
CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

CCOSKEG Discs in Simple Polygons∗

Prosenjit Bose† Anthony D’Angelo‡ Stephane Durocher§

Abstract

We consider the problem of finding a geodesic disc D
of smallest radius containing at least k points among n
inside a simple polygon P . The centre of D must lie
on a chord in P . The polygon P has m vertices, r of
which are reflex. We present an exact algorithm using
parametric search that runs in O(n log2 n+m) time with
high probability and O(n log r +m) space.

1 Introduction

The smallest / minimum enclosing disc problem takes
as input a set S of n points in the plane and returns
the smallest Euclidean disc that contains S. This can
be solved in O(n) expected time [58] and O(n) worst-
case time [43]. The smallest k-enclosing disc problem
is a generalization that asks for a smallest disc that
contains at least k ≤ |S| points1 of S, for any given
k, and has been well studied [3, 24, 26, 27, 32, 39, 40].
It is conjectured that an exact algorithm that computes
the smallest k-enclosing disc in the plane requires Ω(nk)
time [31, §1.5].

Matoušek [39] presented an algorithm that first com-
putes a constant-factor approximation2 in O(n log n)
time and O(n) space (recently improved to O(n) ex-
pected time for a 2-approximation that uses O(n) ex-
pected space [32]), and then uses that approximation
to seed an algorithm for solving the problem exactly
in O(n log n + nk) expected time using O(nk) space or
O(n log n+nk log k) expected time using O(n) space (re-
cently improved to O(nk) expected time using O(n+k2)
expected space [24, 32]). Matoušek [40] also presented
an algorithm for computing the smallest disc that con-
tains all but at most q of n points in O(n log n+ q3nε)
time, where ε is “a positive constant that can be made
arbitrarily small by adjusting the parameters of the al-
gorithms; multiplicative constants in the O() notation

∗This work is funded in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC).
†Carleton University, Ottawa, Canada, jit@scs.carleton.ca
‡anthony.dangelo@carleton.ca
§University of Manitoba, Winnipeg, Canada,

stephane.durocher@umanitoba.ca
1In this paper, we use the notation |Z| to denote the number

of points in Z if Z is a point set, or the number of vertices of Z
if Z is a face or a polygon.

2An α-approximation means that the disc returned has a ra-
dius at most α times the radius of an optimal solution.

may depend on ε” [40].
In this paper we generalize the smallest k-enclosing

disc problem to simple polygons using the geodesic met-
ric, meaning that the distance dg(a, b) between two
points a and b is the length of the shortest path Π(a, b)
between a and b that lies completely inside the sim-
ple polygon P . A geodesic disc D(c, ρ) of radius ρ
centred at c ∈ P is the set of all points in P whose
geodesic distance to c is at most ρ. Our article fo-
cuses on the Chord-Constrained Smallest k-Enclosing
Geodesic (CCOSKEG) disc problem.

CCOSKEG Disc Problem
Consider a simple polygon Pin defined by a se-
quence of m vertices in R2, r > 0 of which are reflex
vertices, a set S of n points of R2 contained in Pin,3

an integer k ≤ n, and an input chord ` ⊂ Pin.4

Find a CCOSKEG disc, i.e., a geodesic disc of min-
imum radius ρ∗ in Pin centred on ` that contains
at least k points of S.

Without loss of generality, we consider ` to be the
x-axis. We make the general position assumptions that
no two points of S are equidistant to a vertex of Pin,
and no four points of S are geodesically co-circular. Un-
der these assumptions, a smallest k-enclosing geodesic
(SKEG) or CCOSKEG disc contains exactly k points.
Let D(c∗, ρ∗) be a CCOSKEG disc for the points of S in
Pin constrained to the input chord `. For convenience,
at times we will refer to this as simply D∗. A k-enclosing
geodesic disc (KEG disc) is a geodesic disc in Pin that
contains exactly k points of S. The main result of our
article is the following theorem.

Theorem 4 Given a chord ` ⊂ Pin we compute a
CCOSKEG disc D(c∗, ρ∗) in O(n log2 n+m) time with
high probability5 using O(n log r +m) space.

1.1 Related Work

Other than our work on SKEG discs [15], we are not
aware of other work tackling the subject of this pa-
per. In our previous work [15], we presented an algo-
rithm to compute a 2-approximation SKEG disc that

3When we refer to a point p being in a polygon P , we mean
that p is in the interior of P or on the boundary, ∂P .

4We use the terms chord and diagonal interchangeably.
5We say an event happens with high probability if the proba-

bility is at least 1− n−λ for some constant λ.

129

35th Canadian Conference on Computational Geometry, 2023

runs in expected time O(n log2 n log r + m) and ex-
pected space O(n + m) if k ∈ O(n/ log n); if k ∈
ω(n/ log n), it computes such a disc with high prob-
ability in O(n log2 n log r + m) deterministic time with
O(n+m) space. We compared it to the approach we pre-
sented in the same paper that uses higher-order geodesic
Voronoi diagrams to find the exact solution. Assuming
general position, a SKEG disc has either two or three
points of S on its boundary, allowing techniques involv-
ing Voronoi diagrams to be applied. Ignoring polyloga-
rithmic factors, the worst-case runtime for the Voronoi
diagram approach for k = n is O(n+m); for k = n− 1
and r/ log2 r ∈ Ω(k log k) is O(nr+m); for k = n−1 and
r/ log2 r ∈ o(k log k) is O(n2+nr+r2+m); for k < n−1
and for n log n ∈ o(r/ log r) is O(k2n + min(rk, r(n −
k)) + m); and O(k2n + k2r + min(kr, r(n − k)) + m)
otherwise. Higher-order Voronoi diagrams have been
considered to solve the smallest k-enclosing disc prob-
lem in the plane [3, 26].

There has been other work done with geodesic discs
in polygons. A region Q is geodesically convex relative
to a polygon P if for all points u, v ∈ Q, the geodesic
shortest path from u to v in P is in Q. The geodesic
convex hull CHg of a set of points S in a polygon P is
the intersection of all geodesically convex regions in P
that contain S. The geodesic convex hull of n points in
a simple m-gon can be computed in O(n log n+m) time
using O(n+m) space [29, 53].

The geodesic centre problem asks for a smallest
geodesic disc that lies in the polygon and encloses all
vertices of the polygon (stated another way, a point that
minimizes the geodesic distance to the farthest point).
This problem is well studied [4, 11, 16, 48, 53] and can
be solved in O(m) time and space [4]. The geodesic cen-
tre problem has been generalized to finding the geodesic
centre of a set of points S inside a simple polygon in
O(n log n + m) time [10]. Generalized versions of the
geodesic centre for polygons [12, 46, 47, 55, 56]; packing
and covering [49, 55]; and clustering [14] have all been
studied.

Dynamic k-nearest neighbour queries were stud-
ied by de Berg and Staals [25]. They presented
a static data structure for geodesic k-nearest neigh-
bour queries for n sites in a simple m-gon that is
built in O(n(log n log2m+log3m)) expected time using
O(n log n logm+m) expected space and answers queries
in O(log(n+m) logm+ k logm) expected time.

If Pin has no reflex vertices, it is a convex polygon and
the SKEG disc problem is solved by the algorithm for
planar instances which uses a grid-refinement strategy.
This works in the plane because R2 with the Euclidean
metric is a doubling metric space, meaning that for any
disc of radius ρ > 0 in R2 it can be covered by O(1)
discs of radius ρ/2 [33]. Geodesic discs do not have
this property; it may take Θ(r) smaller discs to cover

the larger one (refer to Fig. 1 in Appendix B). Another
difficulty of the geodesic metric is that for two points
u and v of S on opposite sides of a given chord, their
geodesic bisector (formed by concatenating their bisec-
tor and hyperbolic arcs) can cross the chord Θ(r) times.
See Figs. 2 to 4 in Appendix C.

Section 2 describes the preprocessing procedures and
data structures used by our algorithms. Section 3 dis-
cusses how we use a technique known as parametric
search to solve the CCOSKEG disc problem. Section 4
summarizes our result. Appendices A and B contain de-
tails omitted from the paper due to space constraints.
Appendix C contains figures illustrating some concepts
from the paper.

2 Preprocessing, Data Structures, and Definitions

We perform the following preprocessing in O(m) time
and space.

Polygon Simplification Convert Pin into a simplified
polygon P consisting of O(r) vertices using the
O(m) time and space algorithm of Aichholzer et al.
[5] that computes a polygon P such that: P ⊇ Pin;
|P | is O(r); the reflex vertices in Pin also appear
in P ; P preserves the visibility of points in Pin;
and the shortest path between two points in Pin
remains unchanged in P . As with Pin, we assume
the points of S are in general position with the ver-
tices of P , and no four points of S are geodesically
co-circular in P .

Shortest-Path Data Structure We use the O(r)
time and space algorithm of Guibas and Hersh-
berger [29, 34] on P to build a data structure that
gives the length of the shortest path between any
two query points in P in O(log r) time and space.
Querying the data structure with two points in P
returns a tree of O(log r) height whose in-order
traversal is the shortest path in P between the two
query points. The query also provides the length
of the path from the source to each node along the
path (which is stored at the respective node in the
tree). This data structure can provide the first or
last edge along the path between the two points in
O(log r) time by traversing the tree to a leaf. We
can also perform a search through this tree to find
the midpoint of the shortest path in O(log r) time
[57, Lemma 3]. The returned tree has O(r) nodes
and edges, but the query adds O(log r) nodes and
edges linking to pre-computed structures to pro-
duce the result.

Funnel [29, 37] The vertices of the geodesic shortest
path Π(a, b) are the vertices a, b, and a subset of
the vertices of the polygon P forming a polygo-
nal chain [20, 38]. Consider a diagonal ` of P , its

130

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

two endpoints `1 and `2, and a point p in P . The
union of the three paths Π(p, `1), Π(p, `2), and `
form what is called a funnel. This funnel repre-
sents the shortest paths from p to the points on `
in that their union is the funnel. Starting at p, the
paths Π(p, `1) and Π(p, `2) may overlap during a
subpath, but there is a unique vertex pa called the
apex (which is the farthest vertex on their common
subpath from p) where the two paths diverge. After
they diverge, the two paths never meet again. The
path from pa to an endpoint of ` forms an inward-
convex polygonal chain (i.e., a convex path through
vertices of P with the bend protruding into the in-
terior of P). In our paper we often make use of
the portion of the funnel between the apex and `,
which we shall refer to as a truncated funnel. Fig. 5
in Appendix C illustrates the notion of a funnel.

Definition 1 (Aronov 1989 [9, Definition 3.1])
For any two points u and v of P , the last vertex (or u
if there is none) before v on Π(u, v) is referred to as
the anchor of v (with respect to u).

Guibas and Hershberger [29] and Oh and Ahn [45]
point out that given the trees representing the shortest
paths between a fixed source and two distinct destina-
tion points on the same chord, the apex of their funnel
can be computed in O(log r) time.

Observation 1 The apex of a funnel from a source
point in P to the diagonal ` can be computed in O(log r)
time and O(r) space. The distance from the source point
to the apex can also be determined in O(log r) time and
O(r) space.

Distance Function of a Point u ∈ S: Let us review
the graph we get by plotting the distance from a
point u to a line ` where the position along ` is
parameterized by x. Abusing notation, we call the
x-monotone curve representing this graph the dis-
tance function, which we denote by distu(·). The
domain of this function is ` and it returns the
geodesic distance from u to x ∈ ` where x is the
input of the function. Without loss of generality,
we can assume that the x-axis is the line in ques-
tion. For a point u, ux is the x-coordinate of u
and uy is its y-coordinate. This distance function
is actually a branch of a right hyperbola6 whose
eccentricity is

√
2 and whose focus is therefore at√

2 · uy. In our polygon P , distu(·) is a contin-
uous piecewise hyperbolic function. If the funnel
from u to the endpoints `1 and `2 of ` is trivial
(i.e., a Euclidean triangle), then distu(·) has one

piece expressed as distu(x) =
√

(x− ux)2 + u2y. If

there are reflex vertices of P in u’s funnel, distu(·)
6Also called a rectangular or equilateral hyperbola.

has multiple pieces. The formula for each piece is

distu(x) =
√

(x− wx)2 + w2
y + dg(u,w), where w

is the anchor, and the domain of this hyperbolic
piece is the set of values of x for which w is the an-
chor. Refer to Fig. 6 in Appendix C for an example
of a multi-piece distance function.

Definition 2 (Aronov 1989 [9, Definition 3.7])
The shortest-path tree of P from a point s of P ,
T (P, s), is the union of the geodesic shortest paths from
s to vertices of P .

Definition 3 (Aronov 1989 [9, between 3.8 and 3.9])
Let e be an edge of T (P, s) and let its endpoint furthest

from s be v. Let
−→
h be the open half-line collinear with

e and extending from v in the direction of increasing

distance from s. If some initial section of
−→
h is con-

tained in the interior of P , we will refer to the maximal
such initial section as the extension segment of e.

Definition 4 (Aronov 1989 [9, Definition 3.9])
Let the collection of extension segments of edges of
T (P, s) be denoted by E(P, s) (also simplified to E
when the polygon and point are clear from the context).

Consider the subset E ⊆ E(P, u) whose elements de-
fine the domains of the pieces of distu(·) along `. We
refer to the intersection of an element of this set with ` as
a marker. Sometimes we will need to identify domains
that have specific properties so that an appropriate hy-
perbolic piece of distu(·) can be analyzed. Similar to
other papers that find intervals of interest along short-
est paths and chords [1, 2, 8, 45], we can use the funnel
between u and ` to perform a binary search among the
domain markers to find a domain of interest. Since do-
main markers are points along `, one way they can be
used is to provide distances away from u to compare
against. We have the following observation.

Observation 2 For an extension segment e ∈ E, if it
takes O(1) time and space to determine which side of
`∩ e contains a domain of interest along `, then we can
find a domain of interest along ` and its corresponding
hyperbolic piece of distu(·) in O(log r) time and O(r)
space.

3 CCOSKEG Disc: Parametric Search

Refer to Appendix A for missing details. Let ∂D(u, ρ)
denote the boundary of the geodesic disc centred at u
with radius ρ. We use parametric search to find a SKEG
disc centred on the chord `.

Parametric search is a technique introduced by
Megiddo [41, 42] for optimizing a numeric parameter
through deduction using two algorithms in tandem. The

131

35th Canadian Conference on Computational Geometry, 2023

first is a sequential decision algorithm. Given a candi-
date for the optimal value, the decision algorithm deter-
mines how this candidate relates to the optimal value
(i.e., it determines whether the candidate is less than,
equal to, or greater than the optimal value). Testing a
candidate using the decision algorithm is usually costly,
which is why the problem and the candidates need to
have the following monotonicity property: if the test re-
veals that the optimum is greater (less) than the candi-
date tested, then it is also greater (less) than everything
less (greater) than the tested candidate.

The second algorithm used is a parallel generic algo-
rithm. This parallel algorithm (which is usually con-
verted back into a sequential algorithm) typically solves
a problem using comparisons whose outcomes depend
on the parameter being optimized, or, in other words,
comparisons of objects that would result if the optimal
value were given. In a way, we work backwards by ex-
amining which properties/objects would exist if we had
the optimum as well as how these objects would relate
to each other. For example, our algorithm to solve the
CCOSKEG disc problem sorts, along `, ∂D(u, ρ∗) ∩ `
for all u ∈ S. Using sorting algorithms as the generic
algorithm has been done before [21, 28, 42, 52, 54]. See
Figs. 7 and 8 in Appendix C.

The comparisons in the generic sorting algorithm are
typically expressed as a polynomial equation featuring
the parameter to be optimized as a variable in the equa-
tion. Refer to Fig. 9 in Appendix C. The comparison
is resolved by computing the sign of the equation (i.e.,
positive, negative, or zero) given a value for the pa-
rameter. Each of these polynomial equations has roots
that together form the sortable set of candidates for the
optimal value. Parametric search uses the decision al-
gorithm to test the candidates. As more of the relations
of the candidates to the optimum are determined, more
comparisons in the generic algorithm can be resolved.
In this way we are able to eventually deduce the opti-
mal value.

Either ρ∗ will coincide with the closest distance of
` to some point in S; or at least two of the intersec-
tion points from distinct discs will coincide and hence
ρ∗ will be a root for some pair of equations. See Fig. 10
in Appendix C. When comparing two of these inter-
sections/equations, to get our candidate radii through
which we search for ρ∗ we set the equations equal to
each other and solve for the roots (which is where they
have coinciding intersection points along `). For the
pair of intersection points that created a given set of
roots, the roots create intervals in the parameter space
(see Fig. 11 in Appendix C). Given the equation for a
pair from which we extracted the roots, plugging in any
value for the radius that lies in one of these root-defined
intervals results in the equation having the same sign
(either positive or negative), and thus the intersection

points having the same order along `.
The sorting algorithm proceeds until it cannot con-

tinue without resolving any comparisons (i.e., until it
gets stuck). Being a parallel algorithm (or a sequential-
ized version of a parallel algorithm), the comparisons in
one parallel step are all independent and present us with
a set of candidate radii. The decision algorithm is run
on a judiciously-chosen candidate radius followed by a
cull of the remaining candidates that we infer are too
large or small. This is repeated until some comparison
can be resolved, at which point the algorithm proceeds
until it again becomes stuck. Eventually, the relation of
ρ∗ to all of the roots in the candidate set is known.

The (at most) two intersection points of a disc with
` tell us where the intersection of a disc with ` begins
and ends. We are interested in overlapping intervals of
at least k discs.

3.1 Preliminaries

3.1.1 Testing Closest Points

We precompute, for each point u ∈ S, the closest point
of ` to u, also known as the projection of u onto ` (see
Fig. 12 in Appendix C for an example of projections).
Let uc be the closest point of ` to u. Equivalently, uc
is the point along ` that minimizes distu(·). We showed
the following in our previous work [15].

Lemma 1 (Bose et al. 2023 [15]) We compute the
set of projections of the points of S onto ` in O(n log r)
time and O(n+ r) space.

We are looking for ρ∗, the smallest radius of a KEG
disc centred on `, and the centre of such a disc. If a
CCOSKEG disc has only one point u ∈ S on its bound-
ary, then a CCOSKEG disc is centred at the projec-
tion uc and ρ∗ = dg(u, uc). Each of the n closest dis-
tances defined by projections is a candidate radius. To
effectively perform a binary search among these candi-
dates, we repeatedly perform an O(n) time and space
median selection algorithm on these radii [6, 13, 22]. In
each iteration, we find the median, test it with the deci-
sion algorithm, then cull the remaining candidates now
known to not be the optimum. Since we halve the num-
ber of elements to consider in each round, we perform
O(log n) rounds and make O(log n) calls to the deci-
sion algorithm. The overall time spent over the O(log n)
rounds performing median selections and culling the list
is O(n). After the search has finished, either we have
found ρ∗, or we know that there will be at least two
points of S on the boundary of a CCOSKEG disc.

Corollary 2 With O(log n) calls to the decision algo-
rithm and additional O(n log r) time and O(n+r) space,
we either compute ρ∗ and a point c∗ along ` such that
D(c∗, ρ∗) is a CCOSKEG disc of the points of S along

132

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

`, or we conclude that there are at least two points of S
on the boundary of a CCOSKEG disc.

3.1.2 How to Compare Elements in the Sort

We will sort ∂D(u, ρ∗) ∩ ` for all u ∈ S. We need to
express these intersection points in terms of the variable
radius ρ of the discs centred at the points of S. Assume
that ∂D(u, ρ) intersects ` twice (the cases of one and
zero intersections are omitted). Assume that we know
that the point w = (wx, wy) is the last reflex vertex on
the path from u ∈ S to at least one of the intersection
points. Let ∆ = ρ − dg(u,w). The equation for the
circular arc defining ∂D(u, ρ) where it intersects ` is
given by the equation of a circle of radius ∆ centred at
w. Using the equation of a circle, we have the following.

x =
(
±
√

∆2 − w2
y

)
+ wx (1)

If x is defined, it is only valid in the domain of w.
If x is undefined, then after passing w, D(u, ρ) does
not intersect `. We will assume we know the last re-
flex vertex before every intersection point and thus the
O(n) equations to use for the intersection points of the
discs with `. We show in Section 3.4 that we can use a
parametric-search-like approach to find these O(n) re-
flex vertices using an idea similar to one of the steps of
the Goodrich and Pszona parametric search paper [28].

Now that we have our items to be sorted, we need
to know how to compare them. Consider two of these
intersection points, one for each of the points u and v,
{u, v} ∈ S. Let the reflex vertex of the intersection point
of u (resp. v) being considered be w (resp. z) and let the
intersection points considered be the ones computed by
taking the positive square roots in their equations (from
Eq. (1)). Let δ = dg(u,w) and ψ = dg(v, z). When we
sort the intersection points, we are asking if one x-value
is less than, greater than, or equal to another along `.
Therefore, we want to know the following at a variable
radius ρ.

√
(ρ− ψ)2 − z2y + zx S

√
(ρ− δ)2 − w2

y + wx (2)

We can expand and simplify Eq. (2) to get a cubic
function replacing constant expressions by constant Ci.

0 S C1ρ
3 + C2ρ

2 + C3ρ+ C4 (3)

The sign of the answer of Eq. (3) reveals which inter-
section point is to the left. Eq. (3) gives us a polynomial
in ρ which determines the comparisons of the parallel
sorting algorithm and whose roots are the candidates
with which to run the decision algorithm. The roots

are the values for which the two intersection points co-
incide. Once it is known to which side of each root the
optimal ρ∗ lies for this instance of Eq. (3), we know the
result of the comparison for ρ∗ for this instance.

3.2 Decision Problem

Lemma 3 Given a polygon P with O(r) vertices, a
chord `, a set S of n points, a radius ρ, and a constant
k ≤ n, having performed the preprocessing of Lemma 1,
we can decide if there is a KEG disc of radius ρ centred
on ` and return such a disc in O(n(log r + log n)) time
and O(n+ r) space, and report whether ρ < ρ∗, ρ > ρ∗,
or ρ = ρ∗.

Proof. [Sketch] In O(log r) time and O(r) space we can
build the two funnels of u between uc and the endpoints
of ` and then perform a binary search in each to locate
the domain in which a point at distance ρ lies. This
tells us which reflex vertex to use in Eq. (1). Thus, in
O(n log r) time and O(n+ r) space, we create O(n) la-
belled intervals: {D(u, ρ)∩ ` : u ∈ S}. We then sort the
interval endpoints in O(n log n) time and O(n) space,
and then walk along ` and count the maximum number
of discs we are concurrently in at any given point. If the
maximum is smaller than k, then ρ is too small. If the
maximum is larger than k, then ρ is too large. If the
maximum is k and there is a subinterval that is larger
than a single point in which there are k overlapping in-
tervals, then ρ is too large. Otherwise, ρ = ρ∗ and the
single point of k overlaps is the centre for a CCOSKEG
disc. �

3.3 Using Boxsort

Goodrich and Pszona [28] show that boxsort [50] can be
used as our sorting algorithm. It can be described as
quicksort with multiple pivots which produces a number
of recursive calls proportional to the number of pivots.
See Fig. 13 in Appendix C for an illustrated example
of a recursive call. This allows them to take advantage
of the optimization technique of Cole [21] to reduce the
running time.

Theorem 4 Given a chord ` ⊂ Pin we compute a
CCOSKEG disc D(c∗, ρ∗) in O(n log2 n+m) time with
high probability using O(n log r +m) space.

Proof. [Sketch] Preprocessing from Section 2 takes
O(m) time and space. It will be shown in Section 3.4
that with O(log n + log r) calls to the decision algo-
rithm and additional O(n log r) time and O(n log r +
r) space, we compute the last reflex vertices on the
paths from each point u ∈ S to ∂D(u, ρ∗) ∩ `, effec-
tively giving us O(n) items to sort. Given this result
and Corollary 2, the preprocessing from Section 3.1
makes O(log n + log r) calls to the decision algorithm

133

35th Canadian Conference on Computational Geometry, 2023

of Lemma 3, uses O(n log r + r) space, and takes time
O(n log n log r + n log2 n+ n log2 r).

As seen in Goodrich and Pszona [28], Motwani and
Raghavan [44], and Reischuk [50], with high prob-

ability (i.e., at least 1 − e− logb n for some constant
b > 0) boxsort chooses a “good” sequence of pivots
so that it only requires O(log n) calls to the decision
algorithm of Lemma 3; and with the same probabil-
ity, taking into account the number of recursive calls
and the time we spend in a recursive call to create
boxes and then sort the remaining comparisons into
their boxes, using boxsort for parametric search takes
O(n log n + log n · n(log r + log n))) time and O(n + r)
space.

Considering the O(m) time spent in preprocessing, we
can simplify the runtime to O(n log2 n + m) with high
probability by assuming some terms are dominant and
arriving at a contradiction. The overall space used is
O(n log r +m). �

3.4 Decreasing to a Linear Number of Items to Sort

In this section, our goal is to discover which O(n) reflex
vertices to use for Eq. (1) for the points of S. The pro-
cedure (and its analysis) is like one of the steps used in
the boxsort parametric search of Goodrich and Pszona
[28]. Similar to routing unsorted elements through the
binary tree of sorted pivots to find their “box” for the
next recursive call, we independently route through 2n
binary search trees of O(log r) height, where the out-
comes of the comparisons depend on the solution to the
parametric search. This allows us to find the reflex ver-
tices for each u ∈ S that anchor ∂D(u, ρ∗)∩`. However,
instead of inferring the optimum by sorting intersection
points described as equations from which candidates for
the optimum are extracted, here our comparisons are
directly in the parameter space: we are directly com-
paring distances against the optimum. We illustrate an
example in Fig. 14 in Appendix C.

Since domain markers for the funnel of a point in S
with ` are points along `, in addition to defining domains
for reflex vertices they also provide distances to use as
candidate radii. We have the following monotonicity
property: for any point u ∈ S, the distance to ` in-
creases monotonically as we move from its closest point
uc ∈ ` to the endpoints of ` [48]. Thus, if we can decide
how the radius produced by a given marker compares to
the optimal radius, we can perform two binary searches
(recall Observation 2) among these markers between uc
and the endpoints of ` to find the domains which contain
∂D(u, ρ∗) ∩ `, and hence discover which reflex vertices
to use in Eq. (1) for u in the main parametric search.

We sequentialize the running of 2n parallel searches
through binary trees of O(log r) height (one per funnel).
Routing an element through these search trees is simi-
lar to following a directed path of O(log r) height. For

each point u ∈ S we search through the domain mark-
ers implicitly contained in its two funnels looking for
the domains that contain ∂D(u, ρ∗) ∩ `, which are the
domains that contain a point that is distance ρ∗ away
from u.

For each tree through which we are routing, each step
produces a comparison to resolve. Since a call to the de-
cision algorithm is considered costly, we do not want to
call the decision algorithm to resolve each comparison
individually. Using the fact that the candidate radii
have the monotonicity property we need for parametric
search (i.e., given the relation between ρ∗ and a candi-
date radius, we know the relation between ρ∗ and either
everything bigger than or less than the candidate) and
the fact that the domain markers used in the compar-
isons of the searches also provide candidate radii, we
can route through the trees with a logarithmic number
of calls to the decision algorithm. Following Goodrich
and Pszona [28], we assign weights to the comparisons
in the searches. The routing can be considered as it-
erations involving three steps: in the first step, we use
a linear-time weighted-median-finding algorithm [51] to
choose the weighted median candidate radius; in the
next step, we input that radius into the decision al-
gorithm; when the decision algorithm returns, the last
step is to repeatedly resolve all active comparisons that
can be resolved until no more routing can be performed
without knowing the result of another call to the deci-
sion algorithm. At this point, the next iteration begins.

Lemma 5 (Cole 1987 [21], Goodrich and Pszona 2013 [28])
For j ≥ 5(i + (1/2) log(4n)), during the (j + 1)st it-
eration there are no active comparisons at depth
i.

Plugging our 2n routing trees of height O(log r) into
the analyses of Goodrich and Pszona [28] and Cole [21]
yields that there are O(log n+log r) calls to the decision
algorithm.

Corollary 6 With O(log n+ log r) calls to the decision
algorithm, with additional O(n log r) time and O(r +
n log r) space, we compute for each u ∈ S the anchors
of ∂D(u, ρ∗) ∩ `.

4 Conclusion

By using the result of Goodrich and Pszona [28], we were
able to use boxsort [50] to implement parametric search
to solve the CCOSKEG disc problem. Though a 2-
approximation to a SKEG disc contains Θ(min (n, kr))
points of S in general, we can use Theorem 4 together
with an exact smallest k-enclosing algorithm for planar
instances [32] to find a radius ρ at most twice the opti-
mal radius of a SKEG disc such that any disc with ra-
dius ρ contains at most 4k points of S (see Appendix B).

134

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] Pankaj K. Agarwal, Lars Arge, and Frank
Staals. Improved dynamic geodesic nearest neigh-
bor searching in a simple polygon. In Symposium
on Computational Geometry, volume 99 of LIPIcs,
pages 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[2] Pankaj K. Agarwal, Lars Arge, and Frank
Staals. Improved dynamic geodesic nearest neigh-
bor searching in a simple polygon. CoRR,
abs/1803.05765, 2018.

[3] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and
Subhash Suri. Finding k points with minimum
diameter and related problems. J. Algorithms,
12(1):38–56, 1991.

[4] Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-
Lou De Carufel, Matias Korman, and Eunjin Oh.
A linear-time algorithm for the geodesic center of
a simple polygon. Discrete & Computational Ge-
ometry, 56(4):836–859, 2016.

[5] Oswin Aichholzer, Thomas Hackl, Matias Korman,
Alexander Pilz, and Birgit Vogtenhuber. Geodesic-
preserving polygon simplification. International
Journal of Computational Geometry & Applica-
tions, 24(4):307–324, 2014.

[6] Andrei Alexandrescu. Fast deterministic selection.
In SEA, volume 75 of LIPIcs, pages 24:1–24:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[7] Nancy M. Amato, Michael T. Goodrich, and
Edgar A. Ramos. Linear-time triangulation of
a simple polygon made easier via randomization.
In Symposium on Computational Geometry, pages
201–212. ACM, 2000.

[8] Lars Arge and Frank Staals. Dynamic geodesic
nearest neighbor searching in a simple polygon.
CoRR, abs/1707.02961, 2017.

[9] Boris Aronov. On the geodesic voronoi diagram
of point sites in a simple polygon. Algorithmica,
4(1):109–140, 1989.

[10] Boris Aronov, Steven Fortune, and Gordon T. Wil-
fong. The furthest-site geodesic voronoi diagram.
Discrete & Computational Geometry, 9:217–255,
1993.

[11] Tetsuo Asano and Godfried Toussaint. Computing
the geodesic center of a simple polygon. In Discrete
Algorithms and Complexity, pages 65–79. Elsevier,
1987.

[12] Sang Won Bae, Matias Korman, and Yoshio
Okamoto. Computing the geodesic centers of a
polygonal domain. Comput. Geom., 77:3–9, 2019.

[13] Manuel Blum, Robert W. Floyd, Vaughan R.
Pratt, Ronald L. Rivest, and Robert Endre Tar-
jan. Time bounds for selection. J. Comput. Syst.
Sci., 7(4):448–461, 1973.

[14] Magdalene G. Borgelt, Marc J. van Kreveld, and
Jun Luo. Geodesic disks and clustering in a sim-
ple polygon. Int. J. Comput. Geometry Appl.,
21(6):595–608, 2011.

[15] Prosenjit Bose, Anthony D’Angelo, and Stephane
Durocher. Approximating the smallest k-enclosing
geodesic disc in a simple polygon. In WADS, page
(to appear). LNCS, 2023.

[16] Prosenjit Bose and Godfried T. Toussaint. Com-
puting the constrained euclidean geodesic and link
center of a simple polygon with application. In
Computer Graphics International, pages 102–110.
IEEE Computer Society, 1996.

[17] Timothy M. Chan. Geometric applications of a ran-
domized optimization technique. Discret. Comput.
Geom., 22(4):547–567, 1999.

[18] Bernard Chazelle. Triangulating a simple polygon
in linear time. Discrete & Computational Geome-
try, 6:485–524, 1991.

[19] Bernard Chazelle, Herbert Edelsbrunner,
Michelangelo Grigni, Leonidas J. Guibas, John
Hershberger, Micha Sharir, and Jack Snoeyink.
Ray shooting in polygons using geodesic triangu-
lations. Algorithmica, 12(1):54–68, 1994.

[20] Orin Chein and Leon Steinberg. Routing past
unions of disjoint linear barriers. Networks,
13(3):389–398, 1983.

[21] Richard Cole. Slowing down sorting networks
to obtain faster sorting algorithms. J. ACM,
34(1):200–208, 1987.

[22] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

[23] Anthony D’Angelo. Constrained Geometric Opti-
mization Problems. PhD thesis, Carleton Univer-
sity, 2023. doi:10.22215/etd/2023-15445.

[24] Amitava Datta, Hans-Peter Lenhof, Christian
Schwarz, and Michiel H. M. Smid. Static and dy-
namic algorithms for k -point clustering problems.
J. Algorithms, 19(3):474–503, 1995.

135

35th Canadian Conference on Computational Geometry, 2023

[25] Sarita de Berg and Frank Staals. Dynamic data
structures for k-nearest neighbor queries. Compu-
tational Geometry, 111:101976, 2023.

[26] Alon Efrat, Micha Sharir, and Alon Ziv. Com-
puting the smallest k-enclosing circle and related
problems. Comput. Geom., 4:119–136, 1994.

[27] David Eppstein and Jeff Erickson. Iterated nearest
neighbors and finding minimal polytopes. Discrete
& Computational Geometry, 11:321–350, 1994.

[28] Michael T. Goodrich and Pawel Pszona. Cole’s
parametric search technique made practical. In
CCCG. Carleton University, Ottawa, Canada,
2013.

[29] Leonidas J. Guibas and John Hershberger. Optimal
shortest path queries in a simple polygon. Journal
of Computer and System Sciences, 39(2):126–152,
1989.

[30] Leonidas J. Guibas, John Hershberger, Daniel
Leven, Micha Sharir, and Robert Endre Tarjan.
Linear-time algorithms for visibility and shortest
path problems inside triangulated simple polygons.
Algorithmica, 2:209–233, 1987.

[31] Sariel Har-Peled. Geometric approximation algo-
rithms, volume 173. American Mathematical Soc.,
2011.

[32] Sariel Har-Peled and Soham Mazumdar. Fast algo-
rithms for computing the smallest k-enclosing cir-
cle. Algorithmica, 41(3):147–157, 2005.

[33] Juha Heinonen. Lectures on analysis on metric
spaces. Springer, New York, 2001.

[34] John Hershberger. A new data structure for short-
est path queries in a simple polygon. Information
Processing Letters, 38(5):231–235, 1991.

[35] John Hershberger and Subhash Suri. A pedestrian
approach to ray shooting: Shoot a ray, take a walk.
J. Algorithms, 18(3):403–431, 1995.

[36] David G. Kirkpatrick. Optimal search in planar
subdivisions. SIAM J. Comput., 12(1):28–35, 1983.

[37] Der-Tsai Lee and Franco P. Preparata. Euclidean
shortest paths in the presence of rectilinear barri-
ers. Networks, 14(3):393–410, 1984.

[38] Tomás Lozano-Pérez and Michael A. Wesley. An
algorithm for planning collision-free paths among
polyhedral obstacles. Commun. ACM, 22(10):560–
570, 1979.

[39] Jǐŕı Matoušek. On enclosing k points by a circle.
Inf. Process. Lett., 53(4):217–221, 1995.

[40] Jǐŕı Matoušek. On geometric optimization with
few violated constraints. Discrete & Computational
Geometry, 14(4):365–384, 1995.

[41] Nimrod Megiddo. Combinatorial optimization with
rational objective functions. Math. Oper. Res.,
4(4):414–424, 1979.

[42] Nimrod Megiddo. Applying parallel computation
algorithms in the design of serial algorithms. J.
ACM, 30(4):852–865, 1983.

[43] Nimrod Megiddo. Linear-time algorithms for linear

programming in R3 and related problems. SIAM
J. Comput., 12(4):759–776, 1983.

[44] Rajeev Motwani and Prabhakar Raghavan. Ran-
domized Algorithms. Cambridge University Press,
1995.

[45] Eunjin Oh and Hee-Kap Ahn. Voronoi diagrams
for a moderate-sized point-set in a simple polygon.
Discrete & Computational Geometry, 63(2):418–
454, 2020.

[46] Eunjin Oh, Sang Won Bae, and Hee-Kap Ahn.
Computing a geodesic two-center of points in a sim-
ple polygon. Comput. Geom., 82:45–59, 2019.

[47] Eunjin Oh, Jean-Lou De Carufel, and Hee-Kap
Ahn. The geodesic 2-center problem in a simple
polygon. Comput. Geom., 74:21–37, 2018.

[48] Richard Pollack, Micha Sharir, and Günter Rote.
Computing the geodesic center of a simple poly-
gon. Discrete & Computational Geometry, 4:611–
626, 1989.

[49] George Rabanca and Ivo Vigan. Covering the
boundary of a simple polygon with geodesic unit
disks. CoRR, abs/1407.0614, 2014.

[50] Rüdiger Reischuk. Probabilistic parallel algorithms
for sorting and selection. SIAM J. Comput.,
14(2):396–409, 1985.

[51] Angelika Reiser. A linear selection algorithm for
sets of elements with weights. Inf. Process. Lett.,
7(3):159–162, 1978.

[52] Sivan Toledo. Extremal polygon containment prob-
lems and other issues in parametric searching. PhD
thesis, Citeseer, 1991.

[53] G Toussaint. Computing geodesic properties inside
a simple polygon. Revue D’Intelligence Artificielle,
3(2):9–42, 1989.

[54] René van Oostrum and Remco C. Veltkamp. Para-
metric search made practical. Comput. Geom.,
28(2-3):75–88, 2004.

136

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[55] Ivo Vigan. Packing and covering a polygon with
geodesic disks. CoRR, abs/1311.6033, 2013.

[56] Haitao Wang. On the geodesic centers of polygonal
domains. JoCG, 9(1):131–190, 2018.

[57] Haitao Wang. An optimal deterministic algorithm
for geodesic farthest-point voronoi diagrams in sim-
ple polygons. In SoCG, volume 189 of LIPIcs, pages
59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[58] Emo Welzl. Smallest enclosing disks (balls and el-
lipsoids). In New Results and New Trends in Com-
puter Science, volume 555 of Lecture Notes in Com-
puter Science, pages 359–370. Springer, 1991.

137

35th Canadian Conference on Computational Geometry, 2023

A Parametric Search

Let ∂D(u, ρ) denote the boundary of the geodesic disc
centred at u with radius ρ. We assume preprocessing
has already been performed. Note that the initial input
chord ` of Pin may no longer be a chord in our simplified
polygon P . We continue to use the initial chord since
(a) shortest paths between points in Pin don’t change
when Pin is simplified to P ; and (b) the endpoints of our
given chord would define an interval of solution validity
anyway if we chose to extend it into a chord for P (which
could be done in O(log r) time and O(1) space using
ray-shooting queries).

Ray-Shooting Queries In O(r) time and space we
preprocess P to allow us to perform O(log r)-time,
O(1)-space ray-shooting queries that take as input
a point in P and a direction and returns the point
on ∂P (i.e., the boundary of P) where the ray first
intersects ∂P [19, 35].

Remark 1 It is not clear whether it is possible to ap-
ply the simpler recursive random sampling technique
of Chan’s that rivals parametric search to solve the
CCOSKEG disc problem [17]. That approach requires
one to partition the points of S into a constant number
of fractional-sized subsets such that the overall solution
is the best of the solutions of each of the subsets. It is
not clear to us how to partition the points of S to take
advantage of this approach.

A.1 Testing Closest Points

Lemma 7 (Bose et al. 2023 [15]) We compute the
set of projections of the points of S onto ` in O(n log r)
time and O(n+ r) space.

Proof. Let ` be horizontal. For ease of presentation,
we consider ` as having subdivided P into two polygons.
We consider one of these polygons, let it keep the name
P , and assume the points of S are in P . The other
subpolygon can then be analyzed identically. Let the
downward direction be toward the side of ` containing
the exterior of the polygon P . Let the left endpoint
of ` be `1 and the right endpoint be `2. Consider a
point p ∈ ` and the last edge e of Π(u, p) (i.e., the
edge to which p is incident). Let the angle of e be the
smaller of the two angles formed by e and ` at p. The
range of this angle is [0, π/2]. We know from Pollack
et al. [48, Corollary 2] that distu(·) is minimized when
e is perpendicular to `. We also know from Pollack
et al. [48, Corollary 2] that given p′ ∈ ` and an edge e′

analogous to e, if the angle of e′ is closer to π/2 than that
of e, then distu(p′) < distu(p). Lastly, we know from
Pollack et al. [48, Lemma 1] that distu(·) is a convex
function which means it has a global minimum.

Using Observations 1 and 2 we can retrieve the trun-
cated funnel of u and ` in O(log r) time and O(r) space
and use the convex chains to perform a binary search
along ` using the markers defined by the elements of E
to find the domain in which uc lies. See Fig. 5 in Ap-
pendix C. This domain has the property that the angle
of the last edge on the shortest path from u to the points
in this domain is closest to π/2.

In the binary search, at each marker (as determined
by the node currently being visited in the tree repre-
senting the convex chain), in O(1) time and space we
compute the angle of ` with the extension segment defin-
ing the marker. Since distu(·) is a convex function, we
know that as we slide a point p ∈ ` from `1 to `2, the
angle of the edge incident to p on Π(u, p) will monoton-
ically increase until it reaches π/2, then monotonically
decrease. Thus, after computing the angle of the ex-
tension segment with `, we know to which side of its
marker to continue our search: the side that contains
the smaller angle (because moving in this direction will
increase the smaller angle). Thus by Observation 2 the
search takes O(log r) time and O(r) space.

At the end of our search we will have the reflex vertex
whose domain contains the edge that achieves the angle
closest to π/2. Then in O(1) time and space we can
build the corresponding piece of distu(·) and find the
value along ` that minimizes it.

The space bounds follow from the n projections that
are computed and the O(r) space used by the shortest-
path data structure queries. �

A.2 How to Compare Elements in the Sort

The trick when using a sorting algorithm as the generic
algorithm in the parametric search technique is deciding
what to sort. Once that has been determined, we use
parametric search to run the sorting algorithm as if the
things we are sorting were produced knowing ρ∗.

We will sort ∂D(u, ρ∗)∩` for all u ∈ S (i.e., the inter-
section points of ` with the boundaries of the geodesic
discs of radius ρ∗ centred at the points of S). We need
to express these intersection points in terms of the vari-
able radius ρ of the discs centred at the points of S.
Notice that the boundary of a geodesic disc of radius ρ
is constructed piecewise. Part of the disc’s boundary is
formed by the boundary of the polygon at distance less
than ρ away from the centre of the disc, and the rest is
circular arcs from the circle centred at the disc’s centre
or from circles centred on reflex vertices contained in
the disc’s interior.

Let us assume for the moment that ∂D(u, ρ) inter-
sects ` twice (the cases of one and zero intersections are
simple to figure out afterwards and are omitted). As-
sume that we know that the point w = (wx, wy) is the
last reflex vertex on the path from u ∈ S to at least
one of the intersection points. This intersection point is

138

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

where ` is intersected by a circular arc centred on w. Let
∆ = ρ− dg(u,w). If ∆ were negative, we would have a
contradiction (D(u, ρ) would not even contain w). The
equation for the circular arc defining ∂D(u, ρ) where it
intersects ` is given by the equation of a circle of radius
∆ centred at w. Once again, assume ` is the x-axis.
Using the equation of a circle, we have the following.

(x− wx)2 + (y − wy)2 = ∆2

(x− wx)2 + (0− wy)2 = ∆2

(x− wx)2 + w2
y = ∆2

(x− wx)2 = ∆2 − w2
y

x− wx = ±
√

∆2 − w2
y

x =
(
±
√

∆2 − w2
y

)
+ wx (4)

If x is defined, it is only valid in the domain of w
(i.e., the interval along ` in which w is the last reflex
vertex on the path from u). If x is undefined, then
after passing w, D(u, ρ) does not intersect `. If both
values computed by Eq. (4) fall outside of w’s domain,
then we contradict that w is the last vertex on the path
from u to the considered intersection point for the given
radius ρ (which means that w would not be used in
computing the boundary of D(u, ρ)). Otherwise, if an
x-value from Eq. (4) lies within the domain of w, then
this x-value would be one of at most two intersection
points of ∂D(u, ρ) and `. If only one x-value computed
by Eq. (4) falls in the domain of w, then the process
must be repeated with some other reflex vertex (which
is the case if the last reflex vertex from u is not the same
for both intersection points).

Though we want to sort intersection points of ` with
the boundaries of geodesic discs, our intersection points
are equations until the variable ρ has been provided.
Nonetheless, it is these intersection points we would like
to sort. Ideally, we would have only O(n) candidate
intersection points along ` to consider (up to two per u ∈
S). As we saw above though, the intersection points of a
geodesic disc centred on u ∈ S depend on the last reflex
vertex on the path from u to `, which in turn depends
on the optimal radius, which we do not know ahead of
time. Initially, it seems that for each u ∈ S we have to
consider the O(r) intersection points computed by using
each reflex vertex of its truncated funnel. However, we
do not want to spend Ω(nr) time. Luckily for us, as we
show in Appendix A.5, we can use a parametric-search-
like approach to whittle these O(nr) candidates back
down to O(n) using an idea similar to one of the steps of
the Goodrich and Pszona parametric search paper [28].
We will assume we know the last reflex vertex before
every intersection point and thus the O(n) equations to
use for the intersection points of the discs with `.

Now that we have our items to be sorted, we need
to know how to compare them. Consider two of these
intersection points, one for each of the points u and v,
{u, v} ∈ S. Let the reflex vertex of the intersection point
of u (resp. v) being considered be w (resp. z) and let the
intersection points considered be the ones computed by
taking the positive square roots in their equations (from
Eq. (4)). Let δ = dg(u,w) and ψ = dg(v, z). When we
sort the intersection points, we are asking if one x-value
is less than, greater than, or equal to another along `.
Therefore, we want to know the following at a variable
radius ρ. Let Ci be constant i.

√
(ρ− ψ)2 − z2y + zx S

√
(ρ− δ)2 − w2

y + wx

⇒ 0 S (ρ− δ)4 + (ρ− ψ)4

− 2(ρ− δ)2(ρ− ψ)2

+ C1(ρ− δ)2 + C2(ρ− ψ)2

+ C3 (5)

We can expand and simplify Eq. (5) to get a cubic
function, once again replacing constant expressions by
constant Ci.

0 S C4ρ
3 + C5ρ

2 + C6ρ+ C7 (6)

We end up with the cubic Eq. (6). After testing the
projections of S onto ` in Section 3.1.1/Appendix A.1,
we know and discard the points of S too far from `
to intersect ` with a disc of radius ρ∗. Thus, Eq. (4)
will be defined at radius ρ∗ for each point being con-
sidered, and the abscissa will be in the domain of the
associated reflex vertex. Thus, when the comparison of
Eq. (6) is resolved, a value for the radius is used that:
(a) produces the same sign as ρ∗; and (b) adheres to
the restriction that the results of using that radius with
the two instances of Eq. (4) that created the comparison
lie in the respective domains (along `) of the reflex ver-
tices associated with the instances of Eq. (4). The sign
of the answer reveals which intersection point is to the
left. When the comparison is resolved in the parametric
search, both intersection points are defined and valid.

Eq. (6) gives us the next piece of the parametric
search puzzle: a low-degree polynomial in ρ which de-
termines the comparisons of the parallel sorting algo-
rithm and whose roots are the candidates with which
to run the decision algorithm. The roots are the values
for which the two intersection points coincide. As men-
tioned above, if ρ∗ is not defined by the closest point of
` to some point in S, then at ρ∗ there will be at least one
pair of intersection points that coincide since the over-
lapping interval of the ≥ k discs along ` will collapse to
a single point. The constant number of roots for an in-
stance of Eq. (6), which can be computed in O(1) time

139

35th Canadian Conference on Computational Geometry, 2023

and space since it is a cubic function, split the possible
values of ρ for that instance into a constant number of
intervals in the parameter space. Each interval has the
property that evaluating the instance of Eq. (6) using
any value of ρ in the interval produces the same sign.
Therefore, once it is known to which side of each root
the optimal ρ∗ lies for this instance of Eq. (6), we know
the result of the comparison for ρ∗ for this instance.

A.3 Decision Problem

To use parametric search, we need a sequential decision
algorithm that, given a radius as a candidate for ρ∗,
can tell us if this candidate is less than, greater than,
or equal to ρ∗.

Lemma 8 Given a polygon P with O(r) vertices, a
chord `, a set S of n points, a radius ρ, and a constant
k ≤ n, having performed the preprocessing of Lemma 1,
we can decide if there is a KEG disc of radius ρ centred
on ` and return such a disc in O(n(log r + log n)) time
and O(n+ r) space, and report whether ρ < ρ∗, ρ > ρ∗,
or ρ = ρ∗.

Proof. Consider the geodesic disc of radius ρ, D(u, ρ).
Since the disc is geodesically convex, if the chord inter-
sects the disc in only one point, it will be at the projec-
tion uc. If it does not intersect the disc, then at uc the
distance from u to ` will be larger than ρ. Otherwise,
if the chord intersects the disc in two points, uc splits `
up into two intervals, each with one intersection point
(i.e., each one contains a point of ∂D(u, ρ)∩ `). If uc is
an endpoint of `, assuming ` has positive length, one of
these intervals may degenerate into a point, making uc
coincide with one of the intersection points.

These two intervals to either side of uc have the prop-
erty that on one side of the intersection point contained
within, the distance from u to ` is larger than ρ, and on
the other side, the distance is less than ρ. Therefore, if
∂D(u, ρ) does intersect ` in two points we can proceed
as in the proof of Lemma 1: in O(log r) time and O(r)
space we can build the two funnels of u between uc and
the endpoints of ` (truncated at the apices) and then
perform a binary search in each to locate the domain in
which a point at distance ρ lies. We find the subinterval
delimited by the domain markers of the reflex vertices
wherein the distance from u to ` changes from being
more (less) than ρ to being less (more) than ρ. The
final subinterval for a given intersection point tells us
which reflex vertex to use in Eq. (1). Once we find this
domain, we can compute ∂D(u, ρ)∩ ` in O(1) time and
space. Thus, in O(n log r) time and O(n + r) space,
we create O(n) labelled intervals along `, one for each
geodesic disc of radius ρ centred on each u ∈ S. In other
words, the set of these intervals is {D(u, ρ)∩ ` : u ∈ S}.
We then sort these interval endpoints in O(n log n) time

and O(n) space, associating each endpoint with the in-
terval it opens or closes.

When we walk along ` and enter the interval D(u, ρ)∩
` for some u ∈ S, we say we are in the disc of u. Our
next step, done in O(n) time and space, is to walk along
` and count the maximum number of discs we are con-
currently in at any given point. In other words, we are
counting the maximum number of overlapping intervals.
If the maximum is fewer than k, then ρ is too small. If
the maximum is larger than k, then since we assume no
four points are co-circular (and thus the CCOSKEG disc
contains exactly k points), ρ is too large. If the maxi-
mum is k, if there is a subinterval that is larger than a
single point in which there are k overlapping intervals,
then ρ is too large. Otherwise, ρ = ρ∗ and the sin-
gle point of k overlaps is the centre for the CCOSKEG
disc. �

A.4 Using Boxsort

Goodrich and Pszona [28] use boxsort [50] as their sort-
ing algorithm. It can be described as quicksort with
multiple pivots which produces a number of recursive
calls proportional to the number of pivots. This al-
lows them to take advantage of the optimization tech-
nique of Cole [21] to reduce the running time. Although
the pivots first need to be sorted and then the remain-
ing elements need to be sorted into the correct boxes
(i.e., placed between the correct pivots) before recur-
ring, we have multiple boxes once the recursive calls
start. Each box has an independent set of compar-
isons (i.e., the comparisons in a box are independent
of other boxes). This allows the recursion in the differ-
ent boxes to be at different levels. Rather than running
a median-finding algorithm on the value of the candi-
date radii, however, a weighting scheme for the candi-
date radii is applied based on the depth of their defin-
ing comparisons in the recursion. The next radius to
test with the decision algorithm is based on a linear-
time weighted-median-finding algorithm [51]. The sum
of the weights of the current candidates is called the
active weight. The weighted-median-finding algorithm
considers the couples of radius and weight and returns
the set of elements whose sum of weights is at most
half the active weight. Furthermore, all radii in this set
are less than the radius in the computed weighted me-
dian, and adding the weight of the computed weighted
median produces a weight larger than half the active
weight. The algorithm can easily be modified to return
the weighted median as well. As such, rather than each
call removing half of the number of candidate radii and
comparisons, each call removes at least a quarter7 of the

7Although the weighted median resolves the comparisons of a
weighted half of the candidates, the weighting scheme applied by
Goodrich and Pszona [28] equally assigns half of the weight of
a comparison to its children. Thus, half of the active weight is

140

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

active weight.
The candidate radii are not separated by recursive

subproblem; the weighted-median that gets resolved is
chosen from the complete set of untested radii that have
not already been culled. Within a recursive subprob-
lem of the Goodrich and Pszona approach [28], how-
ever, there are “synchronization points” in the algo-
rithm represented as “virtual comparisons” that are not
activated until the current batch of comparisons has
been resolved. These virtual comparisons do not rep-
resent real work, but they assist in the analysis of the
runtime. The analysis is done by creating a dependency
graph between the comparisons in the algorithm where
the height of the graph of one recursive subproblem (i.e.,
the longest path between the start of the recursive call
and the point when the next recursive calls start) is
O(log n), and then noting that this implies the height
for the entire simulation is also O(log n) with high prob-
ability.

Recall that the items we are sorting are the O(n)
intersection points of the boundaries of the candidate
geodesic discs with `. Call these points crossings. We
repeat the algorithm of Goodrich and Pszona [28] that
uses the following weighting rule for the comparisons
(virtual or not). The following algorithm description
(which does not mention the virtual comparisons as they
do not represent real work) assumes each comparison
produces one root. See Fig. 13 in Appendix C for an
illustrated example of a recursive call.

Weight Rule When comparison C of weight σ gets re-
solved and causes q comparisons C1, . . . ,Cq to be-
come active, each of these comparisons gets weight
σ/(2q).

1. Randomly mark
√
n crossings.

2. Sort the marked crossings by comparing every pair
in O(n) comparisons, each of weight σ. Order them
with insertion sort.

3. After all of the comparisons of the previous step
have been resolved, activate comparisons for rout-
ing the remaining crossings through the tree of
marked items (i.e., we do a binary search through
the marked items), where each comparison at the
root of this tree has weight σ/(2n2). In other
words, create comparisons and assign the appro-
priate weight to them to prepare the n − √n un-
marked crossings for a binary search through the
marked crossings to place the unmarked crossings
between the marked pivots.

4. Route the unmarked crossings through the tree
(i.e., do a binary search for each of them with the

removed, but if each comparison involved had children, then we
add back a quarter of the weight (i.e., half of half).

marked items) by repeatedly finding and testing
the weighted median and then resolving compar-
isons (following the weighting rule when compar-
isons get resolved).

5. Once we know in which box each unmarked element
lies (i.e., between which marked items it lies), insert
it into its appropriate box.

6. Assign weight σ/(4n4.5) to the initial comparisons
in the new subproblems.

7. Recur into subproblems simultaneously.

The Goodrich and Pszona analysis [28] omits a dis-
cussion about comparisons with multiple roots and how
the weights change in such cases. Below we alter their
analysis to use three roots.

After the marked crossings are sorted, we use the
sorted crossings to perform a binary search to position
each unsorted element between a pair of sorted marked
crossings. In the Goodrich and Pszona analysis [28],
this is presented as a binary search through a perfectly
balanced binary search tree for each unmarked element
independently. To keep the analysis simple, rather than
routing n − √n items, we route n items. Our compar-
isons have three roots, so the weight of the comparison
at the root of this binary search tree (which is the same
for each element being routed) must change accordingly.

We begin the analysis. To sort the marked cross-
ings by brute force, each comparison between a pair of
crossings actually produces three comparisons of roots
against the optimal radius. Each of these three compar-
isons started with weight σ. Thus, after these crossings
are sorted, following the Goodrich and Pszona analysis
[28] using an upside-down virtual binary tree of log(3n)
height in the dependence graph, the weight at the root
of the virtual tree is σ/(3n). This virtual root then acti-
vates (and equally shares half of its weight to) the com-
parison nodes that start routing the unmarked cross-
ings through the binary search tree of marked crossings.
Each comparison at the root of these binary search trees
that route the unmarked crossings through the search
tree of marked crossings, however, also creates three
root comparisons. Thus, each of these root comparisons
gets weight σ/(2 · (3n)(3n)) = σ/(2(3n)2) (i.e., weight
σ/(3n) divided among 3n comparisons).

As the routing progresses through the binary search
trees, the trees get whittled down to paths determining
where an element lies in relation to the sorted cross-
ings. When each comparison in the tree produces one
root comparison, the weight at the bottom of the tree is
the weight at the top divided by 2log

√
n = n0.5 because

each comparison along the way passes half its weight
to its one child, i.e., the next comparison on the path
through the tree. However in our scenario, although re-
solving a routing comparison in the tree activates at

141

35th Canadian Conference on Computational Geometry, 2023

most one new routing comparison, it has three chil-
dren, one for each root comparison of the next tree
node. To aid in the analysis, we replace each rout-
ing comparison with the three root comparisons, all of
which are the parents of a virtual comparison repre-
senting the routing comparison they resolve. Each of
the three root comparisons of a routing node depend
on (i.e., are children of) the virtual comparison of the
node above it. In this way, rather than dividing the
weight by half each step down the routing tree, we di-
vide it by 2 · (2 · 3): each of the three root compar-
isons passes half of its weight to their (virtual) child
(meaning it gets half the weight of any one of them),
and this virtual node passes half of its weight equally
shared amongst its three children, meaning each child
gets half of a third of its weight. Thus, the weight at the
bottom of our tree is the weight at the top divided by
(2 ·2 ·3)log

√
n = n ·3log

√
n. Although after the last rout-

ing comparison we do not create three new root compar-
isons, we create three virtual comparisons to make the
analysis cleaner. Therefore, the weight at the bottom
of the tree is σ/(18n2 · n · 3log

√
n) = σ/(18n3 · 3log

√
n).

The next part of the dependence graph is another
upside-down virtual binary tree like the one used af-
ter the sorting of the marked crossings. At the root
of this tree, the weight becomes σ/(18n3 · 3log

√
n ·

3n) = σ/(18n4 · 3log
√
n+1). All initial comparisons in

the subsequent recursive calls depend on the root of
this tree and its weight. Thus the weight of the ini-
tial root comparisons in subsequent recursive calls is
σ/(2 · (3n) · (18n4 · 3log

√
n+1)) = σ/(36n5 · 3log

√
n+2)

(i.e., weight σ/(18n4 ·3log
√
n+1) divided among 3n com-

parisons).
We can follow the approach of Goodrich and Pszona

[28] and use Cole’s analysis [21], which we repeat here
modified for this specific case of at most three roots per
comparison, to show that there are O(log n) calls to the
decision algorithm.

Lemma 9 (Cole 1987 [21]) At the start of the (j +
1)st iteration, the active weight is bounded above by
(3/4)j · (3n) for j ≥ 0.

Proof. We prove the result by induction on j. At the
start of the first iteration there are 3n active compar-
isons at depth 0, and all other comparisons are inactive.
So for j = 0, the result holds. To prove the inductive
step, it is sufficient to show that in each iteration the
active weight is reduced by at least one quarter. We
now show this.

Consider an active comparison C of weight σ that has
just been resolved. Then C ceases to be active, and up
to three new comparisons may become active, each an
equal share of half the weight of σ (e.g., if three new
comparisons are activated, they each have weight σ/(2 ·
3) = σ/6). So the resolution of C reduces the active

weight by at least σ/2. Let the active weight be W. In
one iteration, we are guaranteed that the comparisons
resolved have combined weight at least W/2. Thus, in
one iteration, the active weight is reduced from W to at
most 3W/4. �

Lemma 10 (Goodrich and Pszona 2013 [28])
Each comparison at depth i has weight ≥ (1/4)i.

Proof. We prove this by induction on the depth of
the boxsort recursion. Assume that the current recur-
sive call operates on a subproblem of size 3n, and that
comparisons at the beginning of the recursive call have
depth i and weight σ. By the inductive assumption,
σ ≥ (1/4)i.

Consider comparisons in the current recursive call.
Comparisons at depth j in the first tree of virtual
comparisons (global depth i + j) have weight σ/2j ≥
(1/4)i · (1/2)j ≥ (1/4)i+j . The last of them has (local)
depth log(3n) and weight σ/(3n). It then spreads half
of its weight to 3n comparisons at depth log(3n) + 1
(global depth i+ log(3n) + 1), setting their weight to

σ/(2(3n)2) ≥ σ/(4(3n)2) = σ/(4log(3n)+1) ≥ (1/4)i+log(3n)+1

The same reasoning follows for the case of the second
virtual tree and recursive split.

Routing through the tree of sorted marked items has
two levels of comparison nodes per node in the tree. For
each step down this routing tree, we have three compar-
isons followed by a virtual comparison which then splits
its weight among the three comparisons at the next level
down in the routing tree. Let σ′ = σ/(2(3n)2) be the
weight of each comparison node at the root of the rout-
ing tree. The next node in the analysis tree (at global
depth i+ log(3n) + 2) is the virtual node whose weight
is

σ′/2 = σ/(4(3n)2) = σ/(4log(3n)+1) ≥ (1/4)i+log(3n)+2

The children of this node in the tree (at global depth
i+ log(3n) + 3) each have weight

σ′/(2 · 2 · 3) =σ/(6 · 4(3n)2)

=σ/(6 · 4log(3n)+1)

≥σ/(42 · 4log(3n)+1)

=σ/(4log(3n)+3)

≥(1/4)i+log(3n)+3

We can map our analysis tree back on to the routing
tree if we divide the weight by 2 · 2 · 3 each level down
the routing tree. This means the analysis tree has one
more level beyond the last virtual comparison. This
last level has three virtual comparisons per tree. This
means that the number of levels in this routing tree is
2 log(

√
n)+1 and the weight at the bottom is the weight

142

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

at the top divided by (2·2·3)log(
√
n) (here we need to use

the number of levels in the routing tree). Thus we have
the weight of each node at the bottom of the routing
tree (at global depth i+ log(3n) + 2 log(

√
n) + 1) is

σ/(2(3n)2 · (2 · 2 · 3)log(
√
n)) ≥σ/(4(3n)2 · (4 · 3)log(

√
n))

≥σ/(4log(3n)+1 · (4 · 3)log(
√
n))

≥σ/(4log(3n)+1 · (4 · 4)log(
√
n))

≥σ/(4log(3n)+1 · (42)log(
√
n))

≥σ/(4log(3n)+1 · (4)2·log(
√
n))

=σ/(4log(3n)+2 log(
√
n)+1)

≥(1/4)i+log(3n)+2 log(
√
n)+1

To finish the proof, note that the base case is realized
in the very first call to the algorithm, since a comparison
at depth 0 has weight 1 = (1/4)0. �

Lemma 11 (Cole 1987 [21]) For j ≥ 5(i +
(1/2) log(6n)), during the (j + 1)st iteration there
are no active comparisons at depth i.

Proof. At the start of the (j + 1)st iteration the total
active weight W is bounded by (3/4)5(i+(1/2) log(6n)) ·
(3n) (by Lemma 9).

We note (3/4)5 < (1/4). So

W <(1/4)i+(1/2) log(6n) · (3n)

=(1/4)i · (1/4)(1/2) log(6n) · (3n)

=(1/4)i · (1/(6n)) · (3n)

=(1/4)i · (1/2)

But an active comparison at depth i has weight at least
(1/4)i. So there is no such comparison. �

Goodrich and Pszona [28] point out that the depen-
dency graph for one recursive call has O(log n) height,
and one recursive call of boxsort performs O(log n) par-
allel steps. They also cite Motwani and Raghavan [44]
stating that with high probability boxsort terminates in
O(log n) parallel steps, and thus the height of the whole
dependency graph of the parametric search boxsort also
has height O(log n) with high probability. Plugging this
height into Lemma 11 as the value for i, we get that we
require O(log n) calls to the decision algorithm.

Theorem 4 Given a chord ` ⊂ Pin we compute a
CCOSKEG disc D(c∗, ρ∗) in O(n log2 n+m) time with
high probability using O(n log r +m) space.

Proof. Preprocessing from Section 2 takes O(m) time
and space. It will be shown in Appendix A.5 that with
O(log n+log r) calls to the decision algorithm and addi-
tional O(n log r) time and O(n log r+ r) space, we com-
pute the last reflex vertices on the paths from each point

u ∈ S to ∂D(u, ρ∗) ∩ `, effectively giving us O(n) items
to sort. Given this result and Corollary 2, the prepro-
cessing from Section 3.1 makes O(log n+ log r) calls to
the decision algorithm of Lemma 3, uses O(n log r + r)
space, and takes time

O(n log r + log n · n(log r + log n) + log r · n(log r + log n))

=O(n log n log r + n log2 n+ n log2 r)

As seen in Goodrich and Pszona [28], Motwani and
Raghavan [44], and Reischuk [50], with high prob-

ability (i.e., at least 1 − e− logb n for some constant
b > 0) boxsort chooses a “good” sequence of pivots
so that it only requires O(log n) calls to the decision
algorithm of Lemma 3; and with the same probabil-
ity, taking into account the number of recursive calls
and the time we spend in a recursive call to create
boxes and then sort the remaining comparisons into
their boxes, using boxsort for parametric search takes
O(n log n + log n · n(log r + log n))) time and O(n + r)
space.

Together with the preprocessing, the time to run
our parametric search using boxsort is O(n log n log r+
n log2 n+n log2 r+m) with high probability and it uses
O(n log r + m) space. It produces the CCOSKEG disc
by the fact that the parametric search technique finds a
SKEG disc for S centred on ` (i.e., a disc with minimum
radius centred on ` containing at least k points of S).

Considering the O(m) time spent preprocessing the
polygon, we can simplify the runtime. Consider the
largest-order terms in the running time:

n log n log r︸ ︷︷ ︸
A

+n log2 n︸ ︷︷ ︸
B

+n log2 r︸ ︷︷ ︸
C

+ m︸︷︷︸
D

(7)

Either log r < log n or log n < log r, so A is always
dominated by B or C. Consequently, Expression (7) can
be simplified to

n log2 n︸ ︷︷ ︸
B

+n log2 r︸ ︷︷ ︸
C

+ m︸︷︷︸
D

(8)

Assume C dominates B and D. This implies:

143

35th Canadian Conference on Computational Geometry, 2023

n log2 r ∈ ω(m) (9)

n log2 r ∈ ω(n log2 n) (10)

log r ∈ ω(log n) by (10) (11)

⇒ r > n3

⇒ m > n3

⇒ m1/2 > n3/2

⇒ m1/2 ∈ Ω(n3/2)

⇒ m1/2 ∈ ω(n) (12)

m1/2 ∈ ω(log2m)

⇒ m1/2 ∈ ω(log2 r) (13)

m ∈ ω(n log2 r) by (12) and (13) (14)

Consequently, Expression (8) can be simplified to
n log2 n + m, meaning that the time to run our para-
metric search using boxsort is O(n log2 n+m) with high
probability. �

A.5 Decreasing to a Linear Number of Items to Sort

In this section, our goal is to discover, for each point of
S, which reflex vertices to use for Eq. (1) when we have
the optimal radius, giving us O(n) equations / intersec-
tion points to use in the parametric search. We do so
by using another parametric search. The procedure is
straightforward; it is like one of the steps used in the
boxsort parametric search of Goodrich and Pszona [28]
presented in Appendix A.4, except here each compari-
son has one root. Similar to routing unmarked elements
through the binary tree of sorted crossings, we indepen-
dently route through 2n binary search trees of O(log r)
height where the outcomes of the comparisons depend
on the solution to the parametric search. This allows
us to find the reflex vertices for each u ∈ S that anchor
∂D(u, ρ∗) ∩ `. However, instead of inferring the opti-
mum by sorting intersection points described as equa-
tions from which candidates for the optimum are ex-
tracted, here our comparisons are directly in the param-
eter space: we are directly comparing distances against
the optimum.

Since domain markers for the funnel of a point in S
with ` are points along `, in addition to defining domains
for reflex vertices they also provide distances to use as
candidate radii. We have the following monotonicity
property: for any point u ∈ S, the distance to ` in-
creases monotonically as we move from its closest point
uc ∈ ` to the endpoints of ` [48]. Thus, if we can decide
how the radius produced by a given marker compares to
the optimal radius, we can perform two binary searches
among these markers between uc and the endpoints of
` to find the domains which contain ∂D(u, ρ∗) ∩ `, and
hence discover which (at most two) reflex vertices to use

in Eq. (1) for u in the main parametric search. Recall
Observation 2 which uses the shortest-path data struc-
ture to extract the truncated funnel of u and ` and to
perform a binary search along ` using the edges of this
funnel.

We use this binary search to mimic the step of boxsort
that routes the unmarked elements through the binary
search tree of sorted crossings. The binary search can
be represented as routing an element through a binary
tree, discerning a particular path. Routing an element
through these search trees is similar to following a di-
rected path of O(log r) height. Each node on the path
corresponds to a comparison that must be resolved be-
fore the routing is able to continue on to the next node
in the path. As we route along these paths, the current
node in a path is the active comparison in the path.
When we have enough information (i.e., how ρ∗ relates
to the candidate at this comparison), we resolve the
comparison and it is no longer active. A dependence re-
lation arises wherein a node cannot be active until all its
ancestors have been resolved, at which point it may be
immediately resolved and inactivated if it is known how
ρ∗ relates to the candidate radius of the current com-
parison node; otherwise, the comparison remains active
until some call to the decision algorithm reveals the re-
lation of ρ∗ to the candidate.

Since we know uc and we have the monotonicity prop-
erty, once a comparison is resolved then we know for
an extension segment e in constant time and space to
which side of ` ∩ e a point along ` of distance ρ∗ to u
lies. Ignoring the calls to the decision algorithm, the
time spent over all of the points of S to discover which
reflex vertices to use for Eq. (1) in the main paramet-
ric search (i.e., the time to perform the binary searches
along `, or, equivalently, route through the binary trees)
is O(n log r). The space is O(r + n log r) due to the
fact that we will be holding on to all 2n shortest-path
query structures at once to sequentially simulate a par-
allel algorithm, and since careful reading of Guibas and
Hershberger [23, 29, 34] implies that a truncated funnel
takes up O(log r) extra space. Each point of S has up to
two independent binary trees of O(log r) height through
which it is routing to find the domain of interest.

First, for each u ∈ S and the endpoints `1 and `2 of `,
we compute the truncated funnel between u, `1 and uc;
and the truncated funnel between u, uc, and `2. This
is done in O(n log r) time and O(r + n log r) space via
Observation 1 and the space analysis in the previous
paragraph. Either of these funnels can replace the one
from Observation 2 to yield the same time and space for
the searches.

Then we sequentialize the running of 2n parallel
searches through binary trees of O(log r) height (one
per funnel). For each point u ∈ S we search through
the domain markers implicitly contained in its two fun-

144

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

nels looking for the domains that contain ∂D(u, ρ∗)∩ `,
which are the domains that contain a point that is dis-
tance ρ∗ away from u.

For each tree through which we are routing, each step
produces a comparison to resolve. Since a call to the de-
cision algorithm is considered costly, we do not want to
call the decision algorithm to resolve each comparison
individually. Using the fact that the candidate radii
have the monotonicity property we need for parametric
search (i.e., given the relation between ρ∗ and a candi-
date radius, we know the relation between ρ∗ and either
everything bigger than or less than the candidate) and
the fact that the domain markers used in the compar-
isons of the searches are also candidate radii, we can
route through the trees with a logarithmic number of
calls to the decision algorithm. Following Goodrich and
Pszona [28], we assign weights to the comparisons in
the searches. Initially, each gets a weight of 1; when
a comparison is resolved its child receives half of its
weight. The sum of the weights of the currently active
candidates is called the active weight. The routing can
be considered as iterations involving three steps: in the
first step, we use a linear-time weighted-median-finding
algorithm [51] to choose the weighted median candidate
radius (as described in Appendix A.4); in the next step,
we input that radius into the decision algorithm; when
the decision algorithm returns, the last step is to repeat-
edly resolve all active comparisons that can be resolved
until no more routing can be performed without know-
ing the result of another call to the decision algorithm.
At this point, the next iteration begins.

We can follow the approach of Goodrich and Pszona
[28] and use Cole’s analysis [21], which we repeat here
modified for this specific case, to show that there are
O(log n+ log r) calls to the decision algorithm.

Lemma 12 (Cole 1987 [21]) At the start of the (j +
1)st iteration, the active weight is bounded above by
(3/4)j · (2n) for j ≥ 0.

The proof of Lemma 12 is similar to that of Lemma 9
and is omitted.

Lemma 13 (Goodrich and Pszona 2013 [28])
Each comparison at depth i has weight ≥ (1/4)i.

Proof. The first comparison node in each of these
2n paths representing the search, i.e., depth 0, has
weight 1 ≥ (1/4)0. Each step down the path halves
the weight of its parent, so at depth i the weight is
(1/2)i ≥ (1/4)i. �

Lemma 14 (Cole 1987 [21], Goodrich and Pszona 2013 [28])
For j ≥ 5(i + (1/2) log(4n)), during the (j + 1)st it-
eration there are no active comparisons at depth
i.

Proof. At the start of the (j + 1)st iteration the total
active weight W is bounded by (3/4)5(i+(1/2) log(4n)) ·
(2n) (by Lemma 12).

We note (3/4)5 < (1/4). So W < (1/4)i+(1/2) log(4n) ·
(2n) = (1/4)i · (1/4)(1/2) log(4n) · (2n) = (1/4)i · (1/(4n)) ·
(2n) = (1/4)i ·(1/2). But an active comparison at depth
i has weight at least (1/4)i. So there is no such com-
parison. �

Plugging the height of the binary search trees into
Lemma 5 as i, we get the following.

Corollary 15 With O(log n+log r) calls to the decision
algorithm, with additional O(n log r) time and O(r +
n log r) space, we compute for each u ∈ S the anchors
of ∂D(u, ρ∗) ∩ `.

145

35th Canadian Conference on Computational Geometry, 2023

B Depth Bounds

Consider the following. Imagine we preprocess Pin by
simplifying it to P and then triangulating8 P . If it is
known that the points of S in a SKEG disc lie com-
pletely in one of those triangles, then we can solve the
SKEG problem as follows. First we build Kirkpatrick’s
[18, 36] O(log r) query-time point-location data struc-
ture on these triangles in O(r) time with O(r) space.
For each of the O(r) triangles we build a list of the
points of S contained within. So far we have used
O(n log r +m) time and O(n+m) space.

Now we iterate over the triangles and in each triangle
use an exact algorithm for the smallest k-enclosing disc
for planar instances [32]. If triangle i has ni points
of S in it, then we run the exact algorithm in O(nik)
expected time and O(ni+k2) expected space. We know
over all of the triangles, the ni sum to n, so we have the
following.

Theorem 16 Simplify Pin to P and triangulate P .
If the points of S in a SKEG disc are contained in
a triangle of P , we solve the SKEG disc problem in
O(n log r + nk + m) expected time and O(n + k2 + m)
expected space.

Below we show some bounds on the depth of a
geodesic disc whose radius is at most four times the op-
timal radius of a SKEG disc, ρ∗. The depth of a disc is
the number of points of S contained within. We assume
no four points are geodesically co-circular, thus there
are at most k points in any disc of the optimal radius
ρ∗. In this paper, the depth(ρ) is the maximum depth
over all points in the polygon P for a geodesic disc of
radius ρ. By definition, depth(ρ∗) = k. In this sub-
section, we assume that n > kr (otherwise the bounds
should be expressed as min (n, kr)).

Lemma 17 We have depth(2ρ∗) ∈ Ω(kr) under our
general position assumption.

Proof. Consider the optimal disc. It could jut into
Ω(r) spikes of the polygon (i.e., contain Ω(r) reflex ver-
tices, each of which obstructs visibility between points
in the disc; e.g., Fig. 1). In each spike, if we put a disc of
radius ρ∗ on the boundary of the optimal disc, it could
contain Ω(k) points. Then a disc of radius 2ρ∗ centred
on the optimal disc’s centre has Ω(kr) points in it. �

Lemma 18 For a constant c > 1, we have
depth(cρ∗) ∈ Θ(kr) under our general position assump-
tion.

8Note that building the shortest-path data structure of Guibas
and Hershberger [29, 34] triangulates P , as does Kirkpatrick’s
[18, 36] point-location data structure. They both run in linear
time since we have linear-time polygon triangulation algorithms
[7, 18].

Figure 1: A star-shaped simple polygon with a geodesic
disc of radius 1 and some attempts to cover multiple
spikes with geodesic discs of radius 0.5.

Proof. The lower bound from Lemma 17 can be di-
rectly extended to a radius of cρ∗.

We now show the upper bound. Consider the geodesic
disc of radius cρ∗ centred on u ∈ P , D(u, cρ∗). Let
T (P, u) be the shortest path tree of u and let E(P, u)
be the set of extension segments of T (P, u). Consider
the tree T (P, u) ∪ E(P, u). The tree T (P, u) ∪ E(P, u)
subdivides P into O(r) Euclidean triangles such that
every point q in the triangle has the same anchor on
Π(u, q) [9, Note 3.10][30]. Thus, D(u, cρ∗) may inter-
sect O(r) triangles. Within any given triangle ∆, any
portion of a geodesic disc appears Euclidean. As such,
D(u, cρ∗)∩∆ (which looks locally in ∆ like a Euclidean
disc of radius at most cρ∗) can be covered by a constant
number of discs of radius ρ∗ (due to the bounded dou-
bling dimension of the Euclidean metric), each with at
most k points of S in it. The bound follows. �

These bounds hold in general if nothing more is
known about the manner in which a 2-approximation
is produced. However, if we combine the CCOSKEG
disc algorithm from Section 3 with something similar to
Theorem 16 from the beginning of the section to pro-
duce a 2-approximation, then we can get a better upper
bound on the number of points of S in a disc with that
radius.

We assume the preprocessing of Section 2 and the
preprocessing for Theorem 16 (including building a list
of the points of S in each triangle) has been performed
in O(n log r +m) time and O(n+m) space. Either the
points of S of a SKEG disc lie completely in a triangle
of P , or the disc contains a point of S from each side of
some diagonal. If the points of the disc are contained

146

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

in a triangle, then running the expected linear-time 2-
approximation algorithm for planar instances [32] in
each triangle will give us a 2-approximation. Making
the appropriate change in Theorem 16, we have spent
O(n log r + m) expected time and O(n + m) expected
space. If a SKEG disc contains at least one point of S
from each side of some diagonal, then running the algo-
rithm of Theorem 4 from Section 3.3 on each diagonal
will give us a 2-approximation. Either a SKEG disc is
centred on a diagonal, in which case we find it; or a
SKEG disc intersects a diagonal, in which case when
processing that diagonal we either compute a KEG disc
centred on a point inside that SKEG disc, or a KEG
disc centred on a point outside of the SKEG disc that
gives us a KEG disc with a smaller radius than any
KEG disc centred on a point of the diagonal inside the
SKEG disc, either of which gives us a 2-approximation.
Running the CCOSKEG disc algorithm of Theorem 4
on each diagonal, we spend O(nr log2 n+nr log2 r+m)
expected time9 and use O(n log r +m) space.

Thus, in O(nr log2 n+nr log2 r+m) expected time we
have produced a 2-approximation using O(n log r + m)
expected space. Let the 2-approximation radius we have
found be ρ2. We now prove depth(ρ2) ≤ 10k. Either a
disc of radius ρ2 is centred on a diagonal, or in a triangle
of P . By definition, any disc of radius ρ2 centred on
a diagonal has at most k points in it. Now consider
a disc D2 of radius ρ2 centred in a triangle of P . The
boundary of this disc could intersect the three diagonals
of the triangle. Consider the closest point of one of
the diagonals to the centre of D2, and create a disc
D` of radius ρ2 centred there. The portion of D2 on
the other side of the diagonal is contained in D`, and
thus contains at most k points on the other side of the
diagonal since ρ2 is at most the radius of the CCOSKEG
disc on this diagonal. Thus, at most 3k points of S in
D2 come from outside the triangle. Inside the triangle,
locally it looks like the Euclidean plane. Thus, by the
bounded doubling dimension of the Euclidean plane, D2

contains at most 7k points of S contained in the triangle.
If instead of modifying Theorem 16 we use the exact
algorithm it specifies in each triangle, then the portion
of D2 inside the triangle captures at most k points of S,
in which case we get depth(ρ2) ≤ 4k.

Theorem 19 In O(nr log2 n + nr log2 r + m) expected
time we compute a radius ρ2 using O(n log r + m) ex-
pected space that is a 2-approximation to ρ∗ such that
depth(ρ2) ≤ 10k. If we use O(nr log2 n + nr log2 r +
nk+m) expected time and O(n log r+ k2 +m) expected
space, we can improve ρ2 such that depth(ρ2) ≤ 4k.

9The runtime stated in Theorem 4 hides a term dominated
by the preprocessing time. Since we do not run the preprocess-
ing for each diagonal, that simplification does not apply to this
expression.

147

35th Canadian Conference on Computational Geometry, 2023

C Figures

Figure 2: The bisector of points u and v on opposite
sides of the blue chord of the polygon can intersect the
chord Θ(r) times. The intersections are labelled with
”×”. The different arcs that form the bisector are drawn
with different ink styles (e.g., dashed vs dotted vs nor-
mal ink).

Figure 3: Zoomed-in view of the first two crossings of
Fig. 2.

Figure 4: Zoomed-in view of the third crossing of Fig. 2.
As one zooms in infinitesimally and the right side of the
polygon moves toward infinity, more reflex vertices can
be added to force the bisector to cross Θ(r) times.

Figure 5: The funnel from u to the endpoints of `, in-
cluding the apex ua and the projection uc of u onto `.
Also seen are the extensions of funnel edges (in blue)
and their intersection points with `. These intersection
points can be used to perform a binary search along `.

u

`

distu(x) =

√
(x− wx)2 + w2

y + dg(u,w), if x ≥ hx√
(x− ux)2 + u2

y, if fx ≤ x < hx√
(x− vx)2 + v2

y + dg(u, v), otherwise

∂P

Exterior of P

Interior of P

w
v

f h

Figure 6: Considering the chord ` of P to be the x-axis,
given a point u ∈ S we refer to the dashed graph of
the function distu(·) as the distance function of u to `.
The points f and h on ` mark where different pieces of
distu(·) begin.

Figure 7: The geodesic discs (arbitrarily red and blue) of
radius ρ∗ centred on points of S (blue points) intersect
`. The intersection points of red (blue) disc boundaries
with ` are marked by green (red) triangles.

148

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 8: We use parametric search to sort the intersec-
tion points of disc boundaries (i.e., the red and green
triangles) from Fig. 7 along `, without knowing ρ∗, and
are able to deduce ρ∗ in the process.

Figure 9: Parametric search lets us discover the relative
order of two endpoints (e.g., the green and red triangles
at positions x1 and x2 respectively) along `. A resolved
comparison in the generic algorithm reveals which of the
two intersection points is to the left of the other when
using ρ∗ as the disc radii. Before a comparison can be
resolved, the algorithm must solve for the roots of the
two intersection equations (at most three roots in our
case).

Figure 10: The CCOSKEG disc may be defined by one
point on its boundary (such as the black dashed disc
centred on the black hollow diamond representing uc),
in which case ρ∗ is the distance from some point u ∈ S to
its projection uc; or it is defined by at least two points,
e.g., u, v ∈ S, on its boundary (such as the red dashed
disc centred on the red ”×”), in which case ρ∗ is the
radius such that the intersection of the boundaries of
the green discs centred at u and v, i.e., ∂D(u, ρ∗) ∩
∂D(v, ρ∗), is the red ”×”.

Figure 11: A comparison of intersection points along `
produces at most three roots and defines at most four
intervals in the parameter space. Due to the monotonic-
ity property of the parameter we are trying to optimize
(i.e., radius of a CCOSKEG disc), once we determine
which interval contains ρ∗ we can resolve the compari-
son that produced the roots.

Figure 12: An example of points of S (blue diamonds)
and their projections onto ` (hollow black diamonds).

149

35th Canadian Conference on Computational Geometry, 2023

(a) We begin with a collection of equations (depicted as di-
amonds in a box) representing the intersection points of the
disc boundaries with `. Going forward we no longer distin-
guish between the equations and the points they represent.
Of the n points, we randomly select

√
n points to act as

pivots. The selected points are red, and the rest are blue.

Figure 13: An illustration of a recursive call for boxsort
when used as the sorting algorithm in parametric search.

(b) We then decide the relative order of the red pivots along
` (i.e., decide their relative ordering) by creating O(n) com-
parisons between them and using a logarithmic number of
calls to the decision algorithm to resolve them. In this figure,
the sorted red points are labelled a through f and carve ` up
into seven relatively sorted intervals / boxes into which we
must place the remaining blue points. This can be done by
performing a binary search on the red pivots. The red pivots
can be considered as creating a binary search tree (with c as
the root in this example).

(c) The routing of each blue point through the tree of red
pivots can be done independently of the other blue points,
allowing us to perform their routing in parallel. For a blue
point we are routing through the tree, each step in the tree
creates a comparison between the blue point and the red
pivot represented by the tree node. To route the elements
through the tree, we repeatedly select the weighted median
of the roots produced by the available comparisons and use
this median in a call to the decision algorithm. After the call
to the decision algorithm, we resolve whichever comparisons
it is possible to resolve (which moves a blue point down the
tree), and repeat until it is known into which intervals along
` each blue point belongs.

Figure 13: An illustration of a recursive call for boxsort
when used as the sorting algorithm in parametric search.

150

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

(d) Since the decision algorithm is called on the weighted me-
dian of the candidates and each instance of routing through
the trees is independent, at any point in this routing process
blue points may be at different levels in the binary search
trees of red pivots.

(e) Once it is known into which interval each blue point
belongs, we collect them together in each interval to begin
the next recursive calls.

Figure 13: An illustration of a recursive call for boxsort
when used as the sorting algorithm in parametric search.

(a) Shown is the funnel between ua for a point u ∈ S, its
projection uc, and an endpoint of `. The convex chain rep-
resenting the funnel edges is stored in a binary search tree
(which stores the edges). In this example, the funnel edges
from ua to the left endpoint of ` are x, y, and z, and their
extension segments (the blue dashed edges) intersect ` at
the markers xm, ym, and zm respectively. We can use the
distances between u and the markers as candidate radii in
the decision algorithm. Since the distance from u to the
points on ` increases monotonically as we move from uc to
the left endpoint of `, we can use these distances to find an
interval in the parameter space in which ρ∗ lies, and at the
same time the interval along ` between two markers where
the disc of radius ρ∗ centred at u intersects `. In this exam-
ple, the decision algorithm has determined that the optimal
radius is larger than dg(u, xm), so we continue down the bi-
nary search tree on the side that brings us closer to the left
endpoint of `.

Figure 14: An illustration of the method presented in
Section 3.4 for determining the reflex vertices to use in
Eq. (1).

151

35th Canadian Conference on Computational Geometry, 2023

(b) After the edge x we visited the edge z. The decision
algorithm has determined that the optimal radius is less than
dg(u, zm), so we continue down the binary search tree on the
side that brings us closer to xm.

(c) After the edge z we visited the edge y. The decision
algorithm has determined that the optimal radius is less than
dg(u, ym), so we conclude that D(u, ρ∗) intersects ` in the
green interval between ym and xm, and the reflex vertex to
use in Eq. (1) is the one marked by the red ×.

Figure 14: An illustration of the method presented in
Section 3.4 for determining the reflex vertices to use in
Eq. (1).

(d) Similar to boxsort (see Fig. 13), routing through the
funnels to find the required reflex vertices is done in paral-
lel, repeatedly testing the radius produced by the median
weighted comparison with the decision algorithm and then
resolving any number of comparisons. The routing process
for different funnels may be at different depths in the trees at
any given moment. In this example, the routing for u ∈ S
has finished, the routing for v ∈ S is halfway through its
binary search, and the routing for w ∈ S is still at the be-
ginning.

Figure 14: An illustration of the method presented in
Section 3.4 for determining the reflex vertices to use in
Eq. (1).

152

	Preamble
	Cover
	Copyright information
	Welcome from Denis Pankratov
	Sponsors
	Program Committee
	Invited Speakers

	Conference Program
	Day 1 - August 2, 2023
	Session 1C
	Spanning Tree, Matching, and TSP for Moving Points: Complexity and Regret
	Nathan Wachholz
	Subhash Suri

	Online Square Packing with Predictions
	Stephane Durocher
	Shahin Kamali
	Pouria Zamani Nezhad

	Minimum Ply Covering of Points with Unit Disks
	Stephane Durocher
	J. Mark Keil
	Debajyoti Mondal

	Session 1D
	Overlapping of Lattice Unfolding for Cuboids
	Takumi Shiota
	Tonan Kamata
	Ryuhei Uehara

	A Parameterized Algorithm for Flat Folding
	David Eppstein

	Piercing Unit Geodesic Disks
	Ahmad Biniaz
	Prosenjit Bose
	Thomas C Shermer

	Session 2C
	Super Guarding and Dark Rays in Art Galleries
	Joseph O'Rourke
	Hugo Akitaya
	Erik Demaine
	Adam Hesterberg
	Anna Lubiw
	Jayson Lynch
	Frederick Stock

	Conflict-Free Chromatic Guarding of Orthogonal Polygons with Sliding Cameras
	Yeganeh Bahoo
	Onur Cagirici
	Kody Manastyrski
	Rahnuma Islam Nishat
	Christopher Kolios
	Roni Sherman

	City Guarding with Cameras of Bounded Field of View
	Ahmad Biniaz
	Mohammad Hashemi

	Session 2D
	On the complexity of embedding in graph products
	Therese Biedl
	David Eppstein
	Torsten Ueckerdt

	On the Deque and Rique Numbers of Complete and Complete Bipartite Graphs
	Michael A. Bekos
	Michael Kaufmann
	Maria Eleni Pavlidi
	Xenia Rieger

	Dynamic Schnyder woods
	Pilar Cano
	Sujoy Bhore
	Prosenjit Bose
	Jean Cardinal
	John Iacono

	Day 2 - August 3, 2023
	Session 3C
	Geometric Algorithms for k-NN Poisoning
	Diego Ihara
	Karine Chubarian
	Bohan Fan
	Francesco Sgherzi
	Thiruvenkadam S Radhakrishnan
	Anastasios Sidiropoulos
	Angelo P Straight

	Reducing Nearest Neighbor Training Sets Optimally and Exactly
	Simon Weber
	Josiah Rohrer

	Square Hardness for Clustering with Neighborhoods
	Georgiy Klimenko
	Benjamin Raichel

	Session 3D
	CCOSKEG Discs in Simple Polygons
	Prosenjit Bose
	Anthony D'Angelo
	Stephane Durocher

	Parallel Line Centers with Guaranteed Separation
	Chaeyoon Chung
	Taehoon Ahn
	Sang Won Bae
	Hee-Kap Ahn

	Improved Algorithms for Burning Planar Point Sets
	Shahin Kamali
	Mohammadmasoud Shabanijou

	Session 4C
	On the Budgeted Hausdorff Distance Problem
	Sariel Har-Peled
	Benjamin Raichel

	Approximating the Directed Hausdorff Distance
	Oliver Chubet
	Parth Parikh
	Donald R Sheehy
	Siddharth S Sheth

	Convex Hulls and Triangulations of Planar Point Sets on the Congested Clique
	Jesper Jansson
	Christos Levcopoulos
	Andrzej J Lingas

	Session 4D
	Lower Bounds for the Thickness and the Total Number of Edge Crossings of Euclidean Minimum Weight Laman Graphs and (2,2)-Tight Graphs
	Yuki Kawakami
	Shun Takahashi
	Kazuhisa Seto
	Takashi Horiyama
	Yuki Kobayashi
	Yuya Higashikawa
	Naoki Katoh

	Geometric Graphs with Unbounded Flip-Width
	David Eppstein
	Rose McCarty

	Graph Mover's Distance: An Efficiently Computable Distance Measure for Geometric Graphs
	Sushovan Majhi

	Session 5C
	Metric and Path-Connectedness Properties of the Fréchet Distance for Paths and Graphs
	Benjamin A Holmgren
	Brittany T Fasy
	Erin Chambers
	Sushovan Majhi
	Carola Wenk

	Optimal Polyline Simplification under the Local Fréchet Distance in 2D in (Near-)Quadratic Time
	Peter Schäfer
	Sabine Storandt
	Johannes Zink

	Session 5D
	Partition, Reduction, and Conquer: A Geometric Feature-Based Approach to Convex Hull Computation
	Kyuseo Park
	Markus Schneider

	Software and Analysis for Dynamic Voronoi Diagrams in the Hilbert Metric
	Auguste Gezalyan
	Madeline Bumpus
	Xufeng Dai
	Samuel Munoz
	Renita Santhoshkumar
	Songyu Ye
	David M Mount

	Best Paper Award
	Every Combinatorial Polyhedron Can Unfold with Overlap
	Joseph O'Rourke

	Day 3 - August 4, 2023
	Session 6C
	Reconfiguration of Linear Surface Chemical Reaction Networks with Bounded State Change
	Robert Alaniz
	Michael Coulombe
	Erik Demaine
	Bin Fu
	Ryan Knobel
	Timothy Gomez
	Elise Grizzell
	Andrew Rodriguez
	Robert Schweller
	Timothy Wylie

	Catalan Squares and Staircases: Relayering and Repositioning Gray Codes
	Emily Downing
	Stephanie Einstein
	Elizabeth Hartung
	Aaron M Williams

	Computing Representatives of Persistent Homology Generators with a Double Twist
	Tuyen Pham
	Hubert Wagner

	Approximate Line Segment Nearest Neighbor Search amid Polyhedra in 3-Space
	Ovidiu Daescu
	Ka Yaw Teo

	Session 6D
	Universal convex covering problems under affine dihedral group actions
	Mook Kwon Jung
	Sang Duk Yoon
	Hee-Kap Ahn
	Takeshi Tokuyama

	On the FPT Status of Monotone Convex Chain Cover
	Qizheng He

	On Density Extrema for Digital 1-Balls in 2D and 3D
	Nilanjana G. Basu
	Subhashis Majumder
	Partha Bhowmick Bhowmick

	List of Authors

