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Abstract

Let P be a set of points and let U be a set of unit disks
in the Euclidean plane. A minimum ply cover of P with
U is a subset of U that covers P and minimizes the
number of disks that share a common intersection. The
size of a minimum ply cover is called the minimum ply
cover number. Biedl et al. [Comput. Geom., 94:101712,
2020] showed that determining the minimum ply cover
number for a set of points by a set of unit disks is NP-
hard, and asked whether there exists a polynomial-time
O(1)-approximation algorithm for this problem. They
showed the problem to be 2-approximable in polynomial
time for the special case when the minimum ply cover
number is constant. In this paper, we settle the ques-
tion posed by Biedl et al. by providing a polynomial-
time O(1)-approximation algorithm for the minimum
ply cover problem.

1 Introduction

The minimum set cover problem is a widely studied op-
timization problem. The input to the set cover problem
is a set P and a collection C of subsets over P . The
goal is to identify a subset C ′ of C with minimum car-
dinality that contains all the elements of P . The mem-
bership of an element q in P with respect to a subset
C ′ of C is the number of sets in C ′ that contain q. The
minimum membership set cover problem is a variant in
which the goal is to find a subset C ′ of C that mini-
mizes the maximum membership of elements in P . A
rich body of literature studies the minimum membership
set cover problem [2, 10, 12, 13, 15, 16]. In this paper,
we consider a set cover scenario in which the given sets
of C may contain elements outside P and membership
is evaluated for all elements covered by C ′, including
those outside P . This concept appears in the literature
as ply cover, which is formalized below.

The ply of a collection S of sets, denoted ply(S), is
the maximum cardinality of any subset of S that has a
non-empty common intersection. The set S covers a set
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P if P ⊆ ⋃Si∈S Si. Given a set P and a collection of
sets U , a subset S ⊆ U is a minimum ply cover of P if
S covers P and S minimizes ply(S) over all subsets of
U . Formally:

plycover(P,U) = arg min
S⊆U

S covers P

ply(S). (1)

The ply of such a set S is called the min-
imum ply cover number of P with U , denoted
ply∗(P,U). For example, if P = {1, 3, 5, 7, 8}
and U = {{1, 2, 3, 4}, {8}, {3, 4, 5}, {4, 5, 7}}, then
plycover(P,U) = {{1, 2, 3, 4}, {8}, {4, 5, 7}} and the
minimum ply cover number is two.

Motivated by applications in covering problems, in-
cluding interference minimization in wireless networks,
Biedl et al. [3] introduced the minimum ply cover prob-
lem in the geometric setting: given sets P and U , find
a subset S ⊆ U that minimizes (1). When U is a set of
unit disks representing transmission ranges of potential
locations for placing wireless transmitters and P repre-
sents locations of wireless clients, S ⊆ U corresponds to
locations to install transmitters that minimize interfer-
ence at any point in the plane.

Biedl et al. [3] showed that the problem is NP-hard
to solve exactly, and remains NP-hard to approximate
by a ratio less than two when P is a set of points in R2

and U is a set of axis-aligned unit squares or a set of
unit disks in R2. They also provided 2-approximation
algorithms parameterized in terms of ply∗(P,U) for unit
disks and unit squares in R2. Their algorithm for axis-
parallel unit squares runs in O((k + |P |)(2 · |U |)3k+1)
time, where k = ply∗(P,U), which is polynomial when
ply∗(P,U) ∈ O(1).

Biniaz and Lin [4] generalized this result for any fixed-
size convex shape and obtained a 2-approximation algo-
rithm when ply∗(P,U) ∈ O(1). The problem of finding
a polynomial-time approximation algorithm to the min-
imum ply cover problem remained open for both unit
squares and unit disks when the minimum ply cover
number, ply∗(P,U), is not bounded by any constant.

Recently, Durocher et al. [11] settled this question
affirmatively for unit squares by designing a polynomial-
time (8 + ε)-approximation algorithm for the problem,
where ε > 0. We refer the reader to [19] for subsequent
work that achieves faster algorithms, but with larger
approximation factors.

Our contribution: In this paper we consider the
minimum ply cover problem for a set P of points in R2
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Figure 1: (a) An input consisting of points and unit disks. (b) A covering of the points with ply 1, which is also the
minimum ply cover number for the given input. (c) A covering of the same instance with ply 3.

with a set U of unit disks in R2. We show that for
every ε > 0, the minimum ply cover number can be
approximated in polynomial time for unit disks within
a factor of (63+ε). This settles an open question posed
in [3] and [4].

Our idea is to leverage the minimum discrete unit
disk cover problem that seeks to cover a given point set
with a smallest cardinality subset of the given disks. We
show that there exist instances where the cardinality of
the minimum discrete unit disk cover is at least 9.24
times the minimum ply cover. Hence, obtaining an ap-
proximation factor of 10 would be interesting, and we
believe that achieving an approximation factor smaller
than 10 would require a different technique that does
not rely predominantly on a discrete unit disk cover.

Recent Developments: Recently, and indepen-
dently of our work, Bandyapadhyay et al. [1] have shown
that minimum ply cover can be approximated within a
constant factor in O(n·polylog(n)) time for fat objects,
which includes unit disks and unit squares. Their idea
is similar to the one that we used for disks. For unit
squares, the technique yields an approximation factor of
36. For disks, they only provide a high-level argument
for obtaining an O(1)-factor approximation rather than
aiming for an exact value.

2 Approximating Minimum Ply Covering by Dis-
crete Unit Disk Cover

Let P be a set of points in R2 and let U be a set of
unit disks in R2. We assume that no three disks in
U have boundaries that intersect at a common point.
In this section we give a polynomial-time algorithm to
approximate the minimum ply cover number for P with
U within a factor of O(1). We first give an overview of
the algorithm and then describe its details.

2.1 Overview

Consider an axis-aligned grid G over P , where each grid
cell is of size (1/

√
2) × (1/

√
2). We choose a grid that

is in general position relative to the disks in U , i.e., no
disk is tangent to a grid line. A grid cell is called non-
empty if it contains some point of P , otherwise, we call
it empty.

We leverage the minimum discrete unit disk cover
problem that, given a set of points and a set of unit disks
on the Euclidean plane, seeks a minimum-cardinality
subset of the input disks that covers the input points,
for which a PTAS exists [17]. We show that one can
first find an approximate solution to the minimum dis-
crete unit disk cover for each non-empty grid cell, and
then combine the solutions to obtain an approximate
solution to the minimum ply cover for P .

2.2 Details of the Algorithm

We first remove all the disks in U that do not contain
any point of P as they are not needed for covering P .
Let R be a non-empty grid cell of G. We first provide an
upper bound on the cardinality of the minimum discrete
unit disk cover in terms of the minimum ply cover num-
ber for the points and disks that overlap R (Lemma 1).
We then show how to combine the respective solutions
from each cell to obtain a cover of P by a subset of U
whose ply cover number is at most (63 + ε) ply∗(P,U)
(Theorem 2).

Lemma 1 Let Q ⊆ P be the points that lie in R and let
W ⊆ U be the set of unit disks that intersect R. Let S
be a set of k points in the plane (i.e., not necessarily in
P ) such that every disk in W includes at least one point
in S (points in S may lie outside R). The cardinality
of every minimum discrete unit disk cover of Q by W is
at most k times the minimum ply cover number for Q.

Proof. Let δ be the cardinality of a minimum discrete
unit disk cover for covering Q by W . Let β be the
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R

Figure 2: Illustration for Corollary 1.1, where R is
shown in gray, Q is shown in black disks and S is shown
in orange. Any disk that intersects the center grid cell
must cover at least one orange point.

minimum ply cover number for covering Q by W . If
δ ≤ kβ, then β ≥ δ/k.

Suppose for a contradiction that the minimum ply
cover number is less than δ/k. Since every disk in the
minimum ply cover must hit at least one point in S, the
number of disks in the cover is strictly less than δ. This
contradicts our initial assumption that δ is the cardi-
nality of a minimum discrete unit disk cover of Q. �

It is straightforward to verify that for Lemma 1, it
suffices to choose the centers of the 8 neighbouring cells
of R as the point set S (Figure 2). Specifically, let D be
a unit disk that intersects R. The unit disks centered at
the points of S cover the entire region inside the convex
hull of S. Therefore, if the center of D lies inside the
convex hull of S, then D must include at least one point
from S. The remaining case is when the center of D lies
outside of S. If D does not include the points of S, then
it can intersect a segment of length at most 1/

√
2 from

the convex hull boundary of S. However, this chord
length is too short for D to reach R, which contradicts
the assumption that D intersects R. Hence we obtain
the following corollary.

Corollary 1.1 Let Q ⊆ P be the points that lie in R
and let W ⊆ U be set of unit disks that intersect R. The
cardinality of a minimum discrete unit disk cover for Q
by W is at most 8 times the minimum ply cover number
for Q by W .

In the following theorem we show how to combine
the approximate solutions for the cells of G to obtain an
O(1)-approximation for the minimum ply cover prob-
lem.

Theorem 2 Let P be a set of points and let U be a set
of unit disks, both in R2. Assume that for every Q ⊆ P

C ′

Figure 3: The friend cells for C ′. The red circles illus-
trate that for every friend cell, there is a unit disk that
intersects both that cell and C ′.

and W ⊆ U , there exists a f(Q,W )-time algorithm A
that can approximate the cardinality of the minimum
discrete unit disk cover of Q with W within a factor of
γ. Then the minimum ply cover number for P using U
can be approximated within a factor of 360γ in O(|P | ·
f(P,U)) time.

Proof. Let U∗ be a minimum ply cover for covering
P with U . We consider a grid G over the point set P
where each grid cell is of size (1/

√
2) × (1/

√
2). Apply

the algorithm A iteratively to find a γ-approximation
for the cardinality of the minimum discrete unit disk
cover for each grid cell. Let the maximum cardinality
that we attain for a cell be δmax. Let C be the cell
that attains δmax, and let QC and WC be the points
and unit disks corresponding to C, respectively. By
Corollary 1.1, the cardinality of the minimum discrete
unit disc cover is at most 8 times the minimum ply cover
number for covering QC with WC . Therefore, δmax at
most 8γ times the minimum ply cover number for QC .
Since QC ⊆ P and WC ⊆ U , the minimum ply cover
number for covering QC with WC is smaller than the
minimum ply cover number (ply(U∗)) for covering P
with U . Therefore, we have δmax ≤ 8γ ply(U∗).

Let O be the union of all the approximate discrete
unit disk covers obtained by applying the algorithm A
to cells of G, and let r be a point in the plane that does
not fall on any grid line of G. Let C ′ be the cell of G
that contains r. In the following we show that r can
belong to at most 45δmax disks in O.

We refer to a cell D to be a friend of C ′ if a solution
to the discrete unit disk cover for covering QD intersects
C ′. In other words, for every friend D, there is a unit
disk that intersects both D and C ′. There are 45 friend
cells for C ′ (see Figure 3). Therefore, the number of
disks that contains r in O is at most 45δmax. Since
δmax ≤ 8γ ply(U∗), the number of unit disks in O that
may contain r is at most 360γ ply(U∗). Thus the ply of
O is at most 360γ ply(U∗). �

Since there exists a PTAS for the discrete unit disk

21



35th Canadian Conference on Computational Geometry, 2023

cover problem [17], we obtain the following corollary.

Corollary 2.1 Given a set P of points and a set U of
unit disks, both in R2, a ply cover of P using U can
be computed in polynomial time whose ply is within a
constant factor of the minimum ply cover number of P
by U .

3 Further Improvements

Note that we have some freedom when choosing the set
S in Lemma 1 and the grid resolution in Theorem 2.
Therefore, it is natural to leverage such freedom to fur-
ther lower the approximation factor.

Note that there are several choices for S. For ex-
ample, consider a regular pentagon inscribed in a unit
circle centered at the center of R. Once can choose the
corners of the pentagon as the points of S, as illustrated
in Figure 4. Specifically, every unit disk with center ly-
ing inside the unit circle (shown in red) includes at least
one point from S, and every unit disk with center lying
outside the unit circle and avoiding S is unable to reach
R, as illustrated in blue disks.

If we choose the corners of the pentagon as the points
of S, then the approximation factor 8 in Corollary 1.1
improves to 5 and the overall approximation factor in
Theorem 2 improves to 45 · 5 · γ = 225γ. The factor 225
is determined partly by the number of fried cells, which
is 45. To reduce this factor, we choose a hexagonal grid
instead of a square grid. This requires us to design a new
set of S, but it turns out that the overall approximation
factor reduces to 63γ. We now give the details of the
construction.

Let H be a regular hexagon that inscribes a unit circle
with a side parallel to the x-axis (Figure 5(a)). Consider
now a hexagonal grid H on the point set P where each
hexagon is a copy of H. We compute the approximate
discrete unit disk cover for each cell of H. Let δmax

R

Figure 4: An alternative choice for S.

be the largest approximate discrete unit disk cover that
has appeared for a cell C.

Observe that each hexagonal cell can be partitioned
into 6 triangles by drawing a line segment between op-
posite corners of the hexagon (Figure 5(b)). While com-
bining the solutions, we consider each triangular region
instead of each hexagonal region, as follows.

Let T be a triangular region, as illustrated in Fig-
ure 5(c). We first use the idea of Lemma 1 to compute
an upper bound on the minimum discrete unit disk cover
for the points and unit disks corresponding to T . To ob-
tain such an upper bound, we design a set S of 7 points
such that any unit disk intersecting T contains at least
one point from S. Let H ′ be the hexagonal cell that
contains T and let o be the center of T . Then S in-
cludes the point o and the 6 points obtained from the
intersection of the hexagonal grid and the circle of ra-
dius 1.5 centered at o. Figure 5(c) illustrates the circle
of radius 1.5 in dashed lines and the points of S in or-
ange. To verify that any unit disk D that intersects
T contains a point from S, consider two cases. If the
center c of D lies inside the hexagon H ′′ determined by
S \ {o}, then c lies in an equilateral triangle with side
length 1.5, which is determined by three points of S.
Figure 5(c) illustrates the equilateral triangle in green.
The radius of the circumscribed circle of this equilat-
eral triangle is 1.5/

√
3 < 1. Therefore, D must contain

a point from S. If the center c of D lies outside H ′′,
then it can reach T only when D passes through two
points of S, as illustrated in Figure 5(d).

We now compute the approximation factor using the
same proof technique as in Theorem 2. Let O be the
union of all the approximate discrete unit disk covers
obtained by applying the algorithm A to the hexagonal
cells of H, and let r be a point in the plane that does
not fall on any grid line of H. Let C ′ be a triangular
region that contains r. We now count the hexagonal
cells that are within unit distance to the C ′. In other
words, the discrete unit disk cover solution for only these
cells may contain r. There are 9 friend cells for C ′

(see Figure 5(e)). Therefore, the number of disks that
contains r in O is at most 9δmax. Since |S| = 7, we
have δmax ≤ 7γ ply(U∗), where γ is the approximation
factor for the minimum discrete unit disk cover and U∗

is the minimum ply cover. Consequently, the number
of unit disks in O that may contain r is at most 9 · 7 ·
γ ply(U∗). Thus the ply of O is at most 63γ ply(U∗).
Since there is a polynomial-time (1 + ε′)-approximation
for the minimum discrete unit disk cover [17], we obtain
a (63 + ε)-approximation for the minimum ply cover
number where we choose ε′ to be ε/63.

The following theorem summarizes the result of this
section.

Theorem 3 Given a set P of points and a set U of unit
disks, both in R2, and a constant ε > 0, a ply cover of P
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(a) (e)

C ′

(b) (c) (d)

TT

Figure 5: Improving the approximation factor by choosing a hexagonal grid.

using U can be computed in polynomial time whose ply
is at most (63+ε) times the minimum ply cover number
of P by U .

The bottleneck of the running time of our algorithm
is the time to compute the discrete unit disk cover.
In 1995, Brönnimann and Goodrich gave an O(1)-
approximation algorithm for minimum discrete unit
disk cover [5]. A rich body of research attempted to
lower the approximation factor since then [6, 18, 7, 8].
The (1 + ε)-approximation result for the minimum
discrete unit disk cover [17] has a running time of

O(m2(c/ε)2+1n), where m and n are the numbers of
disks and points, respectively, and c is a constant.
This running time is large, i.e., the fastest achievable
running time is O(m65n) by setting ε = 2, which
gives a 3-approximation [14]. Das et al. [9] gave an
18-approximation algorithm that runs in O(n log n +
m logm+mn) time, which may be used to compute an
approximate solution to the minimum ply cover prob-
lem faster, but the approximation factor would increase
to 1134.

4 Lower Bound

Our approximation algorithm for the minimum ply
cover problem relies heavily on finding a discrete unit
disk cover. In this section, we construct instances where
the cardinality of the minimum discrete unit disk cover
is at least 9.2444 times the minimum ply cover num-
ber. The bound 9.24 is constructed to complement our
approach, i.e., in general, the number of disks in a dis-
crete unit disk cover could be unbounded compared to
the minimum ply cover number. This 9.24 lower bound
indicates that achieving an approximation factor less
than 10 may be unlikely using our approach.

Choose any n ≥ 2. We construct a set {D1, . . . , Dn}
of n unit disks such that the boundary of each disk is
tangent to a common point o (each disk center is a unit
distance from o), and the disks are positioned uniformly
around o. Figure 6 shows these disks in gray. Consider
a circle C of radius 2 centered at o (shown in orange

in Figure 6). For each i ∈ {1, . . . , n}, we add a point
pi (shown in red in Figure 6) at the intersection of the
boundaries of C and Di, and place a unit diskD′i (shown
in black in Figure 6) such that pi is the midpoint of the
centers of Di and D′i.

D′
1

D′
2

o

Figure 6: Illustration for the construction of a ply cover
instance (P,U) when n = 12. The points of P are shown
in red, and U consists of the black and gray disks.

Consider an instance of the minimum ply cover
problem (P,U), where P = {p1, . . . , pn} and U =
{D1, . . . , Dn, D

′
1, . . . , D

′
n}. For each i ∈ {1, . . . , n}, the

point pi ∈ P is covered by exactly two disks in U , Di and
D′i; furthermore, Di and D′i cover no points in P \ {pi}.
Therefore, any disk cover of P by U must contain at
least n disks and must contain either Di or D′i for each
i ∈ {1, . . . , n}.

The set U ′ = {D′1, . . . , D′n} covers P and |U ′| = n.
Therefore, U ′ is a minimum discrete unit disk cover of
P . Similarly, the set U ′′ = {D1, . . . , Dn} covers P ,
|U ′′| = n, and U ′′ is also a minimum discrete unit disk
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cover of P . U ′′ has ply n. We now calculate the ply of
U ′.

See Figure 7, illustrating the point o and disks Di

and D′i, for some i ∈ {1, . . . , n}. The segment oci is the
diameter of Di plus the radius of D′i; therefore it has
length 3. Consequently, θ = 2 sin−1(1/3), and the ply

of U ′ is dn2 sin−1(1/3)
2π e.

opi θ

ai

bi

ci

D′
i

Di

Figure 7: The sector rooted at o with boundary tangent
to the disk D′i forms an angle θ = 2 sin−1(1/3) at o.

An adversarial choice of minimum discrete unit disk
cover of P by U selects U ′. Consequently, no minimum
discrete unit disk cover can guarantee to approximate
the minimum ply by less than

lim
n→∞

ply(U ′′)
ply(U ′)

= lim
n→∞

n

d2n sin−1(1/3)e/(2π)

=
π

sin−1(1/3)

> 9.2444.

The following theorem summarizes the result of this
section.

Theorem 4 For sufficiently large n, there exists a set
of n points and 2n disks for which the ply of a mini-
mum discrete unit disk cover is at least 9.24 times the
minimum ply cover.

5 Conclusion

We have shown that given a set of points and a set of
unit disks in the Euclidean plane, one can compute a
ply cover whose ply is within a constant factor of the
minimum ply cover number. The approximation fac-
tor we obtain is large (i.e., 63 + ε), whereas only a 2-
inapproximability result is known [3]. Therefore, a nat-
ural direction of future research is to narrow down this
gap.

Our approximation algorithm relies on finding an ap-
proximate discrete unit disk cover and we have con-
structed instances where a minimum discrete unit disk
cover is at least 9.24 times the minimum ply cover num-
ber. This raises the question of whether the approx-
imation factor could be brought down closer to 10, or
whether the existing 2-inapproximability result could be
strengthened further using the disk configurations that
we used in this paper.
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