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Abstract

Given a nonempty and finite multiset of points P in R
d, the Euclidean median of

P , denoted M(P ), is a point in R
d that minimizes the sum of the Euclidean (ℓ2)

distances from M(P ) to the points of P . In two or more dimensions, the Euclidean
median (otherwise known as the Weber point) is unstable; small perturbations at
only a few points of P can result in an arbitrarily large relative change in the position
of the Euclidean median. This instability motivates us to consider alternate notions
for location functions that approximate the minimum sum of distances to the points
of P while maintaining a fixed degree of stability. We introduce the projection
median of a multiset of points in R

2 and compare it against the rectilinear (ℓ1)
median and the centre of mass, both in terms of approximation factor and stability.
We show that a mobile facility located at the projection median of the positions
of a set of mobile clients provides a good approximation of the mobile Euclidean
median while ensuring both continuous motion and low relative velocity.
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1 Introduction: the Euclidean Median in R
2

Given a multiset of points P in R, a median of P , denoted M(P ), is a point that
partitions the points of P such that at most |P |/2 points of P are greater than
M(P ) and at most |P |/2 points of P are less than M(P ). It is straightforward
to confirm that M(P ) is a balance point that minimizes the sum of the dis-
tances (equivalently, the average distance) from M(P ) to the points of P . The
problem of finding a point that minimizes the sums of distances to the points of
P has a natural extension to higher dimensions with applications that include
geometry [Kim98, KM97], operations research [HLP+87, LMW88, Web22],
and robotics [CFPS03, Sch03].

Definition 1 Given an arbitrary nonempty finite multiset P in R
2, a Eu-

clidean median of P is a point in R
2, denoted M(P ), that minimizes

∑

p∈P

||x − p||, (1)

when x = M(P ).

Def. 1 generalizes to R
d for any fixed dimension d; although some of our results

can be generalized to higher dimensions, the primary focus our discussion
concerns the case d = 2. We refer to the value (1) (when x = M(P )) as the
Euclidean median sum of P . If the points of P are not collinear or |P | is odd,
then the Euclidean median is unique [KM97]. If the points of P are collinear
and |P | is even, then any point on the line segment joining the (|P |/2)nd and
(|P |/2 + 1)st points of P is a Euclidean median of P ; in this case, we assign
M(P ) to be the midpoint of this line segment. Finally, M is invariant under
similarity transformations.

The Euclidean median problem on three points in the plane was first posed by
Fermat [dF91] and solved geometrically by Torricelli early in the 17th century
[KV97]. Alternate geometric solution techniques were subsequently found by
Cavalieri and Simpson [DKSW02]. For points on a line, a Euclidean median is
easily found in Θ(n) time, where n = |P |, by a linear-time selection algorithm.
In general, solving for the exact location of the Euclidean median in two or
more dimensions is difficult. Bajaj states, “there exists no exact algorithm un-
der models of computation where the root of an algebraic equation is obtained
using arithmetic operations and the extraction of kth roots” [Baj88, p. 177].
Indeed, no polynomial-time algorithm is known, nor has the problem been
shown to be NP-hard [Hak00]. The most common approximation algorithm
is Weiszfeld’s algorithm [Wei37], an iterative procedure that converges to the
Euclidean median. Chandrasekaran and Tamir [CT90] give a polynomial-time
algorithm for an ǫ-approximation of the Euclidean median. More recently, In-
dyk [Ind99] and Bose et al. [BMM03] both give randomized ǫ-approximations
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algorithms with running times linear in n and polynomial in 1/ǫ. Bose et
al. [BMM03] also give an O(n log n)-time deterministic ǫ-approximation algo-
rithm.

The Euclidean median has been repeatedly rediscovered under a variety of
names. The most common of these is Weber point [Baj88, BMM03, FMW05,
Wes93]. Other names include Torricelli point [Kim98, Wei], Fermat point
[Kim98], first Fermat point [Wei], generalized Fermat point [Wes93], first isogo-
nic centre [Kim98, Wei], ℓ2 median, 1-median [FMW05, Ind99], median centre
[Wes93], spatial median [Wes93], minisum problem [HLP+87, Wes93], Steiner
problem [KM97, Wes93], bivariate median [Wes93], minimum aggregate travel
point [Wes93], the point of equilibrium in a Varignon frame [Wes93], Kimber-
ling triangle centre X(13) [Kim98], or any combination of Fermat-Steiner-
Torricelli-Weber point [BMM03, CT90, KM97, Wes93]. In addition, the term
“median” sometimes refers to alternate generalizations of the median to higher
dimensions. For example, Agarwal et al. [AdBG+05], use the term in reference
to a point m such that for every line l through m, at least k|P | points of P
lie on either side of l, where k ∈ [0, 1

2
] is fixed. Finally, the Euclidean me-

dian is sometimes defined with a non-negative weight assigned to each point
[CT90, Wes93]; when the weights are rational this reduces to Def. 1 since we
allow multiplicities of points. An overview of the history and solutions to the
Euclidean median problem can be found in [DKSW02, KM97, Wes93].

The remainder of the paper is organized as follows. Sec. 2 begins by observ-
ing the instability of the Euclidean median, thus motivating our search for
stable approximations. We then define measures for comparing the stability
and quality of different approximations. We examine two existing notions of
location functions, namely, the centre of mass and the rectilinear median, in
Secs. 3 and 4, respectively. Next, we introduce and analyze a new location
function, the projection median, in Sec. 5. The properties of these various
location functions are compared in Sec. 6, followed by a discussion of appli-
cations of location functions and, specifically, of the projection median, in
defining the position of a mobile facility.

2 Approximation Measures

Point coordinates are commonly represented by discretization of real positions
to nearby grid coordinates. That is, each point is approximated by the nearest
grid point, resulting in a small perturbation of each point’s position. Given a
multiset of points P in R

2, the Euclidean median of P is unstable in this sense
that small perturbations at only a few points of P can result in a relatively
large change (error) in the position of the Euclidean median of P . For example,
let P = {(0, 0), (0, 0), (1, 0), (1, ǫ)} and let P ′ = {(0, 0), (0, ǫ), (1, 0), (1, 0)}. For
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any ǫ > 0, M(P ) = (0, 0) and M(P ′) = (1, 0).

We refer to an arbitrary function Υ : P̊(R2) → R
2 as a location function,

where P̊(A) denotes the set of all nonempty and finite multisets contained in
set A. Given the instability of the Euclidean median, which may be unfit for
certain applications, we are motivated to find location functions that approx-
imate the Euclidean median while guaranteeing some degree of stability.

We formalize the notion of stability by defining κ-stability for a location func-
tion Υ as a bound on its maximum volatility. This requires a preliminary
definition for an ǫ-perturbation.

Definition 2 Given ǫ > 0 and a finite nonempty multiset P in R
2, function

f : P → R
2 is an ǫ-perturbation on P if for all p ∈ P , ||p − f(p)|| ≤ ǫ.

Let F P
ǫ denote the set of all ǫ-perturbations on P .

Definition 3 A location function Υ is κ-stable if

∀ǫ > 0, ∀f ∈ F P
ǫ , κ||Υ(P ) − Υ(f(P ))|| ≤ ǫ, (2)

for all nonempty finite multisets P in R
2.

The Euclidean median is not continuous even for small point sets, as demon-
strated by the four-point example mentioned earlier in this section. It follows
that the Euclidean median is not κ-stable for any κ > 0. In fact, this same
example can be used to show that any arbitrarily-close approximation of the
exact position of the Euclidean median is not κ-stable for any fixed κ > 0.
Note, however, that the Euclidean median sum is stable. This gives us hope
that it may be possible to approximate the Euclidean median sum while also
guaranteeing some fixed degree of stability. Thus, our overall objective is to
identify a location function Υ that comes close to minimizing the sum of the
distances from Υ(P ) to the points of P while maintaining a fixed degree of
stability.

We formalize the notion of approximation factor by defining λ-approximation;
we evaluate the approximation factor of a location function Υ as a bound on
its worst-case relative approximation of (1) and not as a measure of its relative
proximity to the exact position of the Euclidean median.

Definition 4 A location function Υ is a λ-approximation of the Euclidean

median, M , if
∑

p∈P

||p − Υ(P )|| ≤ λ
∑

q∈P

||q − M(P )||, (3)

for all nonempty finite multisets P in R
2.
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Fig. 1. illustration in support of Thm. 5

By definition, M(P ) is a point that minimizes (1). Consequently, for any
location function, the associated approximation factor λ must be at least 1.

Stability and approximation factor are correlated. As we show formally in
Thm. 5, no location function can ensure any fixed degree of stability while
also guaranteeing an arbitrarily-close approximation of the Euclidean median
sum.

Theorem 5 For every κ > 0, if Υ is any κ-stable location function, then there

exists some λ0 > 1 such that Υ cannot guarantee an approximation factor less

than λ0.

Proof. Choose any κ > 0, any ǫ ∈ (0, κ), and any κ-stable location function Υ.
Let P = {(0, 0), (0, 0), (1, ǫ), (1,−ǫ)} and let P ′ = {(0, ǫ), (0,−ǫ), (1, 0), (1, 0)}.
Let d = (1/2 − ǫ/2κ, 0) and let h = (1/2 + ǫ/2κ, 0). The points in P and P ′

are labelled as {a, b, c} and {e, f, g}, respectively, in Figs. 1A and 1B.

Since |P | = 4 and two points of P coincide at (0, 0), M(P ) = (0, 0) [KM97].
Similarly, M(P ′) = (1, 0). The Euclidean median sum of P (and, by symmetry,
P ′) is 2

√
1 + ǫ2.

Clearly there exists an ǫ-permutation of P , f , such that f(P ) = P ′. By Def. 3,

||Υ(P ) − Υ(P ′)|| ≤ ǫ

κ
. (4)

Consequently, either Υ(P )x ≥ dx or Υ(P ′)x ≤ hx, where px denotes the x-
coordinate of a point p ∈ R

2. Without loss of generality, assume Υ(P )x ≥ dx.

It is straightforward to show that for any point d′, where d′
x ≥ dx,

∑

p∈P ||d′
x −

p|| ≥ ∑

p∈P ||dx − p||. Therefore,

∑

p∈P

||Υ(P ) − p|| ≥
∑

p∈P

||d − p||

=2
(

1

2
− ǫ

2κ

)

+ 2

√

ǫ2 +
(

1

2
+

ǫ

2κ

)2

. (5)
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By Def. 4, if Υ is a λ-approximation, then

λ ≥
∑

p∈P ||Υ(P ) − p||
∑

q∈P ||M(P ) − q||

≥
1

2
− ǫ

2κ
+

√

ǫ2 +
(

1

2
+ ǫ

2κ

)2

√
1 + ǫ2

, by (5). (6)

Let λ1 denote the righthand expression in (6). It is straightforward to show
that λ1 > 1 for any ǫ ∈ (0, κ). Therefore, for any λ0 ∈ (1, λ1), Υ is not a
λ0-approximation of the Euclidean median. 2

As a consequence of Thm. 5, algorithms that achieve an arbitrarily-close ap-
proximation of the Euclidean median, such as those of Chandrasekaran and
Tamir [CT90], Indyk [Ind99], and Bose et al. [BMM03] mentioned in Sec. 1,
cannot be κ-stable for any κ > 0, even if they approximate the Euclidean
median sum and not the exact position of the Euclidean median.

In summary, we seek to identify functions Υ : P̊(Rd) → R
d with stability κ

and approximation factor λ under the dual objective of maximizing stability
(maximize κ) while minimizing the approximation of the Euclidean median
sum (minimize λ). Before introducing the projection median (Sec. 5), we first
examine the stabilities and approximation factors of the centre of mass and
the rectilinear median (Secs. 3 and 4).

3 The Centre of Mass

Definition 6 Given an arbitrary nonempty finite multiset P in R
2, the centre

of mass of P is the function whose value, denoted C(P ), is the point in R
2

given by

C(P ) =
1

|P |
∑

p∈P

p. (7)

Function C is invariant under affine transformations. The position of the centre
of mass is is easily constructed in Θ(n) time. Furthermore, C(P ) is the unique
point that minimizes the sum of the squares of the distances to the points of
P [Sch73, Wes93], suggesting C as a candidate for approximating (1).

The centre of mass is also known as geometric centroid [Wei], centroid [Wes93],
mean, 1-mean, centre of gravity [Sch73, Wes93], and Kimberling triangle centre
X(2) [Kim98].

We now establish a tight bound on the approximation factor of the centre of
mass in Thm. 9. Necessary to the proof of Thm. 9 is Lem. 8 which shows that
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Fig. 2. illustration in support of Lem. 8

for any finite multiset P , if some point a 6= M(P ) is moved to coincide with
M(P ), then the Euclidean median of the new multiset P ′ remains unchanged.
Lems. 7 and 8 and Thm. 9 refer to the following definitions for P , a, x, and
n. Let P denote a finite multiset in R

2 such that a 6= M(P ) for some a ∈ P .
Let a′ = M(P ), let P ′ = (P \ {a}) ∪ {a′}, let x = ||a − a′||, and let n = |P |.
See Fig. 2.

Lemma 7 Point M(P ) is a Euclidean median of P ′.

Proof. Suppose M(P ) is not a Euclidean median of P ′. Thus,

∑

p∈P ′

||p − M(P ′)|| <
∑

p∈P ′

||p − M(P )||. (8)

Therefore,

∑

p∈P

||p − M(P ′)|| = ||a − M(P ′)|| +
∑

p∈P\{a}
||p − M(P ′)||

≤ x + ||a′ − M(P ′)|| +
∑

p∈P\{a}
||p − M(P ′)||

= x + ||a′ − M(P ′)|| +
∑

p∈P ′\{a}
||p − M(P ′)||

= x +
∑

p∈P ′

||p − M(P ′)||

< x +
∑

p∈P ′

||p − M(P )||, by our assumption,

=
∑

p∈P

||p − M(P )||. (9)

Thus, M(P ) did not minimize
∑

p∈P ||p−M(P )||. Consequently, M(P ) cannot
be a median of P , deriving a contradiction. Therefore M(P ′) = M(P ). 2

Also necessary to the proof of Thm. 9 is Lem. 8 which relates the sum of the
distances from C(P ) to the points of P to the corresponding value for P ′.

Lemma 8

∑

p∈P

||p − C(P )|| −
∑

p∈P ′

||p − C(P ′)|| ≤ 2x
(

1 − 1

n

)

. (10)
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Proof. Since all points remain static except for point a, C(P ) − C(P ′) =
1

n
(a− a′). See Fig. 2. Consequently, the distance from a to the centre of mass

changes by at most ±(x − x/n). For each of the n − 1 points in P \ {a}, the
corresponding distance changes by at most ±x/n. The result follows. 2

Theorem 9 The centre of mass provides a (2 − 2/n)-approximation of the

Euclidean median.

Proof. Let a, a′, x, and P ′ be as defined in Lem. 7. Let m =
∑

p∈P ||p−M(P )||
and let c =

∑

p∈P ||p − C(P )||. Let m′ and c′ denote the corresponding values
for P ′. Assume P is a multiset that maximizes the approximation factor of C
such that c > m(2 − 2/n). Observe that a point a 6= M(P ) must exist under
this assumption, otherwise all points of P would be collocated with M(P ) and
C(P ). Thus,

c > m
(

2 − 2

n

)

,

⇒ cx − cm > 2mx
(

1 − 1

n

)

− cm,

since a 6= a′ and, consequently, x = ||a − a′|| > 0,

⇒ c(x − m) > m
[

2x
(

1 − 1

n

)

− c
]

,

⇒ c(m − x) < m
[

c − 2x
(

1 − 1

n

)]

,

⇒ c(m − x) < mc′,

by Lem. 8,

⇒ cm′ < mc′,

since M(P ) = M(P ′) by Lem. 7 and, consequently, m = m′ + x,

⇒ c

m
<

c′

m′ , (11)

since m and m′ are sums of non-negative terms.

This contradicts our assumption that P maximizes the approximation factor
of C. Therefore, c ≤ m(2− 2/n). That is, for all nonempty finite multisets P ,

∑

p∈P

||p − C(P )|| ≤
(

2 − 2

n

)

∑

p∈P

||p − M(P )||,

where n = |P |. 2
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The approximation bound 2 − 2/n is realized by n − 1 points located at the
origin and a single point located at (1, 0).

As shown by Bespamyatnikh et al. [BBKS00], any function defined by a convex
combination of a set of mobile points moves with maximum relative velocity
at most one. Since the centre of mass is a convex combination of the points of
P , this result implies that the centre of mass is 1-stable. The bound is trivially
tight, as demonstrated by any translation of the points of P .

4 The Rectilinear Median

The rectilinear median is defined analogously to the Euclidean median with
respect to the ℓ1 norm instead of the ℓ2 norm.

Definition 10 Given an arbitrary nonempty finite multiset P in R
2, a recti-

linear median of P is a point in R
2, denoted R(P ), that minimizes

∑

p∈P

||x − p||1, (12)

when x = R(P ) and where || · ||1 denotes the ℓ1 norm.

Function R is invariant under translation and uniform scaling, but not under
rotation or reflection. If |P | is even, then R may not be unique; in this case,
we assign R(P ) to be the midpoint of the rectangular region of points that
define rectilinear medians of P .

The rectilinear median is found in Θ(n) time by solving two independent one-
dimensional median problems on the x- and y-coordinates of the points of P .
The rectilinear median is also known as coordinate median [Wes93] and ℓ1

median.

Bespamyatnikh et al. [BBKS00] show that the relative velocity of the rectilin-
ear median of a set of mobile points in R

2 is at most
√

2. Furthermore, this
bound is tight. It is straightforward to show that maximum relative velocity
is inversely related to stability, implying that R is (1/

√
2)-stable.

Bespamyatnikh et al. [BBKS00] also show that the rectilinear median provides
a
√

2-approximation of the Euclidean median. We show this bound is tight in
the following example. Let 2k points lie at (1, 0), let k + 1 points lie at (0, 1),
and let k + 1 points lie at (0,−1). See Fig. 3. The unique rectilinear median
of P lies at (0, 0). Since the points of P are not collinear, the position of the
Euclidean median of P is also unique. Consequently, by the symmetry of P
and the invariance of M(P ) under reflection, M(P ) must lie on the x-axis.
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R(P)

(0,1)

(0,−1)

(1,0)

M(P)

Fig. 3. example realizing the approximation factor of the rectilinear median

The Euclidean median sum of P is

2k|1 − Mx(P )| + 2(k + 1)
√

Mx(P )2 + 1. (13)

For any k ≥ 3, it is straightforward to show that (13) is minimized at Mx(P ) =
1. Therefore, the Euclidean median of P lies at (1, 0). We obtain the following
lower bound on the approximation factor of R:

λ ≥ lim
k→∞

∑

p∈P ||p − R(P )||
∑

q∈P ||q − M(P )||

= lim
k→∞

2k + 1

(k + 1)
√

2

=
√

2. (14)

5 The Projection Median

The definition of the Euclidean median is the most natural generalization of
the one-dimensional median to higher dimensions. Eq. (1), however, suggests
other possible generalizations. One possibility is to project points onto a line
through the origin, to find the one-dimensional median of the projection, and
to integrate these one-dimensional medians for all lines through the origin.

Let lθ denote the line through the origin parallel to the unit vector uθ =
(cos θ, sin θ). Expressed in slope-intercept form, lθ is the line y = tan θ x.
Given a multiset of points P in R

2 and an angle θ ∈ [0, π), let Pθ denote the
multiset defined by the projection of P onto line lθ. See Fig. 4A. That is,

Pθ = {uθ〈p, uθ〉 | p ∈ P}. (15)

Let p ∈ R
2 be any fixed point. The average over all projections of p onto lines

10



θ

θ

θ θθ
A B Cθ

θ

u

l

P(   )medP

P
PP

Fig. 4. defining the projection median

lθ is
1

π

∫ π

0

uθ〈p, uθ〉 dθ =
p

2
,

suggesting an additional factor of 2 is necessary in the following definition for
a location function:

Definition 11 The projection median of a nonempty finite multiset P in R
2

is

Π(P ) =
2

π

∫ π

0

med(Pθ) dθ, (16)

where med(Pθ) is the median of the projection of P onto the line y = tan θ x.

If |P | is even, then Pθ may not have a unique median. In this case, let med(Pθ)
denote the midpoint of the interval of points on lθ that define medians of Pθ. It
is straightforward to show that Π is invariant under similarity transformations.

The formulation of the projection median displays some resemblance to the
Steiner centre, which can be expressed similarly to (16) in R

2 by replac-
ing med(Pθ) with uθ

2
(minp∈P 〈p, uθ〉 + maxq∈P 〈q, uθ〉), the centre of Pθ [DK06,

Dur06].

Although this paper examines location functions defined over finite multisets,
these can also be defined over bounded regions in R

d with an associated density
function. In this case, the sums in Defs. 1, 6, 10, and 11 are replaced by
integrals. This family of problems is referred to as continuous facility location.
See Fekete et al. [FMW05] for an examination of the continuous rectilinear
median.

The projection median can be found using techniques similar to those devel-
oped by Bespamyatnikh et al. [BKS00]. In brief, as θ varies from 0 to π, the
point(s) in P that induce med(Pθ) are identified by maintaining a line (per-
pendicular to lθ) that partitions P into two sets of at most ⌊n/2⌋ points each.
The convex hull of each partition is maintained as the line rotates, requir-
ing O(log2 n) time per update [OvL81]. See Fig. 5 Since the dual problem to
maintaining these partitions corresponds to an (n/2)-level, we require at most
O(n4/3) such updates [Dey98]. Between updates, the contribution to Π(P ) of

11



lθ

lθ
BA

c c

a

e

a

dd

b
b

e

Fig. 5. maintaining the convex hulls of both partitions as lθ rotates

the point(s) that induce med(Pθ) is calculated in O(1) time. Together, these
give an O(n4/3 log2 n)-time algorithm. This can be improved to O(n4/3 log1+ǫ n)
amortized time using the dynamic convex hull data structure of Chan [Cha01]
or O(n4/3) expected time [Cha99]. Providing details of this algorithm is not
the goal of this paper; rather, we focus on the properties of approximation
factor and stability.

Let dφ denote the ℓ1 norm relative to a rotation by φ of the reference axis.
That is, dφ(x) = ||fφ(x)||1, where fφ is a clockwise rotation about the origin
by φ. Let Rφ(P ) = f−1

φ (R(fφ(P ))) denote the rectilinear median with respect
to norm dφ. Observe that Rφ(P ) = med(Pφ) + med(Pφ+π/2). Consequently,

Π(P ) =
2

π

∫ π

0

med(Pθ) dθ

=
2

π

[

∫ π/2

0

med(Pθ) dθ +
∫ π

π/2

med(Pθ) dθ

]

=
2

π

∫ π/2

0

med(Pθ) + med(Pθ+π/2) dθ

=
2

π

∫ π/2

0

Rθ(P ) dθ. (17)

Theorem 12 The projection median provides a (4/π)-approximation of the

Euclidean median.

Proof. Let P denote any nonempty finite multiset of points in R
2. We bound
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the approximation factor of Π(P ):

∑

p∈P ||Π(P ) − p||
∑

q∈P ||M(P ) − q||

=

∑

p∈P

∣

∣

∣

∣

∣

∣

2

π

∫ π/2

0 Rθ(P ) dθ − p
∣

∣

∣

∣

∣

∣

∑

q∈P ||M(P ) − q|| , by (17),

=

∑

p∈P

∣

∣

∣

∣

∣

∣

2

π

∫ π/2

0 Rθ(P ) dθ − 2

π

∫ π/2

0 p dθ
∣

∣

∣

∣

∣

∣

∑

q∈P ||M(P ) − q||

=
2

π

∑

p∈P

∣

∣

∣

∣

∣

∣

∫ π/2

0 Rθ(P ) − p dθ
∣

∣

∣

∣

∣

∣

∑

q∈P ||M(P ) − q||

≤ 2

π

∑

p∈P

∫ π/2

0 ||Rθ(P ) − p|| dθ
∑

q∈P ||M(P ) − q|| , by △ ineq.,

≤ 2

π

∑

p∈P

∫ π/2

0 dθ(Rθ(P ) − p) dθ
∑

q∈P ||M(P ) − q|| , (18a)

since ∀x ||x||1 ≥ ||x|| and, similarly, ∀x∀φ dφ(x) ≥ ||x||,

=
2

π

∫ π/2

0

∑

p∈P dθ(Rθ(P ) − p) dθ
∑

q∈P ||M(P ) − q||

≤ 2

π

∫ π/2

0

∑

p∈P dθ(M(P ) − p) dθ
∑

q∈P ||M(P ) − q|| , (18b)

since Rθ(P ) minimizes the sum of the dθ distances to points of P ,

=
2

π

∫ π/2

0

∑

p∈P

[

| sin(θ − αp)| + | cos(θ − αp)|
]

· ||M(P ) − p|| dθ
∑

q∈P ||M(P ) − q|| , (18c)

where αp = arctan[(My(P ) − py)/(Mx(P ) − px)] mod π
2

(see Fig. 6),

=
2

π

∫ π
0

∑

p∈P | sin(θ − αp)| · ||M(P ) − p|| dθ
∑

q∈P ||M(P ) − q||

=
2

π

∫ π
0

∑

p∈P | sin θ| · ||M(P ) − p|| dθ
∑

q∈P ||M(P ) − q||

=
2

π

∑

p∈P ||M(P ) − p||
∑

q∈P ||M(P ) − q||
∫ π

0

| sin θ| dθ

=
2

π

∫ π

0

| sin θ| dθ

=
4

π
≈ 1.2732. (18d)
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αθ pp

M(P)

Fig. 6. dθ(M(P ) − p) =
[

| sin(θ − αp)| + | cos(θ − αp)|
]

· ||M(P ) − p||

M(P) (P)Π

α

(x,0)

b

d

c
(0,−1)

(0,1)

Fig. 7. example realizing the lower bound in Thm. 13

Therefore, for any nonempty finite multiset of points P in R
2,

∑

p∈P

||Π(P ) − p|| ≤ 4

π

∑

q∈P

||M(P ) − q||. 2 (19)

Although we have not been able to prove that the bound in (19) is tight, we
provide the following lower bound:

Theorem 13 The projection median cannot guarantee an approximation fac-

tor less than
√

4/π2 + 1 in the worst case.

Proof. Let multiset P be defined by k points located at b = (0, 1), k points
located at c = (0,−1), and a single point located at d = (x, 0), for some k ∈ N

and x ∈ R
+. Let α = π/2 − arctan(1/x) = arctan x. See Fig. 7.

We first derive the position of M(P ). Since the points of P are not collinear,
the position of the Euclidean median of P is unique. Consequently, by the
symmetry of P and the invariance of M(P ) under reflection, M(P ) must lie
on the x-axis. The Euclidean median sum of P is

2k
√

1 + Mx(P )2 + |x − Mx(P )|. (20)

Simple calculus shows that (20) is minimized at Mx(P ) = 1/
√

4k2 − 1. Con-
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sequently, M(P ) = (1/
√

4k2 − 1, 0).

By (16), the projection median of P is located at

Π(P ) =
2

π

[
∫ α

0

uθ〈b, uθ〉 dθ +
∫ π−α

α
uθ〈d, uθ〉 dθ +

∫ π

π−α
uθ〈c, uθ〉 dθ

]

=
2

π

[
∫ α

0

uθ sin θ dθ +
∫ π−α

α
xuθ cos θ dθ −

∫ π

π−α
uθ sin θ dθ

]

=
(

2x

π
arctan

(

1

x

)

, 0
)

. (21)

The approximation factor λ is at least

λ ≥ lim
x→∞

k→∞

∑

p∈P ||Π(P ) − p||
∑

q∈P ||M(P ) − q||

= lim
x→∞

k→∞

2k

√

4x2

π2 arctan2
(

1

x

)

+ 1 + x − 2x
π

arctan
(

1

x

)

2k
√

1

4k2−1
+ 1 + x − 1√

4k2−1

= lim
x→∞

√

4x2

π2
arctan2

(

1

x

)

+ 1

=

√

4

π2
+ 1

> 1.1854. 2 (22)

We now derive a tight bound on the stability of Π.

Theorem 14 The projection median is (π/4)-stable.

Proof. Choose any nonempty and finite P in R
2. Let f : P → R

2 be any
ǫ-perturbation of P . Let multiset Q = f(P ). Since Π is invariant under ro-
tation and translation, without loss of generality assume Π(P ) and Π(Q) lie
on the x-axis. The one-dimensional median is 1-stable. Consequently, for any
ǫ-perturbation of P , f ,

||med(Pθ) − med(Qθ)|| ≤ max
p∈P

||p − f(p)||.

Thus, for any θ,

|med(Pθ)x − med(Qθ)x| = | cos θ| · ||med(Pθ) − med(Qθ)||
≤ | cos θ| · max

p∈P
||p − f(p)||

≤ | cos θ| · ǫ. (23)
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θ

p

q

med(   )Pθ

Fig. 8. example realizing the bound in Thm. 14

We bound the stability of Π from below by

||Π(P ) − Π(f(P ))|| = |Π(P )x − Π(Q)x|

=
∣

∣

∣

∣

2

π

∫ π

0

med(Pθ)x dθ − 2

π

∫ π

0

med(Qθ)x dθ

∣

∣

∣

∣

=
2

π

∣

∣

∣

∣

∫ π

0

med(Pθ)x − med(Qθ)x dθ

∣

∣

∣

∣

≤ 2

π

∫ π

0

|med(Pθ)x − med(Qθ)x| dθ

≤ 2

π

∫ π

0

| cos θ| · ǫ dθ

=
4ǫ

π
. (24)

Hence, κ ≥ π
4
. Therefore, for all nonempty finite multisets P in R

2,

∀ǫ > 0, ∀f ∈ F P
ǫ ,

π

4
||Π(P ) − Π(f(P ))|| ≤ ǫ. 2 (25)

The bound in (25) is shown to be tight by the following example. Let P be an
even number of points uniformly distributed on the unit circle centred at the
origin. Choose any ǫ ∈ (0, 1) and define an ǫ-perturbation such that points
above the x-axis move right (clockwise) in a direction tangent to the circle
while points below the x-axis move right (counter-clockwise) in the opposite
direction. Every point p in P has a corresponding point in P , q = −p, opposite
the origin from p. The midpoint of each such pair of points p and q defines
med(Pθ) for some Pθ (corresponding to the projection onto the line perpendic-
ular to p − q). The resulting change in the position of med(Pθ) is identical to
the change at p and q. See Fig. 8. The resulting stability corresponds exactly
to that derived in (25).
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location function notation approximation stability

Euclidean median M 1 0

rectilinear median R
√

2 ≈ 1.4142 1/
√

2 ≈ 0.7071

centre of mass C 2 1

projection median Π [
√

4/π2 + 1, 4/π] π/4

≈ [1.1854, 1.2732] ≈ 0.7854

Table 1
comparing location functions in R

2

6 Conclusion

6.1 Evaluation

As shown in Sec. 2, the Euclidean median, M , is arbitrarily unstable. Guar-
anteeing any degree of stability in a location function implies an increase in
the Euclidean median sum (1) and necessitates approximation by a location
function. In this paper we introduced the projection median, Π, as a stable
approximation of the Euclidean median. We now compare the stability and
approximation factor of Π against those of two common location functions: the
rectilinear median, R, and the centre of mass, C. These results are summarized
in Tab. 1.

Observe that Π is more stable and guarantees a better approximation factor
than R. Similarly, Π guarantees a better approximation than C, but one that is
not as stable. Depending on the degree of stability required and approximation
factor necessary for a particular application, either the centre of mass or the
projection median may be preferred.

6.2 Applications to Mobile Facility Location

The projection median’s benefits extend beyond its definition as a median
of a set of static points. Recently, several questions of facility location have
been posed within the setting of mobile facility location (e.g., [AGG02, AH01,
BBKS00, DK06, DK07, Dur06, Her05]). Given a set of mobile clients moving
continuously and with bounded velocity in R

2, the fitness of a mobile facility
is determined both by its approximation factor and also by its maximum
velocity and continuity of its motion. The stability of a location function is
inversely related to the maximum velocity of a mobile facility, providing further
motivation for the need of stability in a location function. Thus, the projection
median defines the position of a mobile facility that approximates the mobile

17



Euclidean median with a factor of 4/π while maintaining a maximum velocity
of at most 4/π relative to the velocity of the clients.

6.3 Directions for Future Research

Def. 11 has a natural generalization to R
d, suggesting that the properties that

make the projection median a good location function might not be limited
to R

2, but may extend to three or higher dimensions. The projection median
is (2/3)-stable in three dimensions [Dur06]. Obtaining a good bound on its
approximation factor in three dimensions, however, remains open.

Sec. 2 begins with an example consisting of a set of four points and a pertur-
bation of those points that illustrate the instability of the Euclidean median in
R

2. The four points in the example are nearly collinear. To what extent is the
instability of the Euclidean median attributable to this degeneracy (collinear-
ity)? Expanding on this idea, can the stability of the Euclidean median be
bounded by a function of the ratio of a point set’s width to its diameter? If
so, then conceivably some kind of hybrid approach combining the Euclidean
median and the projection median might provide a better stable approxima-
tion by adapting to this ratio. Alternatively, are there unstable configurations
of point sets for which this ratio is bounded? Similarly, to what extend does
instability arise from parity? Are there unstable configurations of odd-sized
point sets? These questions remain open.
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