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Watchtower for k-crossing Visibility
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Abstract

Given a 1.5D terrain T , consisting of an x-monotone
polygonal chain with n vertices in the plane, and a pos-
itive integer k, we propose an algorithm to place one
point, called a watchtower, whose vertical height above
T is minimized, such that every point x on T is k-
crossing visible from the watchtower w. That is, the line
segment from w to any point x on T crosses T at most
k times. Our algorithm runs in O((n2 + h) log n) time,
where h denotes the number of vertices on the bound-
ary of the k-kernel of T . For arbitrary k, h ∈ O(n4),
and for k = 2, h ∈ O(n2). We present an O(n3)-time
algorithm for the discrete version of the problem, in
which the watchtower is restricted to being positioned
over vertices of T .

1 Introduction

A terrain T in R2 is an x-monotone polygonal chain
consisting of a sequence of vertices v0, v1, . . . , vn−1, each
of which is a point in R2, such that vi is to the left of
vj for all i < j and vivi+1 is an edge for i ∈ {0, . . . , n−
2}. See Figure 1. As defined by Chang et al. [5], “two
paths [polygonal chains], P and Q, are weakly disjoint
if, for all sufficiently small ε > 0, there are disjoint paths
P̃ and Q̃ such that dF (P, P̃ ) < ε and dF (Q, Q̃) < ε”,
where dF (A,B) denotes the Fréchet distance between
A and B. As also defined by Chang et al. [5], “two
paths [polygonal chains] cross if they are not weakly
disjoint.” We say two polygonal chains P and Q cross
k times, if there exist partitions P1, . . . , Pk of P and
Q1, . . . , Qk of Q such that Pi and Qi cross, for all i ∈
{1, . . . , k}. Two points p and q are k-crossing visible
if and only if the line segment pq crosses T at most k
times. When k = 0, k-crossing visibility corresponds to
the traditional definition of visibility.

A watchtower w is a point on or above T . Given a
terrain T and a positive integer k, the goal in the 1-
watchtower problem is to place a watchtower w with
minimum height on or above T (length of the vertical
line segment from w to T ) such that the entire terrain T
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Figure 1: The points p and q mutually 2-crossing visible,
while p′ and q′ are not.

is k-crossing visible from w. This definition can be gen-
eralized to the m-watchtower problem where the goal
is to assign positions to a set W = {w1, . . . , wm} of m
watchtowers, such that each wi is a point on or above
T , and for each point p on T , there exists a watchtower
w ∈W such that p is k-crossing visible from w.
The watchtower problem presents itself in two forms:
discrete and continuous. In the discrete version, the
watchtower must be located on a vertical line through
a vertex of the terrain, while in the continuous version
the watchtower can be located anywhere above the ter-
rain. Solutions to the discrete and continuous watch-
tower problems can vary significantly. Figure 2 shows
an instance for which the solution to the continuous 1-
watchtower problem has height zero (on the terrain),
whereas the solution to the discrete 1-watchtower prob-
lem on the same terrain requires a watchtower to be
positioned significantly higher.
This paper examines algorithms for the 1-watchtower
problem, for both the discrete and continuous cases, un-
der k-visibility. We also describe faster algorithms for
the case k = 2 and k = 0.

2 Related Work

The original terrain watchtower problem was introduced
by Sharir for polyhedral terrains [11]. The minimum
height for one watchtower can be found in O(n log n)
time for both the continuous and discrete problems un-
der 0-crossing visibility on an x-monotone polyhedral
terrain in R3 [12].
Bespamyatnikh et al. [4] proposed an O(n4)-time al-
gorithm for the discrete 2-watchtower problem under
0-crossing visibility on a 2.5D terrain. They also gen-
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Figure 2: When k = 2, the solution of the 1-watchtower
problem for the continuous version is much smaller than
the discrete version. The points b and d represent the
locations of the watchtower in the continuous and dis-
crete versions, respectively (suppose h3 < h1). In the
continuous version, the tower is located on the edge of
the terrain with height zero, while in the discrete version
it must be located above the terrain with height h3, sig-
nificantly bigger than zero. Notice that the points below
d cannot see the edges adjacent to the vertex v.

T

hT ′

T ′

Figure 3: The shaded region is a simple polygon T ′

constructed for a given terrain.

eralized their approach to the continuous version of the
problem with assumptions on the time required to solve
a specific cubic equation with three bounded variables.
Under the assumption that the equation can be solved
in O(f3) time, their approach takes O(n4 + n3f3) time.
Using parametric search, they show that the discrete
and continuous versions of the problem can be solved in
O(n3 log2 n) and O(n4 log2 n) time, respectively. Ben-
Moshe et al. [2] improved the time to O(n3/2

√
m′(n))

for the discrete 2-watchtower problem, where m′(n) de-
notes the time required to multiply two n × n matri-
ces, resulting in a time of O(n2.37+ε) using the cur-
rent fastest matrix multiplication algorithm [8]. Using
parametric search, Agarwal et al. [1] improved the time
complexity of the discrete and continuous 2-watchtower
problems for 0-crossing visibility to O(n2 log4 n) and
O(n3α(n) log3 n) respectively, where α(n) denotes the
inverse Ackermann function.
The watchtower problem generalizes to the setting of
k-crossing visibility for any k. We consider the problem
of placing one watchtower. In Section 3, we present an
algorithm for the continuous problem, and then propose
an algorithm for the discrete problem in Section 4. For
both algorithms we describe how the running time can
be decreased when k = 2 and k = 0.

3 The Continuous Case

In this section, we solve the continuous 1-watchtower
problem under k-visibility for general k, and then de-
scribe how the running time can be reduced when k = 2
and k = 0.

Consider a simple polygon T ′, bounded from above
by a horizontal line segment hT ′ that lies above T , and
on its sides by vertical line segments aligned with the
respective left and right endpoints of T ; see Figure 3.
We first find the k-kernel of T ′. The k-kernel of a given
polygon P is the set of all points p such that every point
in P is k-crossing visible from p; see Figure 4. The algo-
rithm of Evans and Sember [6] finds the k-kernel of T ′

in O(n2 log n+h) time, where h denotes the complexity
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Figure 4: 2-kernel

(the number of boundary vertices) of the k-kernel. The
k-kernel consists of O(n4) disjoint simple polygons. The
worst-case number of vertices of the k-kernel is Θ(n4).
For k = 2, the complexity of the k-kernel is Θ(n2), and
for k = 3, the complexity of the k-kernel is O(n4) and
Ω(n2) [6].
The lower envelope of the portion of the k-kernel above
T is the locus of feasible locations for the top of the
watchtower from which the entire terrain T is k-crossing
visible. Finding the minimum-length vertical line seg-
ment between this lower envelope and T yields the opti-
mal solution for the 1-watchtower problem; see Figure 6.
Notice that given line segments s1 and s2 that intersect
a vertical line, the distance between s1 and s2 along the
vertical line is minimized at a vertex of s1 or a vertex
of s2. Hence, to find the optimal height for the continu-
ous 1-watchtower problem, it suffices to examine vertical
line segments from the vertices of the lower envelope of
the k-kernel to T , and vertical line segments from the
vertices of T to the lower envelope of the k-kernel. The
minimum length of these line segments is the minimum
height of the continuous 1-watchtower problem.
The minimum height of a watchtower can be found by
partitioning the edges of the k-kernel into those that
lie above T and those that lie below T . Following this
partition, the lower envelope of the edges above T is
computed. By sweeping a vertical line across T and
the lower envelope, we stop at all vertices to evaluate
the distance on the sweep line between these two x-
monotone chains, maintaining the minimum distance
thus far. These steps can be implemented in a single
sweep using a modification of the algorithm of Bentley
and Ottmann [3]. At each event during the sweep, it
suffices to measure the distance along the sweep line
between T and the closest line segment above T . If this
distance is less than the previously recorded minimum,
we update the minimum distance and the current x-
coordinate of the sweep line. Observe that no two edges
of the k-kernel cross, and that no two edges of T cross.
Furthermore, if any edge of the k-kernel crosses T , then
this point of intersection corresponds to the location of
a watchtower of height zero: this is the solution, and

Ω(n) Ω(n)

Ω(n) Ω(n)

Figure 5: The 4-kernel of a monotone chain has Ω(n4)
vertices. There are Ω(n2) cells in the arrangement of
dotted lines that form the v-regions of the vertices on
the terrain. These lines have Ω(n2) points of intersec-
tion.

the algorithm terminates. Consequently, the number of
intersection events processed is at most 1. Since the
number of edges in the k-kernel is h ∈ O(n4) and the
number of edges in T is n, the total running time of the
algorithm is O((n2 + h) log n)).

Although we seek the k-kernel in a restricted type of
polygon, i.e., a monotone polygon, the k-kernel for a
monotone polygon has Θ(n4) complexity in the worst
case when k ≥ 4; see Figure 5. The complexity of the
k-kernel when k = 3 is unknown [6]. When k = 2 its
complexity is O(n2). Since the watchtower must be lo-
cated above the terrain, it must be inside T ′.
When k = 0, the 0-kernel corresponds to the kernel
of the polygon T ′. This kernel is a convex polygon
with O(n) vertices from which the entire polygon is 0-
crossing visible. Additionally, the kernel is the feasible
region for the watchtower, and can be determined in
O(n) time [9, 10]; see Figure 6. As mentioned above, to
find the solution for the continuous 1-watchtower prob-
lem, it is sufficient to examine the vertical line segments
from the vertices of the kernel to T , and the vertical
line segments from the vertices of T to the kernel. The
boundary of the 0-kernel is an x-monotone chain con-
sisting of O(n) vertices given in order. The terrain T is
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d

Figure 6: The shaded region is the intersection of the
visible part of the plane for each vertex when k = 0;
dotted lines show the boundaries of some of these re-
gions.

an x-monotone chain of n vertices given in order. By
merging the two sets of sorted vertices of T and of the
kernel in O(n) time, for each vertex in the merged sorted
list the corresponding edge intersected by the vertical
line segment can be found in O(1) time by comparing
the current vertex against the previous vertex in the list.
If the previous vertex is on the same chain, then the
current vertex intersects the same edge as the previous
vertex. Otherwise, if the previous vertex is not on the
same chain, then the edge that starts from the previous
vertex is the intersected edge. At each step, the min-
imum vertical line segment encountered is maintained.
Thus, the minimum length segment can be found in
O(n) time.
When k = 2, the boundary of the 2-kernel has O(n2)

vertices [6]. Consequently, we can find the minimum
length vertical line segment between the 2-kernel and
the terrain T in O(n2 log n) time, so the continuous
1-watchtower problem for 2-visibility can be solved in
O(n2 log n) time.

Theorem 1 The continuous 1-watchtower problem can
be solved in O((n2+h) log n) time under k-crossing vis-
ibility, where h ∈ O(n4) is the size of the k-kernel. For
k = 0 and k = 2, the continuous 1-watchtower problem
can be solved in O(n) and O(n2 log n) time, respectively.

4 The Discrete Case

In this section, we propose an O(n3)-time algorithm for
the discrete k-crossing visible 1-watchtower problem on
a terrain T .
As defined by Evans and Sember [6], “The v-region for
vertex v of a polygon P , is the set of points q for which
q is k-visible to every point of P on ray → qv”. The
boundary of each v-region is a simple polygon with O(n)

e

i

Hi

V1

V2

V3

Figure 7: The v-regions and their intersection with Hi

for three vertices V1, V2 and V3 are shown in dashed,
dotted, dashed and dotted respectively.

vertices [6]. Computing the v-region of each vertex of
the polygon takes O(n log n) time. We compute the v-
region for each vertex of T ′ in O(n log n) time per ver-
tex using the algorithm of Evans and Sember [6], using
O(n2 log n) total time. The intersection of v-regions of
the polygon P is the k-kernel of the polygon P [6]. In
other words, the intersection of v-regions of the vertices
of P is the locus for the watchtower.

Observation 1 The intersection of the v-regions of the
vertices of T corresponds to the set of feasible locations
for the top of the watchtower.

Proof. The intersection of the v-regions is the k-kernel
of T ′ [6], which is the region where the entire T ′ in-
cluding T is k-crossing visible from. So, T is k-crossing
visible from a watchtower located in this region. �

In the discrete problem, the watchtower must be lo-
cated on a vertical line emanating from a vertex of the
terrain. Consider a vertical line passing through a ver-
tex of the terrain. We find the intersection of the v-
regions of the vertices of T with this vertical line.

Lemma 2 Any vertical line crosses the boundaries of
the v-regions of the vertices of T O(n2) times.

Proof. The number of vertices on the boundary of each
v-region is O(n). So each v-region may intersect a ver-
tical line O(n) times. As there exist n v-regions, so the
number of intersections between v-regions and any given
vertical line is O(n2). �

Let Vi denote the v-region of vertex vi in T . We have
the following lemma:

Lemma 3 The intersection of any v-region with any
vertical line is a set of at most n disjoint intervals on
the line, where the topmost interval is open.
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Proof. Considering a bounding box around T ′. The
v-region of a vertex vi is a closed Jordan curve with
O(n) complexity. The intersection between the vertical
line and the inside of this closed Jordan curve is a set
of O(n) intervals. The last interval is open as after
moving sufficiently high above the terrain T all of T
will be visible while looking toward the vertex vi. �

Consider a vertical line `i passing through a given
vertex vi of T , and the intersections with the v-regions
V1, . . . , Vn for the vertices v1, . . . , vn of T . Let each v-
region be determined by a specific color i. As a result,
we have n different colors of intervals on the line `i.
Each color is a set of O(n) pairwise disjoint intervals.
If the optimal watchtower lies on this vertical line, it is
in the interval which intersects all n v-regions with the
lowest y-coordinate. We define depth-n intervals as the
intervals on `i on which all n v-regions intersect.

Lemma 4 The minimum height of a watchtower lo-
cated above the vertex vi is the closest depth-n interval.

Proof. Intervals with the same color do not intersect
each other. So, the maximum number of intersection
is n where n v-regions intersect. So, a depth-n inter-
val is in the k-kernel and T is k-crossing visible from
such intervals. Among all such depth-n intervals we
look for the one that has the smallest distance from the
terrain. �

As a result of Lemma 4, we can remove the color on
the intervals. This transforms the problem to that of
finding the depth-n intervals among O(n2) intervals.

Lemma 5 Given a v-region of a vertex of the terrain
T , finding and sorting the intersections of this v-region
with a given vertical line takes O(n).

Proof. We can find the intersection of a v-region with
the vertical line `i in O(n) time. This gives a set of O(n)
intervals on `i. We can sort these intervals in O(n) time
as the v-region is a Jordan arc [7]. �

We find the sorted list of the intersections of each
polygon Vi with a line `i in O(n2) time by Lemma 5.
So we have n sorted lists each containing O(n) intervals.
Let these lists be labeled as L1, L2, ..., Ln. We have the
following lemma:

Lemma 6 The deepest interval with the minimum
height for a set of O(n2) intervals on a given line `i
can be found in O(n2) time.

Proof. As mentioned in Lemma 5, each set of n inter-
vals in the list Li can be sorted in linear time. There
exist n lists, so it takes O(n2) time to sort all L1, . . . , Ln.
Consider two list L1 and L2. First, we find the inter-
sections between L1 and L2. Given two sets of sorted

`i

vi

`i

vi

(a) (b)

Figure 8: a. Colored intervals on a vertical line `i. b.
Intervals can be considered as a set of O(n2) intervals
without color.

intervals X and Y , their intersection can be found in
O(|X|+ |Y |+h), where h denotes the number of output
intervals [13]. As X and Y are of size O(n) for the lists
L1 and L2. h is also of size O(n). This is because if
an interval in L1 intersects m intervals of L2, remaining
intervals in L1 can intersect at most n−m+2 intervals
in L2. As a result, finding the intersection between L1

and L2 takes O(n) time; let the output list be called
L′
1. Next, we find the intersection of L′

1 and L3 (called
L′
2) in O(n) time. Repeating this process, the intersec-

tion between L′
n−1 and Ln results in the intersections

of L1, L2, ..., Ln. There are n steps, each taking O(n)
time. The algorithm takes O(n2) total time. �

Theorem 7 The discrete 1-watchtower problem can be
solved in O(n3) time under k-crossing visibility.

Proof. There are n vertices in T corresponding to n
vertical lines as the candidates for the location of the
watchtower. By Lemmas 4 and 6, finding the minimum
height of a watchtower located at the vertex vi takes
O(n2) time. So, the total required time is O(n3).

�

Considering 0-crossing visibility, the kernel is the po-
tential location of the top of the watchtower as described
for the continuous version. The difference between the
discrete and continuous versions is that in the discrete
version, the algorithm restricts the possible watchtowers
to those whose x-coordinates coincide with a vertex of
T . As a result, the discrete 1-watchtower problem under
0-crossing visibility can also be solved in O(n) time.
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Figure 9: Going up and losing visibility: On point a,
the entire terrain T is 2-crossing visible. At point b, the
rightmost edge of T is not 2-crossing visible anymore.
At point c, the entire terrain T becomes 2-crossing visi-
ble, while on d, the leftmost edge of T is not 2-crossing.
At point e, T is 2-crossing visible again.

In the case of 2-crossing visibility, we apply the same
approach as for the continuous version. The key differ-
ence is that only the vertical line segments emanating
from vertices of the terrain are of interest as the possi-
ble location for the watchtower. As a result, the discrete
version of the 2-watchtower problem can also be solved
in O(n2 log n) time.

4.1 Comparison between k-visibility and 0-visibility

As mentioned, both the discrete and continuous versions
of the 1-watchtower problem for 0-crossing visibility can
be solved in O(n) time, while for k-crossing visibility the
time complexity increases significantly when k > 0. The
main reason is the fact that when k 6= 0, the k-kernel
can be disconnected. Under 0-visibility, increasing the
height of a watchtower always increases its visibility;
that is, if p and q are two points on a vertical line above
T , where p lies above q, then the region of T visible
to q is contained in the region of T visible to p. This
property does not hold when k > 0; q could see all of T
(i.e., q is in the k-kernel), whereas p does not see all of
T , even though p lies above q. See Figure 9.

5 Possible Directions for Future Research

The 1-watchtower problem generalizes to the m-
watchtower problem, where instead of positioning a sin-
gle watchtower to guard the terrain T , an algorithm
must select positions for m watchtowers. The goal is
to minimize the maximum height of any watchtower,

w1 w2

Figure 10: Even when k = 0 in the 2-watchtower prob-
lem, the x-coordinates of watchtowers do not coincide
with those of vertices of the terrain, vertices of the k-
kernel, nor of the intersections of the Θ(n2) lines deter-
mined by pairs of vertices of the terrain.

while ensuring that each point on T is k-crossing visible
from at least one watchtower. To solve the continuous 1-
watchtower problem, it suffices to consider candidate lo-
cations for the watchtower whose x-coordinate coincides
with that of a vertex of T or a vertex of the k-kernel of
T . This property is not true in general for the continu-
ous m-watchtower problem, even when m = 2; see Fig-
ure 10. It remains open to find an efficient algorithm to
solve the (discrete or continuous) m-watchtower prob-
lem under k-crossing visibility, even for m = 2.
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