ 2m− 1 and u′, u′′ lie on C1
out,

is (2m − j)(2m − j + 1)/2. Figure 5(a) illustrates a
scenario where m = 4. Symmetrically, the number of
crossings created by the edges (vq, u

′) and (vq−j , u
′′) is

vq(= v2) vq+2

(a)

vq

(b)

uq

2m− j

Figure 5: Crossings on the red edges: (a) Γ, and (b) Γ′.

(2m− j)(2m− j + 1)/2. Hence the number of crossings

in the red edges is β =
∑2m−1

j=1 (2m− j)(2m− j + 1).

Crossings on the Red edges in Γ′ (i.e., β′): It
is straightforward to observe that the number of such
crossings is β′ = 2m + 2

∑m−1
i=1 2mi, as illustrated in

Figure 5(b) when m = 4.
Now the number of crossings in Γ′′ is Wn + (α′ +

β′)− (α+ β), which can be simplified using Maple [13]
to get an upper bound of Wn− 1

384n
3+O(n2). Since the

modification we carried out for vq can also be applied
around independently to its diametrically opposite ver-
tex, we can obtain a bound of Wn− 1

192n
3 +O(n2). The

following theorem summarizes the result of this section.

Theorem 1 Every Kn, where n = 16m + 4 and m ∈
Z+, admits a biplanar drawing with at most Wn −
n3/192 +O(n2) edge crossings.

5 Conclusion

In this paper we have given bounds on the biplanar
crossing number of Kn. For small values of n, our tech-
nique for computing cr2(Kn) is incremental. Hence it is
natural to ask whether every optimal biplanar drawing
of Kn+1 contains an optimal drawing of Kn. We proved
that cr2(K11) ∈ {4, 5, 6}. It would be interesting to find
an analytical argument to prove a better lower or upper
bound on cr2(K11). Finally, given f(n), how efficiently
can we find k such that crk(Kn) ∈ Θ(f(n))?
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Appendix A

5.1 De Klerk et al.’s [9] Construction

De Klerk et al. [9] showed that for complete graphs Kn,
where n = km with m, k ∈ Z+, the k-page crossing number
of Kn is

νk(Kn) =
1

12k2

(
1− 1

2k

)
n4 − 1

4k
n3 +

(
7

24k
+

1

6

)
n2 − 1

4
n

=
7

1536
n4 − 1

16
n3 +

23

96
n2 − 1

4
n, when k = 4.

We can observe that this is equal to Owens’ [16] upper
bound when k = 4, as follows. Since n = 4m, we may
assume n = 2q with q = 2m. Then we have

Zq =
1

4

⌊ q
2

⌋ ⌊q − 1

2

⌋⌊
q − 2

2

⌋⌊
q − 3

2

⌋
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1

4

( q
2

)( q
2
− 1
)( q

2
− 1
)( q

2
− 2
)

=
1

1024
q(q − 4)2(q − 8).

From Owens’ [16] upper bound, we have

Wn = Zdqe + Zbqc +
n2(n− 4)(n− 8)

384

=
7

1536
n4 − 1

16
n3 +

23

96
n2 − 1

4
n

= ν4(Kn).


