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Computing Batched Depth Queries and the Depth of a Set of Points
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Abstract

Simplicial depth and Tukey depth are two common mea-
sures for expressing the depth of a point q relative to a
set P of points in Rd. We introduce definitions that gen-
eralize these notions to express the depth of a set Q of
points relative to a set P of points in Rd, and we exam-
ine algorithms for computing these in R2, capitalizing
on the relative cardinalities of P and Q.

1 Introduction

Depth measures quantify the centrality of an object rel-
ative to a set of objects. For univariate quantitative
data, a natural definition for the depth of a point q rel-
ative to a set P of points in R is to measure how deeply
nested q is in P by the lesser of the number of points
of P less than q, and the number of points of P greater
than q. By this measure, outliers relative to P have
low depth, whereas a median of P has maximum depth.
Various generalizations to higher dimensions exist, in-
cluding simplicial depth and Tukey depth.
The simplicial depth of a query point q relative to a

set P of points is the number of simplices determined
by points in P that contain q:

Definition 1.1 (Simplicial depth [14]) Given a set
P of n points in Rd and a point q in Rd, the simplicial
depth of q relative to P is

SDP (q) =
∑
S∈S

I(q ∈ S), (1)

where S denotes the set of
(

n
d+1

)
closed simplices, each

of which is the convex hull of d+1 points from P , and I
is an indicator function such that I(A) = 1 if A is true
and I(A) = 0 otherwise.

The Tukey depth of a query point q relative to a set
P of points is the minimum number of points of P in
any closed half-space containing q:

Definition 1.2 (Tukey depth [19]) Given a set P of
n points in Rd and a point q in Rd, the Tukey depth (or
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half-space depth) of q relative to P is

TDP (q) = min
H∈H

H∩q ̸=∅

|H ∩ P |, (2)

where H is the set of all closed half-spaces in Rd.

Given q and P in R2, the simplicial depth and the
Tukey depth of q relative to P can be computed in
O(n log n) time, respectively, where n = |P | [9, 17, 10],
both of which have matching lower bounds of Ω(n log n)
worst-case time [1].

A depth median of a set P is a point of maximum
depth relative to P for a given depth measure. We refer
to a simplicial median and Tukey median, which can be
computed in O(n4) time [2] and O(n log3 n) time [12] in
R2, respectively. An in-sample median of P is a point
of P with maximum depth, which can be identified in
O(n2) time in R2 for simplicial depth [9].

Depth measures are typically defined to describe the
location of a single query point (an individual) relative
to a set of points (a population). In this paper, we
examine (1) computing a batch of depth queries relative
to a common set of points, and (2) deriving a single
estimator for the depth of a set of query points relative
to another set of points.

Computing a batch of depth queries by iteratively
running an algorithm designed to calculate the depth
of a single query point can be inefficient. To address
this, we present algorithms to compute a batch of depth
queries; the choice of which algorithm to apply to mini-
mize running time depends on the relative cardinalities
of the query point set Q to the input point set P . Defin-
ing and evaluating the depths of a set of query points
has various applications in data analysis, e.g., finding a
center-outward ordering of a set Q relative to a set P .
Next, we derive a single estimator to express the depth
of Q relative to P . Applications include (1) measur-
ing the centrality of Q relative to P (e.g., the position
of one soccer team relative to the opposing team), (2)
classifying a set Q selected from the same distribution
as the sets P1, . . . , Pm to determine within which set Pi

the set Q is most deeply contained.

Our results In Section 3.1 we present three algorithms
for computing a batch of k simplicial depth queries in
R2 in O(kn log n) time, O(n2 + nk) time, and O(n4 +
k log n), respectively. The first algorithm is fastest when
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k ∈ O( n
logn ), the second when k ∈ Ω( n

logn ) and k ∈
O(n3), and the third when k ∈ Ω(n3). In Section 3.2 we
present two algorithms for computing a batch of k Tukey
depth queries in R2 in O(kn log n) time and O(n2 +
k log n) time, respectively. The first algorithm is fastest
when k ∈ O( n

logn ), and the second when k ∈ Ω( n
logn ).

In Section 4 we introduce definitions for the simpli-
cial depth and Tukey depth of a set Q relative to a
set P , which can be computed in R2 by applying the
algorithms above. Finally, we examine properties and
probabilistic interpretations for the simplicial depth of
a set of points.

2 Related Work

2.1 Simplicial Depth and Simplicial Median

Multiple algorithms compute the simplicial depth of a
point q relative to a set P of n points in R2 in O(n log n)
time [9, 17, 10]. Given the radial ordering of P around
q, the simplicial depth of q can be computed in O(n)
time [9]. Given a set P = {p1, . . . , pn} of points in
R2, Lee and Ching [13] showed that the radial order of
P \ {pi} with respect to pi for all i ∈ {1, . . . , n} can be
determined in O(n2) time. Consequently, the simplicial
depths of all points in P can be obtained in O(n2) time
[9], and an in-sample simplicial median can be identified
in O(n2) time [9]. Khuller and Mitchell studied a similar
problem independently [10].

When defined in terms of closed simplices, a simplicial
median lies at an intersection of simplex boundaries [2].
Rousseeuw and Ruts described how to find a simplicial
median by searching the set of intersection points in
O(n5 log n) time [17]. Aloupis et al. [2] derived a faster
algorithm to compute a simplicial median in O(n4 log n)
time, which they further reduced to O(n4) time. We
apply a technique similar to that of Aloupis et al. [2] in
Algorithm S.III in Section 3.1.

2.2 Tukey Depth and Tukey Median

The Tukey depth of a point q relative to a set P of n
points in R2 can be computed in O(n log n) time [17].
Tukey depth contours are a collection of nested poly-
gons that partition the plane into regions of equal Tukey
depth, which can be computed in O(n2) time [15]. A
Tukey median can be found in O(n log3 n) time [12].

2.3 Depth of a Set of Points

Recently, Pilz and Schnider introduced a definition for
the Tukey depth of a set of points [16]:

Definition 2.1 (Generalized Tukey depth [16])
The generalized Tukey depth of a set Q ⊆ Rd with

respect to a set P ⊆ Rd is

GTDP (Q) = min
H∈H

Q∩H ̸=∅

|H ∩ P |
|H ∩Q|

, (3)

where H is the set of all closed half-spaces in Rd.

Definition 2.1 differs from our Definition 4.2 intro-
duced in Section 4.2. Definition 2.1 selects a single non-
empty half-space that minimizes the ratio (3), i.e., the
number of points of P in the half-space H relative to
the number of points of Q in H. On the other hand,
Definition 4.2 incorporates the respective Tukey depths
for each point in Q, i.e., different half-spaces may be
selected for each point.

Depth histograms provide a characterization of
the combinatorial structure of a point set [6, 4].
Bertschinger et al. studied Tukey depth histograms of
k-flats [4] and defined variations of Tukey depth for a
set Q relative to P , including affine Tukey depth and
convex Tukey depth.

Recently, Barba et al. [3] introduced a definition for
the cardinal simplicial depth1 of a set of points:

Definition 2.2 (Cardinal simplicial depth [3])
The cardinal simplicial depth of a set Q ⊆ Rd with
respect to a set P ⊆ Rd is

CSDP (Q) =
∑
S∈S

I(Q ∩ S ̸= ∅), (4)

where S denotes the set of
(

n
d+1

)
closed simplices, each

of which is the convex hull of d+1 points from P , and I
is an indicator function such that I(A) = 1 if A is true
and I(A) = 0 otherwise.

Definition 2.2 differs from our Definition 4.1 intro-
duced in Section 4.1. Definition 2.2 counts the number
of non-empty simplicies (the cardinality of the set of
non-empty simplicies), whereas Definition 4.1 is a nor-
malized sum of the number of points of Q contained
in each simplex. See further discussion in Section 4.1.
Barba et al. gave an algorithm to compute CSDP (Q)

for given sets P and Q in O(N7/3 logO(1) N) time, where
N = |P |+ |Q| = n+ k.

3 Computing a Batch of Depth Queries

In this section, we describe algorithms that compute a
batch of simplicial depth queries or Tukey depth queries
for k points in a set Q relative to a set P of n points,
where P ∪Q is in general position in R2. For simplicial
depth we propose three algorithms: Algorithm S.I is not

1To disambiguate between Definitions 2.2 and 4.1, we refer to
Definition 2.2 as the cardinal simplicial depth because it corre-
sponds to the cardinality of the set of non-empty simplicies.
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new [9, 17, 10]; Algorithms S.II and S.III are new. For
Tukey depth we propose two algorithms: Algorithms T.I
and T.II apply techniques used in existing algorithms
for Tukey depth and Tukey depth contours.

3.1 Computing a Batch of Simplicial Depth Queries

3.1.1 Algorithm S.I

In Section 2.1 we mentioned algorithms for computing
the simplicial depth of a single query point q relative to
a set P of n points in R2 in O(n log n) time [9, 17, 10].
When the number of query points k is small relative to
n, a straightforward approach for computing the depths
of k points is to iteratively compute the simplicial depth
of each query point using one of these existing algo-
rithms. Using this approach, we can compute the sim-
plicial depth of all k points in O(kn log n) time and O(n)
space to store the angular order of P around each query
point (this space is reused for each query point). Due
to the lower bound of Ω(n log n) on the worst-case time
required for computing the simplicial depth of a single
point [1], this approach is optimal when k ∈ O(1).

Lemma 1 Given a set P of n points and a set Q of
k query points in general position in R2, Algorithm S.I
computes SDP (q) for every q ∈ Q in O(kn log n) total
time and O(n+ k) space.

3.1.2 Algorithm S.II

Algorithm S.I is efficient when k is small relative to
n, but more efficient approaches are possible for larger
values of k. We describe an algorithm that computes
the simplicial depths of points in Q relative to P in
O(n2 + nk) time and O(n2) space. Using an approach
similar to the in-sample simplicial median algorithm of
Gil et al. [9] (Step 1), we compute the radial order of
the n points of P around each point in Q, and (Step 2)
we use this ordering to compute the simplicial depth of
each point in Q.
To perform Step 1, we modify the method described

by Gil et al. [9] and Khuller and Mitchell [10]. First, the
sets P and Q are transformed into sets of lines LP and
LQ in the dual plane, respectively. The sorted order
of P around a point q can be obtained by considering
the intersection order of LP with the dual-line Lq us-
ing a method described in [13]. This step requires O(n)
time for each point in Q. The planar graph construction
method in [5] can be implemented to find the line inter-
section order of LP set with each line in Lq. We con-
struct a graph G of the arrangement of lines induced by
LP incrementally by introducing one line at a time, and
construct the doubly connected edge list of LP , which
requires O(n2) time and O(n2) space. Then we continue
this process by temporarily inserting each line in Lq to
G, and finding the order of intersections of lines in LP

with Lq by traversing the sequence of edges in G along
Lq, which takes O(n) time. Then, applying a method
analogous to that described in [13], the angular sorted
order of P around each point q can be obtained in O(n)
time. Step 1 requires O(n2) time and O(n2) space for
preprocessing. In Step 2, the simplicial depth of each
point q ∈ Q relative to P can be found in O(n) time us-
ing the angular order of points of P around q [9]. This
takes O(nk) time, giving a total time of O(n2 + nk).
Step 1 requires finding the order of intersections be-

tween LP and each line in Lq. Finding the order of
intersections between one line and a set of m lines can
be achieved using one of various methods: (a) incre-
mental planar graph construction [5] in O(m2) time and
O(m2) space, (b) line sweeping [18] in O(m2 logm) time
[8], or (c) topological sweeping [7] in O(m2) time and
O(m) space. Despite its lower costs as a function of
m, when applied to our problem, topological sweeping
takes O(n2 + k2) time and O(n + k) space because it
processes additional intersections in LP and LQ that
are not needed for Step 1. The most efficient method
for finding the ordered intersections between LP and
each Lq line is incremental planar graph construction,
which takes O(n2 + nk) time and O(n2) space.

Lemma 2 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm S.II
computes SDP (q) for every q ∈ Q in O(n2 + nk) total
time and O(n2 + k) space.

3.1.3 Algorithm S.III

When k is large relative to n, construct the arrange-
ment L formed by lines between every pair of points in
P . This arrangement partitions the plane into Θ(n4)
convex cells in which every point within a cell has equal
simplicial depth. By modifying the O(n4)-time simpli-
cial median algorithm of Aloupis et al. [2], we can com-
pute the depths of all cells in O(n4) time. Aloupis et
al. consider the arrangement of line segments connecting
every pair of points in P , which also has O(n4) inter-
sections and O(n4) cells. This method computes the
number of points on each side of each line segment of
P in O(n3) time. Further, Aloupis et al. showed that
starting from a known depth value on a line segment,
by processing each intersection point in O(1) time, the
simplicial depth along the line segment can be computed
in O(n) time [2]. We adapt this depth-finding method
along a line segment to find the simplicial depth of cells
in our arrangement L as described below.

Each line l in L is partitioned into three by the two
points p1 and p2 in P that determine l: the line seg-
ment between p1 and p2 (colour this segment blue) and
two rays (colour the rays red) on l rooted at p1 and p2,
respectively. In the arrangement determined by L, only
the blue segments are boundaries of simplices. There-

115



34th Canadian Conference on Computational Geometry, 2022

fore, when crossing from one cell to an adjacent cell, the
depth changes if the two cells share a blue line segment
on their common boundary. Similarly, if the two cells
share a red segment on their common boundary, then
both cells have the same simplicial depth.

We compute the number of points on each side of
each line in L in O(n3) time. Starting from a cell Ci

with known simplicial depth, the algorithm traverses the
arrangement, calculating the simplicial depth of each
cell relative to the depth of an adjacent cell whose depth
was already computed. To find the simplicial depth of
a cell Cj that shares a blue edge with Ci, subtract the
number of points in P on the side of Ci to the blue edge
and add the number of points in P on the side Cj to
the blue edge. The simplicial depth inside Ci includes
simplicies (triangles) bounded by the blue line segment
and points in P on the side of Ci. When crossing the
blue edge to Cj , we exit (subtract) one set of triangles
and enter (add) a new set of triangles based on the blue
line segment and points of P on the Cj side of the blue
edge. If depth on simplex boundaries is required, then
the depth on the blue edge is calculated by adding depth
in Ci to the number of points in the side of Cj ; no query
point lies on a simplex boundary when P∪Q is in general
position.

All cells outside the convex hull of P have depth zero;
we can initiate our algorithm at any of these cells. The
algorithm proceeds to compute the depths of all cells by
traversing the planar graph determined by L starting
from an extreme cell (with depth zero) using the tech-
nique described above. The depth of each individual
cell is computed in O(1) time. Therefore, the traver-
sal takes time and space proportional to the number of
cells: Θ(n4).

Finally, for each point q in Q we apply a point lo-
cation algorithm to identify the cell in the arrangement
determined by L that contains q. Kirkpatrick’s point lo-
cation algorithm can be implemented in a t-edge planar
subdivision with O(t) preprocessing time, O(t) space,
and O(log t) query time [11]. In our case, t ∈ Θ(n4),
corresponding to Θ(n4) cells in the planar subdivision
determined by L (the number of edges is also Θ(n4)).
Therefore, Kirkpatrick’s point location algorithm can be
used to find the locations of each point in Q in O(n4)
preprocessing time, O(n4) space and O(k log n) query
time. The simplicial depths of all points in Q can be
computed in O(n4 + k log n) time and O(n4) space.

Lemma 3 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm S.III
computes SDP (q) for every q ∈ Q in O(n4 + k log n)
total time and O(n4 + k) space.

Lemmas 1–3 give:

Theorem 4 Given a set P of n points and a set Q of
k query points in general position in R2, the simplicial

depths of points in Q with respect to P can be computed
in O(min{kn log n, n2 + nk, n4 + k log n}) time.

3.2 Computing a Batch of Tukey Depth Queries

In this section, we describe two methods for computing
a batch of Tukey depth queries based on previous work
related to computing Tukey depth [17] and Tukey depth
contours [15].

3.2.1 Algorithm T.I

In R2, the Tukey depth of a point q relative to a set
P of n points can be computed in O(n log n) time [17].
Similar to Algorithm S.I in Section 3.1, a straightfor-
ward method for computing the Tukey depths of k query
point is to apply a Tukey depth algorithm iteratively for
each point of Q. This process take O(kn log n) time and
O(n) space to store the sorted order of P around each
point of Q.

Lemma 5 Given a set P of n points and a set Q of
k query points in general position in R2, Algorithm T.I
computes TDP (q) for every q ∈ Q in O(kn log n) total
time and O(n+ k) space.

3.2.2 Algorithm T.II

Algorithm T.I is efficient when k is small relative to n,
but more efficient approaches are possible for larger val-
ues of k. Algorithm T.II begins by computing the Tukey
depth contours of P using the algorithm of Miller et al.
in O(n2) time and space [15]. Miller et al. showed how
to build a point location data structure on the contours
in O(n2) time to support O(log n)-time Tukey depth
queries. Therefore, the Tukey depths of k points can be
calculated in O(n2 + k log n) time and O(n2) space.

Lemma 6 Given a set P of n points and a set Q of k
query points in general position in R2, Algorithm T.II
computes TDP (q) for every q ∈ Q in O(n2 + k log n)
total time and O(n2 + k) space.

Lemmas 5 and 6 give:

Theorem 7 Given a set P of n points and a set Q of k
query points in general position in R2, the Tukey depths
of points in Q with respect to P can be computed in
O(min{kn log n, n2 + k log n}) time.

4 Depth of a Set of Query Points

We introduce definitions for the simplicial depth and
Tukey depth of a set Q of points relative to a set P of
points. As we discuss below, our new definitions differ
from previous definitions introduced by Barba et al. [3]
and Pilz and Schnider [16].
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BA

Figure 1: Relative to the blue set, the green and red sets
have the same cardinal simplicial depth (Definition 2.2).
However, by Definition 4.1, the simplicial depth of the
green set is triple that of the red set. An analogous prop-
erty holds for Tukey depth: the green and red sets have
the same generalized Tukey depth (by Definition 2.1)
relative to the blue set, but their Tukey depths differ
(by Definition 4.2).

4.1 Simplicial Depth of a Set of Query Points

We define the simplicial depth of a set Q relative to a
set P as the normalized sum of the number of points of
Q contained in each simplex determined by points in P :

Definition 4.1 (Simplicial depth of a set of points)
Given a set P of n points and a set Q of k points in
Rd, the simplicial depth of Q relative to P is

SD∗
P (Q) =

1

|Q|
∑
S∈S

|Q ∩ S|, (5)

where S denotes the set of
(

n
d+1

)
closed simplicies, each

of which is the convex hull of d+ 1 points from P .

SD∗
P (Q) can be expressed as the average simplicial

depth of points in Q:

SD∗
P (Q) =

1

|Q|
∑
q∈Q

SDP (q). (6)

A derivation of (6) is given in Appendix A. (6) implies
that SD∗

P (Q) also has a natural probabilistic interpre-
tation. If q is selected uniformly at random from Q, the
expected value of the simplicial depth of q relative to P
is SD∗

P (Q).
Definition 4.1 differs from CSDP (Q) (Definition 2.2)

introduced by Barba et al. [3]. CSDP (Q) counts the
number of non-empty simplicies, which can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set Q can de-
termine the depth of Q relative to P . See Figure 1. On
the other hand, Definition 4.1 is a normalized sum of
the number of points contained in each simplex. Equa-
tion (6) also suggests a family of measures that can be
used to define the simplicial depth of a set Q with re-
spect to a set P by substituting the average with another
summary statistic of the distribution of the depths of
points in Q. We discuss this briefly in Section 5.

We can compute SD∗
P (Q) by computing the simpli-

cial depth SDP (q) for each point q ∈ Q, and taking the

average of these depth values. This can be achieved ef-
ficiently using the algorithms introduced in Section 3.1,
which gives the following corollary.

Corollary 8 Given a set P of n points and a set Q of
k points in general position in the plane, SD∗

P (Q) can
be computed in O(min{kn log n, n2 + nk, n4 + k log n})
time.

As mentioned earlier, CSDP (Q) can be computed in

O(N7/3 logO(1) N) time, where N = n + k. By Corol-
lary 8, the simplicial depth, SD∗

P (Q), introduced in this
paper can be computed asymptotically faster for any
values of n and k.

Next, we consider another generalization of simplicial
depth to sets, which we show is equivalent to Defin-
ion 4.1. For this, we introduce the normalized simplicial
depth (NSD) of a query point q relative to P as

NSDP (q) =
1

|S|
∑
S∈S

I(q ∈ S) =
SDP (q)

|S|
, (7)

that is, it is the proportion of simplices from S that con-
tain q. Interestingly, this normalized simplicial depth
can also be interpreted as the probability that the query
point q lies in a simplex whose vertices are selected at
random from P or, equivalently,

NSDP (q) = P(q ∈ S), (8)

where S is selected uniformly at random from S.
Liu [14] argued that this is an estimator of the prob-
ability that the query point q lies in a simplex formed
from d + 1 independent random points selected from a
common distribution F in Rd.
Now, consider generalizing the idea described above

by selecting a simplex at random from S, but by in-
stead focusing on the expected number of points of Q
that lie in that simplex. This depth measure, which we
denote ERSP (Q) (Expected number of points of Q in
a Random Simplex from P ) is then

ERSP (Q) = E[YQ(S)], (9)

where S is again randomly selected from S, and where
the random variable YQ(S) denotes the number of points
of Q that lie inside S. This is a reasonable measure
of the depth of Q with respect to P , has an elegant
and intuitive interpretation, and reduces to (8) when
Q contains a single point. Indeed, when Q contains a
single point, E[YQ(S)] = E[I(q ∈ S)] = P(q ∈ S), the
normalized simplicial depth of q. We now justify that
ERSP and SD∗

P are equivalent measures of depth.
The number of points of Q that lie inside a simplex

S constructed from points of P can be expressed as

YQ(S) =
∑
q∈Q

I(q ∈ S), (10)
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and takes values in {0, 1, . . . |Q|}. Also, the proportion
of simplices in S that contain exactly y points of Q is

PS(y) =
1

|S|
∑
s∈S

I
[
YQ(s) = y

]
, (11)

for y = 0, 1, . . . , |Q|. This also corresponds to the prob-
ability that the simplex constructed from three points
selected at random from P contains exactly y points of
Q.

In this context, the expectation of YQ(S), which cor-
responds to the mean of the probability distribution in
(11), can be shown to satisfy (see Appendix A)

SD∗
P (Q) =

|S|
|Q|

ERSP (Q). (12)

From this, the simplicial depth of Q, as defined in Defi-
nition 4.1, is equivalent to ERSP (Q), the expected num-
ber of points in Q that lie a randomly selected simplex
constructed from points of P , as the two depth measures
are always proportional to each other.

We conclude this section by highlighting how CSDP ,
defined in (4) as the number of simplices constructed
from points of P that contain at least one point of Q,
relates to the discussion above. Specifically, it is possible
to write (see Appendix A)

CSDP (Q) = |S|P(YQ(S) > 0). (13)

This implies that, as a measure of depth, CSDP (Q)
is equivalent to P(YQ(S) > 0), the probability that a
random simplex contains at least one point of Q. In
the case where Q contains a single point, this further
reduces to P(YQ(S) > 0) = P(q ∈ S) and justifies that
CSDP (Q) is also a direct generalization of simplicial
depth that applies to sets, but differs from ERSP (Q).

4.2 Tukey Depth of a Set of Query Points

We define the Tukey depth of a set Q relative to a set
P as follows:

Definition 4.2 (Tukey depth of a set of points)
Given a set P of n points and a set Q of k points in
Rd, the Tukey depth of Q relative to P is

TD∗
P (Q) =

1

|Q|
∑
q∈Q

TDP (q). (14)

As with (6), (14) corresponds to the average Tukey
depth of points in Q relative to P , and carries the same
probabilistic interpretation as for simplicial depth: (14)
corresponds to the expected depth of a point selected
uniformly at random from Q.
To compute TD∗

P (Q), we can compute the Tukey
depth of each point in Q relative to P using the algo-
rithms introduced in Section 3.2, and take the average
of those depth values. Therefore, we have the following
corollary.

Corollary 9 Given a set P of n points and a set Q of
k points in general position in the plane, TD∗

P (Q) can
be computed in O(min{kn log n, n2 + k log n}) time.

As mentioned in Section 2.3, Pilz and Schnider [16]
introduced the generalized Tukey depth of a set Q rela-
tive to a set P , GTDP (Q). This definition can result in
similar depth values for significantly different point sets.
Specifically, a small subset of points in the set Q can de-
termine the depth of Q relative to P . See Figure 1. Pilz
and Schnider did not provide an algorithm to compute
GTDP (Q), but based on Definition 2.1, a straightfor-
ward iterative approach for computingGTDP (Q) would
require O(n3+k3) time. This time can likely be reduced
to O(n2 + k2) time by constructing the arrangement of
lines determined by pairs of points in Q∪P , and travers-
ing the arrangement to examine all possible subsets of
Q∪P contained in a half-plane; traversing from one cell
in the arrangement to a neighbouring cell corresponds
to adding or removing O(1) points from Q ∪ P .

5 Discussion and Directions for Future Research

In this paper, we introduced new definitions for the sim-
plicial depth and Tukey depth of a set Q of points rel-
ative to a set P of points in Rd, and we presented algo-
rithms for computing these in R2.

This work suggests various possible generalizations of
simplicial depth and Tukey depth to measure the depth
of a query set Q. As the computation of these depth
measures involves computing the depth of each point in
Q, we could instead define a depth measure as a func-
tion of a different summary of the distributions of the
simplicial depths and Tukey depths of individual points
of Q relative to P . For instance, we could summarize
the distribution of depths using a median, a minimum,
a maximum, or a measure of spread, such as variance,
range, skewness, or quantiles of this distribution. These
different summaries of the constructed depth distribu-
tions over the points of Q can all be computed in the
same time and space complexities as in Corollaries 8
and 9. One could also define the depth of a set using
another depth for individual points altogether.

Future work is warranted to investigate the character-
ization of these depth measures of sets of points. SD∗

P

and TD∗
P are invariant under affine transformations and

vanish at infinity. TD∗
P is consistent across dimensions.

Other properties such as convexity, stability, and ro-
bustness remain to be analyzed, requiring appropriate
generalizations for the depth of a set of points. Finally,
some questions remain unanswered with respect to the
possibility of improving the running times of the algo-
rithms presented in Theorems 4 and 7. In particular,
can we show corresponding lower bounds on the worst-
case running time expressed in terms of n and k?
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A Proofs

In this Appendix we include complete details of proofs and
arguments omitted from the main text due to space con-
straints.

Derivation of Equation (6): Starting with Definition 4.1,
and noting that

|Q ∩ S| =
∑
q∈Q

I(q ∈ S),

we see that

SD∗
P (Q) =

1

|Q|
∑
S∈S

|Q ∩ S|

=
1

|Q|
∑
S∈S

∑
q∈Q

I(q ∈ S)

=
1

|Q|
∑
q∈Q

∑
S∈S

I(q ∈ S)

=
1

|Q|
∑
q∈Q

SDP (q),

as claimed.

Derivation of Equation (12): To avoid confusion in what
follows, we reserve S to denote a randomly selected simplex
and use s otherwise. First, we note that

E[YQ(S)] =

|Q|∑
y=0

y PS(y)

=

|Q|∑
y=0

y

|S|
∑
s∈S

I
[
YQ(s) = y

]
=

1

|S|
∑
s∈S

|Q|∑
y=0

y I
[
YQ(s) = y

]
=

1

|S|
∑
s∈S

YQ(s). (15)

Now, using (10), we can further simplify (15) to get

E[YQ(S)] =
1

|S|
∑
s∈S

∑
q∈Q

I(q ∈ s)

=
1

|S|
∑
q∈Q

∑
s∈S

I(q ∈ s)

=
1

|S|
∑
q∈Q

SDP (q)

=
|Q|
|S| SD

∗
P (Q). (16)

Finally, (9) and (16) together imply that

ERSP (Q) =
|Q|
|S| SD

∗
P (Q),

which is equivalent to (12).

Derivation of Equation (13): First, we write

CSDP (Q) =
∑
s∈S

I
[
YQ(s) > 0

]
.

Then, making use of (11), derivations similar to those pro-
vided above allow one to see that

CSDP (Q) =
∑
s∈S

|Q|∑
y=1

I
[
YQ(s) = y

]
=

∑
s∈S

|Q|∑
y=0

I
[
y > 0

]
I
[
YQ(s) = y

]
=

|Q|∑
y=0

I
[
y > 0

]∑
s∈S

I
[
YQ(s) = y

]
= |S|

|Q|∑
y=0

I
[
y > 0

]
PS(y)

= |S|E
[
I(YQ(S) > 0)

]
= |S|P(YQ(S) > 0),

as claimed.
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