
CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Non-Crossing Matching of Online Points

Prosenjit Bose∗ Paz Carmi† Stephane Durocher‡ Shahin Kamali‡ Arezoo Sajadpour‡

Abstract

We consider the non-crossing matching problem in the
online setting. In the monochromatic setting, a se-
quence of points in general position in the plane is
revealed in an online manner, and the goal is to cre-
ate a maximum matching of these points such that the
line segments connecting pairs of matched points do not
cross. The problem is online in the sense that the deci-
sions to match each arriving point are irrevocable and
should be taken without prior knowledge about forth-
coming points. The bichromatic setting is defined sim-
ilarly, except that half of the points are red and the
rest are blue, and each matched pair consists of one red
point and one blue point. Inspired by the online bipar-
tite matching problem [15], where vertices on one side
of a bipartite graph appear in an online manner, we as-
sume red points are given a priory and blue points arrive
in an online manner.

In the offline setting, both the monochromatic and
bichromatic problems can be solved optimally with
all pairs matched [11]. In the online setting of the
monochromatic version, we show that a greedy family
of algorithms matches 2d(n − 1)/3e points, where n is
the number of input points. Meanwhile, we prove that
no deterministic online algorithm can match more than
2d(n− 1)/3e points, i.e., the greedy strategy is optimal.
In the bichromatic setting, we introduce an algorithm
that matches log n − o(log n) points for instances con-
sisting of n red and n blue points, and show that no
deterministic algorithm can do better. We also consider
the problem under the advice setting, where an online
algorithm receives some bits of advice about the input
sequence, and provide lower and upper bounds for the
amount of advice that is required and sufficient to match
all points.

1 Introduction

Matching is an important topic in combinatorics, par-
ticularly in graph theory (see, e.g., the book by Lovász

∗Carleton University, Ottawa, Canada.
jit@scs.carleton.ca
†Ben-Gurion University of the Negev, Beer-Sheva, Israel.

carmip@cs.bgu.ac.il
‡University of Manitoba, Winnipeg, Canada.

{durocher,shahin.kamali}@cs.umanitoba.ca,
sajadpoa@myumanitoba.ca

and Plummer [17]). When it comes to computational
geometry, matching of points in the plane has applica-
tions that range from circuit design [12] to colour-based
image retrieval [1]. In a monochromatic setting, a col-
lection of points in general position is given and the goal
is to match a maximum number of points, provided they
adhere to some constraints. In the bichromatic variant,
each point is either blue or red, and must be matched
to a point of the opposite color. Variants of the prob-
lems have been considered. For example, one might be
interested in minimizing the total length or the maxi-
mum length of segments in the matching, also known as
bottleneck matching (e.g., [19, 8]). Kaneko and Kano
survey some of the results related to this setting [14].

In the non-crossing matching problem, the goal is to
find a maximum matching so that the segments be-
tween pairs of matched points do not intersect. In
the offline setting, where all points are given as input
in advance, the problem can be easily solved in both
the monochromatic and the bichromatic settings. In
the case of monochromatic points, one can sort them
by their x-coordinate and match consecutive pairs in
the sorted sequence. This will match all points ex-
cept potentially the last one (if the number of points
is odd). For the bichromatic variant [2], also known
as the “Ghosts and Ghostbusters” problem [7], one can
find the ham-sandwich line that bisects the blue and
red points in O(n) time [16], and apply a divide-and-
conquer approach. Both algorithms run in O(n log n)
time for an input of size n, which is best possible [9].
Assuming the number of red and blue points are equal,
all points are matched. A slightly different approach,
with the same running time, is presented in [11]. We
also note that a minimum-length matching is noncross-
ing. In summary, we can match all points optimally
in O(n log n) time in the offline setting. Other variants
of non-crossing matching have been studied (see [17]).
For example, Aloupis et al. [1] considered the computa-
tional complexity of finding non-crossing matching of a
set of points with a set of geometric objects, where an
object can be a convex polygon, a line, or a line segment.

In this article, we are interested in the online variant
of non-crossing matching problems.

Definition 1 The input to the monochromatic on-
line non-crossing matching problem is a set of
points in general position in the plane that appear in
an online, sequential manner. When a point arrives,



32nd Canadian Conference on Computational Geometry, 2020

an online algorithm can match it with an existing un-
matched point, provided that the line segment between
them does not cross previous line segments added to the
matching. Alternatively, the algorithm can leave the
point unmatched to be matched later. In taking these
decisions, the algorithm has no information about the
forthcoming points or the length of the input. The algo-
rithm’s decisions are irrevocable in the sense that once a
pair of points is matched, that pair cannot subsequently
be removed from the matching. The objective is to find
a maximum matching. In the bichromatic variant
of the problem, half of the points are red and half are
blue. The red points are given in advance, while the
blue points appear in an online manner. Upon arrival
of a blue point, an online algorithm either matches it
with a red point or leaves it unmatched. The goal is to
find a maximum matching in which the line segments
between matched pairs do not cross.

In the online setting, it is not always possible to match
all points to achieve an optimal solution. As an ex-
ample, consider two points with the same x-coordinate
appear at the beginning. If the online algorithm does
not pair them, its solution is sub-optimal for an input
formed only by these two points. If the algorithms does
pair the first two points, the sequence might be followed
by one point on the left and one on the right of the line
segment between the matched pair. The new points can-
not be matched and hence the solution is sub-optimal
for an input formed by the four points.

We study the online matching problem in the worst-
case scenario, where the input is generated by an adver-
sary. This is consistent with the standard framework
of competitive analysis [18]. The competitive ratio of
an online algorithm is the maximum ratio between the
number of pairs in an optimal offline solution and that
of the online algorithm for sufficiently long sequences.
Since an offline algorithm always matches all points (ex-
cept potentially one), we prefer to express our results
in terms of the number of matched/unmatched points.
Throughout the paper, we assume the length n of the
online sequence is sufficiently large.

1.1 Contribution

For the monochromatic variant of the problem, we con-
sider greedy algorithms with the following greedy prop-
erty : the algorithm never leaves an incoming point un-
matched if it can be matched with some existing point.
We prove that a greedy algorithm can match at least
d2(n − 1)/3e points for any input of n points. More-
over, we prove optimality since no deterministic algo-
rithm can match more than d2(n − 1)/3e points in the
worst case.

For the bichromatic variant, we introduce an algo-
rithm that matches at least log n−o(log n) points for any

input formed by n red and n blue points. Further, we
prove optimality since no deterministic algorithm can
match more points in the worst case. Our results indi-
cate that the bichromatic variant is more difficult than
the monochromatic variant in the online setting.

In addition to the purely online setting, we study the
problem in a relaxed setting where the online algorithm
is provided with some bits of advice about the input.
The advice is generated by an offline oracle, and is avail-
able to the algorithm before the sequence is revealed
(see [3, 5, 6] for a precise definition of advice). For the
monochromatic variant, we show that advice of size 2n
is sufficient to match all n points, and advice of size
blog((n− 2)/3)c is necessary. For the bichromatic vari-
ant, we show advice of size Θ(n log n) is both sufficient
and necessary to match all points; precisely ndlog ne
bits are sufficient and dlog n!e bits are necessary.

2 Monochromatic Non-crossing Matching

In this section, we provide tight upper and lower bounds
for the number of points that can be matched in the
monochromatic non-crossing matching problem.

An online algorithm is said to have the greedy property
if it never leaves a point unmatched when it has the
option to match it.

Theorem 1 Any online algorithm with the greedy prop-
erty matches at least 2d(n−1)/3e points in any instance
of the online monochromatic non-crossing matching
problem on n points.

Proof. Let Gr be a greedy algorithm. The proof works
by partitioning the plane into a set of convex regions
such that each region, except one, is mapped to a pair of
matched vertices. For that, we process the line segments
between matched pairs of Gr in an arbitrary order. Ini-
tially, there is only one part, formed by a bounding box
of the entire point set; this part has no pair associated
with it. Extend each line segment until it intersects
an existing line in the current partition. Note that the
extended segment divides one convex region into two
smaller convex regions, out of which we associate one
with the pair that has been processed, and the other
to the pair that was previously associated with the par-
titioned convex region. Repeating this process for all
line segments results in k + 1 convex regions in the fi-
nal partition, where k is the number of matched pairs
(see Figure 1). For detailed geometric properties of this
convex subdivision, see, e.g., [4, 13]. Since Gr has the
greedy property, there is at most one unmatched point
inside each convex region.

To summarize, the number of unmatched points u is
no more than the number of convex regions, which is
one more than the number of matched pairs m. So, we



CCCG 2020, Saskatoon, Canada, August 5–7, 2020

1

2 3

4

5

Figure 1: A partition of the plane into convex regions
in the analysis of a greedy algorithm. The numbers on
the line segments indicate the order they are processed
in the analysis.

have u ≤ m + 1. The statement follows from the fact
that u+ 2m = n. �

Next, we show that no online algorithm matches more
points than does a greedy algorithm in the worst case.

Theorem 2 Let Alg be any deterministic online al-
gorithm for the monochromatic non-crossing matching
problem. There are sequences of n points for which Alg
matches at most 2d(n− 1)/3e points.

Proof. We form an input that is generated in an ad-
versarial manner based on the actions of Alg. The ad-
versary maintains a critical region, which is initially the
entire plane and shrinks as the algorithm proceeds. The
adversary keeps adding points to arbitrary positions in
the critical region. As soon as the algorithm matches
two points a and b, the critical region is updated as fol-
lows. Consider the two sides of the line passing through
a and b. If there is a non-empty set S of unmatched
points on any side of the line in the critical region, then
the critical region is updated to be its sub-region that
is not visible to any point in x ∈ S assuming the line
segment between a and b acts as an obstacle. This can
be done by extending the line segments between x and
a and b (see Figure 2). Since the points are in general
position, the updated critical region is non-empty. Note
that if both sides of the line passing through a and b in-
clude unmatched points, the adversary selects one side
arbitrarily. In case no unmatched point exists in the
critical region, the adversary first generates a point x in
an arbitrary position in the critical region and updates
the critical region as a sub-region not visible by x. This
process continues by sending the subsequent points in
the updated (smaller) critical region.

The main observation is that, after a critical region is
updated, at least one point x remains unmatched since
the line segment between x and any future point crosses
the segment between a and b. In particular, we can
assign at least one unmatched point x to a matched
pair. After updating the critical region, the very first

point generated in the updated region also remains un-
matched. Let u and m denote the number of unmatched
points and matched pairs, respectively. By the above
observations, we have u = m+ 1. The statement of the
theorem follows from u+ 2m = n. �

3 Bichromatic Non-crossing Matching

In this section, we study online algorithms for the
bichromatic non-crossing matching problem and provide
tight upper and lower bounds for the number of points
that can be matched. Recall that the input is formed by
n red points that are known to the algorithm from the
beginning and n blue points that appear in an online
manner and need to be matched with the red points.

We introduce an online algorithm, named the Greedy
Median (Gm) algorithm, that works as follows. Upon
arrival of a blue point a, Gm forms a set S of eligible
red points that can be matched with a without crossing
previous line segments. If S is non-empty, Gm matches
a with the median of the points in S when arranged in
angular order around a. The selection of angular order-
ing is arbitrary, and it can be replaced by any ordering
as long as the line through a and the median of the
points in S bisects S.

Theorem 3 The Greedy Median (Gm) algorithm
matches at least log(n)− o(log n) pairs of points in any
instance of the bichromatic non-crossing matching prob-
lem formed by a set of n red points and a sequence of n
blue points.

Proof. Let M(n) denote the number of matched pairs
by Gm in the worst case in an instance formed by n blue
and n red points (we have M(1) = 1). The algorithm
matches the first blue point with the median of the red
points. Consider the two sides of the line that passes
through the matched pair. One of the two sides contains
at least half of the future blue points, i.e., at least b(n−
1)/2c blue points. There are also b(n−1)/2c red points
on the same side (since the line bisects the red points).
So, we have M(n) ≥ 1 + M(bn−12 c) for n > 1, which
solves to M(n) ≥ log(n)− o(log n). �

Although it is not difficult to match log n − o(log n)
points, as we now show, no online algorithm can guar-
antee to match more than log n− o(log n) points.

Theorem 4 Let Alg be any deterministic online algo-
rithm for the bichromatic non-crossing matching prob-
lem. There are inputs formed by a fixed set of n red
points and a sequence of n blue points for which Alg
matches at most log n− o(log n) points.

Proof. We create an adversarial input in which n red
points are placed in arbitrary positions on an arc of a



32nd Canadian Conference on Computational Geometry, 2020

3

2

1

(a)

3

2

1

4
6

5 7

8

(b)

3

2

1

4
6

5 7

8

910

(c)

Figure 2: An illustration of updating the critical region (pink region) by the adversary in the proof of Theorem 2.
The numbers on the points indicate their index in the input sequence. (a) Once points 1 and 2 are matched, there
is no unmatched point in the critical region; the adversary generates point 3 and updates the critical region to its
subregion that is not visible to 3. (b) Assume the algorithm does not match the next points 4, 5, 6, and 7. When it
matches points 5 and 8, points in S = {4, 6} are unmatched on one side of the line passing through 5 and 8. The
adversary updates the critical region to be its subregion not visible by any member of S. (c) Assume the algorithm
does not match the next point 9. When it matches points 10 and 7, the set S = {9} is unmatched on one side of the
line. The critical region is updated to be its subregion not visible to 9.

large circle so that they seem collinear except that the
corresponding arc slightly curves outwards. The blue
points appear in an online manner below the red point
on a similar arc that slightly curves inwards; this arc is
referred to as a critical region at the beginning, and is
updated as the algorithm matches points. Assume at
some point Alg matches an incoming blue point with
a red point, and let L be the line that passes through
the matched pair. The number of red points on one
side of L is at most b(n−1)/2c. The adversary updates
the critical region to only include this side of L. This
ensures that at least d(n−1)/2e red points on the other
side of L remain unmatched; this is because the line
segments between these points and all future blue points
(generated in the updated critical region) crosses L (see
Figure 3). So, each time Alg matches two points, the
number of red points that can still be matched decreases
by a factor of at least 2. Consequently, the number of
matched pairs is at most log n− o(log n). �

1 2

L

Figure 3: Updating the critical region by the adversary
in the proof of Theorem 4. In the beginning, the critical
region is the entire lower arc. Assume Alg does not
match the first blue point but the second one is matched.
The majority of red points appear on the right of the
line L passing through the matched pair. As such, the
adversary updates the critical region to be the left of L.

4 Non-Crossing Matching with Advice

In this section, we study the non-crossing matching
problem under the advice model. We refer the reader
to [5] for a survey on online algorithms with advice. Un-
der the advice model, an online algorithm is provided
with some bits of advice about the input sequence. The
advice can encode any information about the input se-
quence, and is generated by a benevolent offline oracle
that knows the entire input. A central question under
the advice model asks for the number of advice bits
necessary/sufficient to achieve an optimal solution. In
the context of the non-crossing matching problem, this
question translates to the number of advice bits needed
to match all points.

4.1 Monochromatic setting

In this section, we study the monochromatic non-
crossing matching problem under the advice setting.
First, we show that O(n) bits of advice is sufficient to
match all the points.

Theorem 5 There is an online algorithm that receives
(log2 3) n+ o(n) ≤ 1.59n bits of advice and matches all
points (except one if n is odd) in any instance of the
online monochromatic non-crossing matching problem
on n points.

Proof. Consider an offline matching that sorts the
points by their x-coordinate and matches consecutive
pairs of points. Call these pairs of matched points “part-
ners”. Note that all points are matched by this offline
algorithm (except one if n is odd). Now, for each point
p, we generate an advice f(p) ∈ {0, 1, 2}, based on this
offline matching, as follows:



CCCG 2020, Saskatoon, Canada, August 5–7, 2020

- when the partner of p appears after p in the online
sequence, we define f(p) = 0.

- when the partner of p appears before p and is lo-
cated to the left of p, we define f(p) = 1.

- when the partner of p appears before p and is lo-
cated to the right of p, we define f(p) = 2.

So, the advice forms a string of length n over an alpha-
bet of size 3. This can be encoded in (log2 3) n+o(n) <
1.59n bits using, e.g., a wavelet tree structure [10].

It remains to show how to match points using the
advice. Assume a point p arrives. If the advice en-
coded for p is 0, the algorithm keeps it unmatched as
its partner has not arrived yet. If the advice is 1 or 2,
then, p should be matched with the point with closest
x-coordinate on its left or right, respectively. Using this
scheme, we obtain a matching that is the same as the
optimal offline solution. �

Lower Bound. In what follows, we show that ad-
vice of size Ω(log n) bits is required in order to match all
points in a given sequence of n points (assume n is even).
Our lower bound argument generates sequences in which
all points are on the circumference of a circle. In the of-
fline setting, we can index the points, in clockwise order,
starting from an arbitrary position. Any matching of a
point with an even index to a point with an odd index
divides the problem into two even-sized sub-problems,
which can be solved recursively. Any such matching is
equivalent to a balanced parenthesis sequence (see Fig-
ure 4). Consequently, in the offline setting, there are
Cn/2 different ways to match all points, where Cn/2 is
the (n/2)th Catalan number.

In order to provide a lower bound for the size of ad-
vice bits required to match all points, we create a fam-
ily of n − 2 input sequences of length n, denoted by
σ1, σ2, . . . , σn−2. All these sequences start with a com-
mon prefix p1, p2, . . . , pn−2, where the pi’s appear in
clockwise order on the circumference of a circle. The
last two points of any sequence σi are xi and yi, where
xi is a point located between pi−1 and pi, and yi is a
point located between pi and pi+1.

Assume an online algorithm Alg (with advice) is ap-
plied on a sequence σi. Define a partial matching as the
(incomplete) solution of Alg for the common prefix of
the sequences in the family (the first n − 2 points). In
the partial solution, some points are matched, call them
partners, and some are unmatched. A partial matching
is said to be valid for σi, iff it can be completed such
that all points in σi are matched at the end.

Lemma 6 Any partial matching is valid for at most
two sequences from the family.

Proof. A valid partial matching for any sequence in
the family should have exactly two unmatched points.

1
2

3

4

5

6
7

12

10

8

9

11

Figure 4: When points are located on the circumference
of a circle, an offline algorithm can match all points by
matching even-indexed points with odd-indexed points.
The parentheses sequence associated with this matching
is (1 (2 (3 (4 )5 )6 )7 (8 )9 )10 (11 )12.

If more than two points are unmatched, some will stay
unmatched at the end since only two more points from
each sequence is left. If all points are matched, the
last two points xi and yi in σi remain unmatched since
the line segment between them crosses the line segment
between pi and its partner. So, we can consider a par-
tial matching Si,j where two points pi and pj are un-
matched. There are two cases to consider:

Case I: assume the line segment between pi and pj does
not cross any line segment between matched pairs in
Si,j . We claim Si,j cannot be valid for any σk, where
k /∈ {i, j}. Consider a line L passing through pk and its
partner pk′ in Si,j . Both pi and pj appear on the same
side of L. Among xk and yk, one appears on the same
side of L while the other appears on the other side. In
short, three unmatched points appear on one side of L
and one on the other side (see Figure 5a). We cannot
match all points without crossing L.

Case II: assume the line segment between pi and pj
crosses a line segment L between pk and its partner
pk′ . So, pi and pj appear on different sides of L, which
implies the remaining two points should be also on dif-
ferent sides of L to be matched with pi and pj . This is
only possible for σk and σk′ (see Figure 5b). Note that
if the line segment between pi and pj crosses more than
one line segment in Si,j , the same argument implies that
the remaining points should be on the two sides of two
existing line segments in Si,j at the same time, which is
not possible (see Figure 5c). �

Using Lemma 6, we can prove the following lower
bound on the size of advice required to match all points.

Theorem 7 A deterministic algorithm requires advice
of size at least blog((n − 2)/3)c in order to guaran-
tee matching all points in any instance of the online
monochromatic non-crossing matching problem on n
points.

Proof. Assume, for the sake of a contradiction, that
there is an algorithm Alg that matches all points



32nd Canadian Conference on Computational Geometry, 2020

pi

pj

pk
xk

yk
L

pk′

(a)

pipj

pk
xk

yk

L

pk′

(b)

pipj

pk
xk

yk
L

pk′

pm
xm ym

L′

(c)

Figure 5: An illustration of Lemma 6. We have a par-
tial matching Si,j where all points except pi and pj are
matched. (a) if the line segment between pi and pj does
not cross existing segments in Si,j , it is not possible to
match all points of any sequence σk for k /∈ {i, j}. (b)
if the line passing through pi and pj crosses a line seg-
ment between two matched points pk and pk′ , then it
might be possible to match the remaining points of σk
and σk′ . (c) if the line segment passing through pi and
pj crosses two line segments L and L′ between matched
points, we cannot match the remaining two points.

in any instance of length n with less than α(n) =
blog((n − 2)/3))c bits of advice. In particular, Alg
should match all points for any sequence in the fam-
ily {σ1, . . . , σn−2} as we described above. We partition
this set into 2α(n) ≤ (n−2)/3 sub-families, each formed
by sequences that receive the same advice bits. Since
there are n − 2 sequences and at most (n − 2)/3 sub-
families, there is a sub-family with at least 3 sequences,
that is, there are three sequences σa, σb, and σc that re-
ceive the same advice. Since these three sequences have
the same common prefix and receive the same advice,
Alg treats them similarly for the first n − 2 points.
That is, the partial matching of Alg is the same for
all σa, σb, and σc. By Lemma 6, however, this partial
matching is not valid for at least one of these sequences.
We conclude that Alg cannot match all points for at
least one sequence, a contradiction. �

4.2 Bichromatic setting

We show that advice of size Θ(n log n) is both sufficient
and necessary to match all points in the bichromatic set-
ting. The more complicated nature of the bichromatic
setting implies that advice of size of Θ(n) is insufficient
(unlike the monochromatics setting) and, at the same
time, simplifies our lower and upper bound arguments.

Theorem 8 Consider any instance of the online
bichromatic non-crossing matching problem with a se-
quence of n blue and a fixed set of n red points. There
is a deterministic algorithm that receives ndlog ne bits
of advice and matches all points. Meanwhile, any deter-
ministic algorithm requires advice of size at least dlog n!e
bits in order to match all points.

Proof.
Upper bound: The offline oracle creates an order-
ing of the red points (say ordered by x-coordinate and
ties broken by y-coordinate) and computes an optimal
biochromatic matching on these. Now, for each blue
point x, it encodes an advice of size dlog ne that indi-
cates the label of the red point to which x is matched.
The online algorithm can mimic the offline matching by
forming the same ordering of red points and matching
each blue point to the red point indicated in the advice.
Lower bound: Consider instances of the problem in
which the n red points r1, r2, . . . , rn are placed, from
left to right, on an arc of a large circle so that they
seem collinear. The blue points b1, b2, . . . , bn appear
below the red points on an arc that slightly curves in-
wards (similar to Figure 3). In order to match all points,
the left-most red point (r1) should be matched with the
left-most blue point (b1). Using an inductive argument,
we can show there is a unique matching of all points,
where ri is matched with bi. Consider a family of n!
sequences, each associated with a permutation of the
blue points b1, . . . , bn that indicates the order at which
they appear in the online sequence. Let Alg be a de-
terministic online algorithm with less than dlog n!e bits
of advice. This implies that two sequences σ and σ′ in
the family receive the same advice. Assume the per-
mutations associated with σ and σ′ differ for the first
time at index i, and let x be the i’th point in the input
sequence. In σ, the point x is bk and in σ′ it is bk′ for
some k 6= k′. Since Alg is deterministic and receives
the same advice for σ and σ′, it matches x with the same
red point in both cases. Such a matching, however, is
not consistent with the unique optimal matching for at
least one of the two sequences. As such some points re-
main unmatched in either σ or σ′, and hence Alg fails
to match all points. �

5 Concluding Remarks

Theorems 5 and 7 indicate that advice of size O(n)
and Ω(log n) are respectively sufficient and necessary
to match all points in the monochromatic setting. Clos-
ing the gap between these bounds does not seem to be
easy and requires alternative techniques.

All algorithms studied in this paper are determinis-
tic. We expect that randomization can improve the ex-
pected number of matched points which we propose as
a direction for future research.



CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Acknowledgement

We thank the anonymous reviewers for their useful sug-
gestions. We acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada
(NSERC). NSERC funds were used for the research visit
that resulted in publication of this paper.

References

[1] G. Aloupis, J. Cardinal, S. Collette, E. D. Demaine,
M. L. Demaine, M. Dulieu, R. F. Monroy, V. Hart,
F. Hurtado, S. Langerman, M. Saumell, C. Seara, and
P. Taslakian. Non-crossing matchings of points with
geometric objects. Comput. Geom., 46(1):78–92, 2013.

[2] M. J. Atallah. A matching problem in the plane. J.
Comput. Syst. Sci., 31(1):63–70, 1985.

[3] H. Böckenhauer, D. Komm, R. Královic, and
R. Královic. On the advice complexity of the k-server
problem. J. Comput. Syst. Sci., 86:159–170, 2017.

[4] P. Bose, M. E. Houle, and G. T. Toussaint. Every set
of disjoint line segments admits a binary tree. Discret.
Comput. Geom., 26(3):387–410, 2001.

[5] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen,
and J. W. Mikkelsen. Online algorithms with advice:
A survey. ACM Comput. Surv., 50(2):19:1–19:34, 2017.

[6] J. Boyar, S. Kamali, K. S. Larsen, and A. López-
Ortiz. Online bin packing with advice. Algorithmica,
74(1):507–527, 2016.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2001.

[8] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in
bottleneck matching and related problems. Algorith-
mica, 31(1):1–28, 2001.

[9] J. Erickson. https://mathoverflow.net/questions/86906.
https://stackexchange.com/. Accessed: 2020-07-21.

[10] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In Proc. 14th Symp.
on Discrete Algorithms (SODA), pages 841–850, 2003.

[11] J. Hershberger and S. Suri. Applications of a semi-
dynamic convex hull algorithm. BIT Comput. Sci.
Sect., 32(2):249–267, 1992.

[12] J. Hershberger and S. Suri. Efficient breakout routing in
printed circuit boards. In J. Boissonnat, editor, Proc.
13th Annual Symposium on Computational Geometry
(SOCG), pages 460–462. ACM, 1997.

[13] M. Hoffmann, B. Speckmann, and C. D. Tóth. Pointed
binary encompassing trees: Simple and optimal. Com-
put. Geom., 43(1):35–41, 2010.

[14] A. Kaneko and M. Kano. Discrete geometry on red
and blue points in the plane—a survey. Discrete &
Computational Geometry, 25:551–570, 2003.

[15] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An
optimal algorithm for on-line bipartite matching. In
H. Ortiz, editor, STOC90, pages 352–358. ACM, 1990.

[16] C. Lo, J. Matousek, and W. L. Steiger. Algorithms for
ham-sandwich cuts. Discrete & Computational Geom-
etry, 11:433–452, 1994.

[17] L. Lovász and M. Plummer. Matching Theory. AMS
Chelsea Publishing Series. North-Holland, 2009.

[18] D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Commun. ACM, 28:202–208,
1985.

[19] P. M. Vaidya. Geometry helps in matching. SIAM J.
Comput., 18(6):1201–1225, 1989.


	Introduction
	Contribution

	Monochromatic Non-crossing Matching
	Bichromatic Non-crossing Matching
	Non-Crossing Matching with Advice
	Monochromatic setting
	Bichromatic setting

	Concluding Remarks

