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Abstract

Motivated by the gateway placement problem in wireless networks, we consider
the geometric k-centre problem on unit disc graphs: given a set of points P
in the plane, find a set F of k points in the plane that minimizes the maxi-
mum graph distance from any vertex in P to the nearest vertex in F in the
unit disc graph induced by P ∪ F . We show that the vertex 1-centre provides
a 7-approximation of the geometric 1-centre and that a vertex k-centre pro-
vides a 13-approximation of the geometric k-centre, resulting in an O(kn)-time
26-approximation algorithm. We describe O(n2m)-time and O(n3)-time algo-
rithms, respectively, for finding exact and approximate geometric 1-centres, and
an O(mn2k)-time algorithm for finding a geometric k-centre for any fixed k. We
show that the problem is NP-hard when k is an arbitrary input parameter. Fi-
nally, we describe an O(n)-time algorithm for finding a geometric k-centre in
one dimension.

Keywords: unit disc graph, k-centre, intersection graph, facility location,
gateway placement, wireless networks

1. Introduction

1.1. Motivation
In a wireless sensor network, sensor nodes collect and send data to sink

nodes, which may either be the users of the data, or gateways to another (pos-
sibly wired) network through which a remote user can access the data. Sensor
nodes perform a sensing function as well as a routing and forwarding function

ISome of these results appeared in preliminary form at the ACM SIGACT-SIGOPS Inter-
national Workshop on Foundations of Mobile Computing [19].
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to move data to sink nodes. Since sensor nodes are battery powered, conserving
and making efficient use of energy is an important consideration for all network
protocols. In particular, forwarding packets depletes battery power at all nodes
on a routing path, a problem that is made worse if sink nodes are poorly po-
sitioned, resulting in longer path lengths to sink nodes. Similarly, much of the
traffic in a wireless mesh network passes through gateway nodes that provide
connectivity to exterior networks such as the Internet [3]. To optimize band-
width usage, it is important to minimize the path length between nodes and
gateways [3].

This motivates the problem of optimal sink placement in a wireless sensor
network or gateway placement in a wireless mesh network. In this paper, we
model these problems as a facility location problem, in which network nodes
correspond to clients, and gateways or sink nodes correspond to facilities. A
wireless network is often modelled by a unit disc graph (e.g., [7, 23, 26, 29, 30])
where the nodes are represented by points on the plane and a node u is connected
to every node located in the unit disc centred at u. Given a set of points P in
the plane, we consider the problem of finding a set F of k points in the plane
that minimizes the maximum graph distance between any point in P and the
nearest point in F in the unit disc graph induced by P ∪ F . Although this
problem is similar to the Euclidean k-centre and vertex k-centre problems (see
Section 3), this version of the problem incorporates both geometric and graph-
theoretic constraints, resulting in a new problem which we call the geometric
k-centre problem for unit disc graphs2.

In the geometric k-centre problem, facilities may be selected from anywhere
in the plane (as in the Euclidean k-centre problem) whereas the distance between
clients and facilities is measured by graph distance (as in the vertex k-centre
problem). Thus the geometric k-centre problem is neither set solely in the host
metric space nor on a graph. Given this new setting, existing solutions to the
k-centre problem on graphs or in Euclidean space do not necessarily provide
solutions to the geometric k-centre problem.

1.2. Overview of Results
After establishing properties of arrangements of sets of unit discs (Sec-

tion 4), we show that the vertex 1-centre provides a 7-approximation of the
geometric 1-centre (Section 5.1). Next we show that a vertex k-centre provides
a 13-approximation of the geometric k-centre, resulting in an O(kn)-time 26-
approximation algorithm (Section 5.2). We describe O(n2m)-time and O(n3)-
time algorithms, respectively, for finding exact and approximate geometric 1-
centres (Sections 6.1 and 6.2). Our technique generalizes to an O(mn2k)-time
algorithm for finding a geometric k-centre for any fixed k (Section 6.3). When
k is an arbitrary input parameter, we show that the geometric k-centre problem

2In this paper, the term geometric k-centre refers exclusively to Definition 2 (see Section 2).
In the literature, this term is sometimes used to refer to the Euclidean k-centre (Definition 4).
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Figure 1: (Left) A set of points P , the corresponding set Disc(P ), and UDG(P ). (Middle)
The point at the centre of the shaded unit disc is a geometric 1-centre of P . The corresponding
graph UDG(P ∪F ) is illustrated. (Right) The set of points at the centres of the three shaded
unit discs is a geometric 3-centre of P . The corresponding graph UDG(P ∪ F ) is illustrated.

is NP-hard on unit disc graphs (Section 7). Finally, we describe an O(n)-time
algorithm for finding a geometric k-centre in one dimension (Section 8).

2. Definitions

We employ standard graph-theoretic notation for a graph G, where V (G)
denotes the vertex set of G; E(G) denotes the edge set of G; for each vertex
v ∈ V (G), Adj(v) = {u | {u, v} ∈ E(G)} denotes the set of vertices adjacent
to v; and deg(v) = |Adj(v)| denotes its degree. Let distG(u, v) denote the
unweighted graph distance in G between vertices u and v in V (G). Let dist(p, q)
denote the Euclidean (`2) distance between points p and q in Rd.

Given a point p ∈ R2, let Discr(p) denote the disc of radius r centred at p.
Similarly, given a set of points P ⊆ R2, let Discr(P ) denote the corresponding
set of discs. When r = 1 we omit the subscript r.

Although the geometric k-centre problem can be applied to several classes
of geometrically-defined graphs, we focus primarily on graphs commonly used
to model the topology of wireless networks: unit disc graphs.

Definition 1 (Unit Disc Graph). Given a set of points P in R2, the unit
disc graph induced by P , denoted UDG(P ), is an embedded graph with vertex
set P and edge set {{u, v} | {u, v} ⊆ P and dist(u, v) ≤ 1}.

That is, vertices p and q in P are adjacent in UDG(P ) if and only if q ∈ Disc(p).
See the example in Figure 1. Equivalently, vertices p and q in P are adjacent
in UDG(P ) if and only if Disc1/2(p) ∩Disc1/2(q) 6= ∅. Thus, a unit disc graph
is an intersection graph. Note, a unit disc graph is sometimes defined as the
intersection graph of a set of unit discs or of a set of equal-radius discs; all of
these definitions are equivalent upon scaling.

If P ⊆ Z2, then UDG(P ) is a grid graph. A unit disc graph is not necessarily
planar and its maximum degree can be as large as |P | − 1. A grid graph, on

3



the other hand, is planar and has maximum degree at most four. Naturally,
the definition of a unit disc graph generalizes to three or higher dimensions as
a unit ball graph and to one dimension as a unit interval graph, both of which
can be considered with respect to the geometric k-centre problem.

Given a set of points P ⊆ R2 and R = Disc(P ), the arrangement induced
by R and denoted AR, is a set of cells, each of which is a maximally connected
region in the space formed by removing the boundaries of the discs in R from
R2. We define the dual arrangement graph of R as the planar graph G whose
vertex set is AR and whose edges connect adjacent cells in AR. We regard G
as a directed graph, with (Ca, Cb) ∈ E(G) if and only if the set of discs in
R containing Ca is a subset of the discs in R containing Cb. See Figures 2A
and 2B.

Next we define a geometric k-centre of a unit disc graph:

Definition 2 (Geometric k-Centre). Given a set of points P = {p1, . . . , pn}
in R2 and a positive integer k, a geometric k-centre of P is a set of points F =
{f1, . . . , fk} in R2, such that F minimizes eccentricity relative to P , denoted
eccG(P, F ), where

eccG(P, F ) = max
pi∈P

min
fj∈F

distUDG(P∪F )(pi, fj). (1)

When F is a geometric k-centre, we refer to the value of (1) as the geometric
k-radius of P . In the facility location literature, P typically represents a set of
clients (the input defining a problem instance) and F represents a set of facilities
(a solution to the problem instance); we use these terms to differentiate between
points in P and those in F . With respect to our discussion of geometric k-centres
on unit disc graphs, we identify the location of a client or facility by the point
p at the centre of the corresponding disc.

The geometric k-centre problem is related to the vertex k-centre problem:

Definition 3 (Vertex k-Centre). Given a graph G and a positive integer k, a
vertex k-centre of G is a set of vertices F = {v1, . . . , vk} ⊆ V (G) that minimizes

max
u∈V (G)

min
vj∈F

distG(u, vj). (2)

When F is a vertex k-centre, we refer to the value of (2) as the vertex k-
radius of G. A vertex k-centre is often called simply a k-centre; we include
the prefix “vertex” to distinguish it from a geometric k-centre. The vertex
k-centre problem has been studied extensively (see Section 3). Although the
vertex k-centre problem can be applied to a unit disc graph, these two k-centre
problems differ in that the set of facilities need not be a subset of the set of
clients under the geometric version of the problem. As we show in Section 5, a
vertex 1-centre and k-centre provide respective 7- and 13-approximations of the
geometric 1-centre and k-centre.

Finally, the vertex and geometric k-centre problems are related to the Eu-
clidean k-centre problem:
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Definition 4 (Euclidean k-Centre). Given a set P of points in R2 and a
positive integer k, a Euclidean k-centre of G is a set of points F = {f1, . . . , fk} ⊆
R2 that minimizes

max
p∈P

min
fi∈F

dist(p, fi), (3)

where dist(·, ·) denotes the Euclidean (`2) metric.

A Euclidean 1-centre need not lie within unit distance of any point in P .
Consequently, unlike the vertex k-centre problem, a solution to the Euclidean k-
centre problem does not guarantee any approximation to the geometric k-centre
problem.

3. Related Work

3.1. Vertex k-Centre
Given a graph G, Hakimi and Kariv [28] describe an algorithm to find a

vertex 1-centre in O(mn+n2 log n) time, where n = |V (G)| and m = |E(G)|. A
vertex 1-centre can also be found by calculating the unweighted all-pairs shortest
path distances and identifying the vertex for which the maximum distance is
minimized; as shown by Chan [11], this can be done in O(mn/ log n) time if m >
log2 n, O(mn log log n/ log n) time if m > n log log n, and O(n2 log2 log n/ log n)
time if m ≤ n log log n. When k is fixed, a vertex k-centre can be found in
O(mknk log n) time [39]. When k is an arbitrary input parameter, the problem
is NP-hard [28]. Finding a (2 − ε)-approximation remains NP-hard for any
ε > 0, even for unweighted planar graphs of maximum degree 3 [25, 36]; an
O(kn)-time 2-approximation algorithm exists [22, 24] using a greedy approach:
select an arbitrary vertex as the first centre. Then for each i ∈ {2, . . . , k}, let
the ith centre be a vertex whose minimum distance to the previous centres is
maximized.

3.2. Unit Disc Graphs
Clark et al. [16] give hardness results for several problems on unit disc graphs,

including the minimum dominating set problem (which we use as the basis
for our hardness reduction in Section 7). They mention an earlier result by
Masuyama et al. [32] regarding hardness of the vertex k-centre problem on unit
disc graphs. Marathe et al. [31] describe approximation algorithms for NP-hard
problems on unit disc graphs, including a 5-approximation for the minimum
dominating set problem. In addition, they demonstrate the following property:

Lemma 1 (Marathe et al. [31]). Given any finite set of points P and any
p ∈ P , every independent set of Adj(p) in UDG(P ) has cardinality at most five.

Given P ⊆ R2, Breu [8] describes an O(m + n log n)-time algorithm for
constructing UDG(P ) and an O(n log n)-time algorithm for enumerating the
connected components of UDG(P ). Breu and Kirkpatrick [9] show it is NP-
hard to decide whether a graph is a unit disc graph. That is, given only the
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combinatorial description for a UDG, it is NP-hard to find a unit disc embedding
in the plane.

The difficulty in finding a geometric k-centre of a unit disc graph arises from
the geometric constraints implied by an embedding; given only a combinatorial
description for a graph, the addition of a universal vertex trivially solves the
problem. As such, we assume knowledge of the graph’s planar embedding in a
problem instance.

3.3. Euclidean k-Centre
A Euclidean 1-centre can be found in linear time [2, 13]. Welzl [43] gives a

simpler randomized algorithm with O(n) expected time. At present, the fastest
algorithm for finding a Euclidean 2-centre requires O(n log2 n log2 log n) time in
the worst case [10]. When k is fixed, a Euclidean k-centre can be found in nO(

√
k)

time [27]. When k is an arbitrary input parameter, the problem is NP-hard [33].
Feder and Greene [21] show that finding an ε-approximation remains NP-hard
for any ε < (1+

√
7)/2 ≈ 1.8229. An O(n log k)-time 2-approximation algorithm

exists [21] using a greedy approach similar to the 2-approximation algorithm for
the vertex k-centre. The above results refer to the Euclidean k-centre in the
plane; see [1, 18] for a discussion of the Euclidean k-centre in higher dimensions.

3.4. Geometric Sink/Relay Placement
Similar to the geometric k-centre problem in which k is fixed and the ob-

jective is to minimize the geometric k-radius, Mihandoust and Narayanan [34]
consider the related h-hop covering set problem on a unit disc graph, in which
the maximum k-radius is fixed and the objective is to minimize k. They pro-
vide PTASs for several variants of this problem. Aoun et al. [3] follow a similar
approach for gateway placement in wireless mesh networks. Efrat et al. [20]
consider the related relay placement problem, in which the objective is to add
the minimum number of facilities (relays) such that the resulting network is
connected. They consider a more general model in which the range of commu-
nication of relays and network nodes may differ.

4. The Arrangement of a Set of Unit Discs

We begin by examining properties of arrangements of unit discs. Throughout
Sections 4 to 7, P denotes an arbitrary set of points in R2, R = Disc(P ), AR

denotes the arrangement induced by Disc(P ), n = |P |, and m = |E(UDG(P ))|.
Definition 1, the definition of an arrangement, and (1) imply the following

observation:

Observation 2. Given a set P ⊆ R2 and points f1 and f2 in the same cell of
the arrangement of Disc(P ),

eccUDG(P∪{f1})(P, {f1}) = eccUDG(P∪{f2})(P, {f2}).
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Figure 2: A. The edges of the dual arrangement graph can be directed such that (Ca, Cb) ∈
E(G) if and only if for every p ∈ P , Ca ⊆ Disc(p) ⇒ Cb ⊆ Disc(p). B. The arrangement
induced by these five unit discs partitions the plane into twenty cells, including the exterior
face. The partial order of the corresponding dual graph has four sources and two sinks. To
select locations for a facility, it suffices to consider the sinks, which correspond precisely to
convex cells (shaded). C. This example due to Tóth [42] shows an arrangement induced by n
unit discs that has Ω(n2) convex cells.

Therefore, if point f1 is a geometric 1-centre of P , then any point in the same
cell as f1 is also a geometric 1-centre of P . Consequently, to identify a geometric
1-centre of P it suffices to consider one point from every cell in AR.

By Propositions 3 and 4, the number of cells in any arrangement of discs in
the plane is Θ(n2) in the worst case; this value is directly proportional to the
running times of algorithms we describe in Sections 6.1 and 6.3.

Proposition 3 (Steiner 1881 [38]). An arrangement of n discs in R2 con-
tains at most n2 − n + 2 cells. This bound is tight.

Recall that the edges of the dual arrangement graph G can be directed such
that for any cells Ca and Cb in AR, (Ca, Cb) ∈ E(G) if and only if for every
p ∈ P , Ca ⊆ Disc(p) ⇒ Cb ⊆ Disc(p). Since a facility not located in any
unit disc will be disconnected from UDG(P ), we omit the exterior face from
V (G). See Figures 2A and 2B. Observe that G is a partial order relation.
Furthermore, for any cells {Ca, Cb} ⊆ AR and any points fa ∈ Ca and fb ∈ Cb,
if (Ca, Cb) ∈ E(G), then UDG(P ∪ {fa}) is a subgraph of UDG(P ∪ {fb}).
Hence,

eccUDG(P∪{fb})(P, {fb}) ≤ eccUDG(P∪{fa})(P, {fa}).

Consequently, when selecting a position for a 1-centre, it suffices to consider
only cells in AR that are sinks with respect to the partial order induced by AR.
The sinks correspond exactly to the convex cells in AR. One might hope that
the number of sinks is asymptotically less than the total number of cells; this is
not always the case, as shown by the following proposition based on an example
suggested by Tóth [42]. See Figure 2C.

Proposition 4. For any n ∈ Z+, there exists an arrangement of n unit discs
in R2 for which the number of convex cells is at least bn/4c2.
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Proof. Choose any n.
Case 1. Suppose n mod 4 = 0. Position two unit discs such that their centres
are distance 2 − 64/(16 + n2) apart. It is straightforward to show that their
intersection is a lune of width 64/(16 + n2) and height 16n/(16 + n2). Observe
that the height is n/4 times the width. Therefore, n discs can be positioned
such that n/4 vertical lunes each intersect n/4 horizontal lunes. See Figure 2C.
Each lune is convex and, therefore, the intersection of two lunes is also convex,
resulting in at least n2/16 convex cells.
Case 2. Suppose n = 4j + i for some j ∈ Z and some i ∈ {1, 2, 3}. Given any
sets of unit discs R1 and R2, the number of convex cells in AR1∪R2 is greater
than or equal to the number of convex cells in AR1 . The result follows by Case
1 since b(4j + i)/4c2 = b(4j)/4c2. �

5. Approximating by a Vertex k-Centre

A geometric k-centre of a unit disc graph can be approximated by a vertex
k-centre in the corresponding unit disc graph. Facilities in a geometric k-centre
can be positioned anywhere in the plane while facilities in a vertex k-centre must
coincide with clients. Consequently, the geometric k-radius of a unit disc graph
is at most the vertex k-radius. Of course, the geometric k-radius can be less
than the vertex k-radius. Theorems 5 and 8 bound the ratio between the two
radii when k = 1 and when k is arbitrary, respectively. As such, an algorithm
that returns a vertex k-centre can be used to approximate a geometric k-centre
if the underlying unit disc graph is connected.

5.1. Approximating a Geometric 1-Centre
Theorem 5. If UDG(P ) is connected, then the vertex 1-radius of UDG(P ) is
at most 5r + 2, where r denotes its geometric 1-radius. This bound is tight
asymptotically.

Proof. Choose any finite set P ⊆ R2. Let f ∈ R2 be a geometric 1-centre of P
and let r denote the corresponding geometric 1-radius. Let Af = Adj(f) and
let Cf be a maximal independent set of Af in UDG(P ). By Lemma 1, |Cf | ≤ 5.
For every d ∈ Af , there exists a c ∈ Cf such that distUDG(P )(c, d) ≤ 1.

We begin by showing that Cf is a vertex 5-centre of UDG(P ) with radius r.
For every p ∈ P , every shortest path from f to p in UDG(P ∪ {f}) must pass
through some vertex d ∈ Af . Therefore, for all p ∈ P , there exists a d ∈ Af

such that

distUDG(P∪{f})(f, p) = distUDG(P∪{f})(f, d) + distUDG(P∪{f})(d, p)
= 1 + distUDG(P∪{f})(d, p)
= 1 + distUDG(P )(d, p)
≤ r,

8



since f is a geometric 1-centre of P with radius r. Therefore,

∀p ∈ P, ∃d ∈ Af s.t. distUDG(P )(d, p) ≤ r − 1. (4)

Furthermore, by (4), for all p ∈ P , there exist a c ∈ Cf and a d ∈ Af such that

distUDG(P )(c, p) ≤ distUDG(P )(c, d) + distUDG(P )(d, p)
≤ 1 + distUDG(P )(d, p)
≤ r. (5)

By (5), Cf is a vertex 5-centre of UDG(P ) of radius at most r.
Next, we show there exists a vertex a ∈ Cf that is a vertex 1-centre of

UDG(P ) with radius at most 5r + 2. In other words, we reduce the cardinality
of the set of facilities at the expense of increasing the radius. Construct a graph
G with vertex set Cf such that nodes u and v are adjacent in G if and only if
dist(u, v)UDG(P ) ≤ 2r + 1. We claim that G is connected. Suppose otherwise.
By assumption, UDG(P ) is connected. Consider a shortest path in UDG(P )
between two vertices in Cf that lie in separate connected components of G. This
path has length at least 2r + 2. Thus, the midpoint of the path has distance at
least r+1 from every c ∈ Cf , contradicting (5). Therefore G must be connected.

Since G is a connected graph and |V (G)| ≤ 5, G has a vertex 1-centre a of
radius at most 2. Therefore,

∀c ∈ Cf , distG(c, a) ≤ 2
⇒ ∀c ∈ Cf , distUDG(P )(c, a) ≤ 2(2r + 1). (6)

By (5) and (6),

∀p ∈ P, ∃c ∈ Cf s.t. distUDG(P )(a, p) ≤ distUDG(P )(a, c) + distUDG(P )(c, p)
≤ 5r + 2. (7)

Therefore, a is a vertex 1-centre of UDG(P ) with vertex 1-radius at most 5r+2.
This bound is realized in the limit as s → ∞ by the unit disc graph Gs

illustrated in Figure 3. Graph Gs consists of a facility f with five independent
neighbours, each of which is adjacent to two paths of length s. For any s ≥ 2,
Gs has geometric 1-radius 2 + bs/2c (realized by the geometric 1-centre located
at f) and vertex 1-radius b5s/2c. �

Observe that 5r + 2 ≤ 7r if r ≥ 1. If r = 0, then |P | ≤ 1 and P is both
a geometric 1-centre and a vertex 1-centre of P . Consequently, a vertex 1-
centre of P provides a 7-approximation of a geometric 1-centre when UDG(P )
is connected. See Section 3.1 for a discussion of algorithms for finding a vertex
1-centre.

5.2. Approximating a Geometric k-Centre
In this section we generalize the result of Theorem 5 to an arbitrary number

of facilities k. Theorem 8 shows that if UDG(P ) is connected, then the vertex
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Figure 3: illustration in support of Theorem 5

k-radius of UDG(P ) is at most 9r + 4, where r denotes the geometric k-radius
of P . The proof follows by an argument similar to that of Theorem 5. Starting
with a geometric k-centre F of radius r, we construct a maximal independent
set C of the set of neighbours of F in UDG(P ∪F ). Set C is a vertex (5k)-centre
of UDG(P ) with radius at most r. We show there exists a subset of C that is
a vertex k-centre of UDG(P ) with radius at most 9r + 4. Our proof refers to
Lemmas 6 and 7 that establish a trade off between k, the cardinality of the set
of facilities, and the corresponding vertex k-radius.

Lemma 6. Given any positive integers n and d, and any connected graph G on
n vertices, G has a vertex dn/de-centre of radius at most d− 1.

Proof. We use induction on n. If n = 1, d = 1, or d ≥ n, then the result
holds trivially. Choose any n > 1 and assume the result holds for all d and all
connected graphs on fewer than n vertices. Choose any connected graph G on
n vertices and any d. Let T denote any rooted spanning tree of G and let l
denote a deepest leaf of T . Let v denote the dth vertex along the path from l to
the root or let v be the root if this path has length less than d. Let Tv be the
subtree of T rooted at v. Every vertex in Tv has depth at most d− 1; that is,

∀u ∈ V (Tv), distG(u, v) ≤ d− 1. (8)

Let G′ denote the subgraph of G induced by V (T ) \ V (Tv). Let n′ = |V (G′)|.
Case 1. Suppose n′ = 0. That is, Tv spans G. Therefore, v is a 1-centre of G
with radius at most d− 1 and the result holds.
Case 2. Suppose n′ ≥ 1. Since Tv is a rooted subtree of T , G′ is connected.
Since |V (Tv)| ≥ d, therefore n′ + d ≤ n and⌈

n′

d

⌉
+ 1 ≤

⌈n

d

⌉
. (9)
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By our inductive hypothesis, G′ has a vertex dn′/de-centre of radius d − 1; let
F denote the corresponding set of facilities. By (8) and (9), the set F ∪ {v} is
a dn/de-centre of G with radius d− 1. �

Lemma 7. For any positive integers κ and d, if a connected graph G has a
vertex κ-centre of radius r, then G has a vertex dκ/de-centre of radius at most
r(2d− 1) + (d− 1).

Proof. Let F denote a vertex κ-centre of G and let r denote its radius. There-
fore,

∀v ∈ V (G), ∃f ∈ F s.t. distG(v, f) ≤ r. (10)

Let G′ denote a graph with vertex set V (G′) = F , where edge {u, v} ∈ E(G′) if
and only if distG(u, v) ≤ 2r + 1.

Suppose G′ is disconnected. Consider a shortest path S in G connecting
two components of G′, where the endpoints of S are vertices in F . Since S has
length at least 2r + 2, there must be some vertex of S whose distance to any
vertex in F is at least r+1, deriving a contradiction. Therefore, G′ is connected.

By Lemma 6, G′ has a vertex dκ/de-centre of radius d− 1; let F ′ denote the
corresponding set of facilities. Therefore,

∀f ∈ F, ∃f ′ ∈ F ′ s.t. distG′(f, f ′) ≤ d− 1,

⇒ ∀f ∈ F, ∃f ′ ∈ F ′ s.t. distG(f, f ′) ≤ (d− 1)(2r + 1) by definition of G′,
⇒ ∀v ∈ V (G), ∃f ′ ∈ F ′ s.t. distG(v, f ′) ≤ r + (d− 1)(2r + 1) by (10).

Therefore, F ′ is a vertex dκ/de-centre of G with radius at most r(2d−1)+(d−1).
�

We now establish our result on the approximation of a geometric k-centre
by a vertex k-centre.

Theorem 8. If UDG(P ) is connected, then the vertex k-radius of UDG(P ) is
at most 9r + 4, where r denotes its geometric k-radius.

Proof. Choose any finite set P ⊆ R2 and any positive integer k such that
UDG(P ) is connected. Let F = {fi, . . . , fk} ⊆ R2 be a geometric k-centre of P
and let r denote the corresponding geometric k-radius. If k ≥ n, then F = P
is both a geometric k-centre and a vertex k-centre of UDG(P ); in this case the
result holds trivially. Therefore, suppose k < n.

For every fi ∈ F , let Ci be a maximal independent set of Adj(fi) in
UDG(P ∪ F ). By Lemma 1, |Ci| ≤ 5. By an argument analogous to (5) in
the proof of Theorem 5, the set

⋃k
i=1 Ci is a vertex (5k)-centre of UDG(P ) with

radius at most r. The result follows by Lemma 7. �

Observe that 9r + 4 ≤ 13r if r ≥ 1. If r = 0, then |P | ≤ k and set P is
both a geometric k-centre and a vertex k-centre of P . Therefore, a vertex k-
centre of P provides a 13-approximation of a geometric k-centre when UDG(P )
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is connected. As noted in Section 3.1, finding a vertex k-centre is NP-hard,
but there is a simple greedy 2-approximation algorithm [22] that runs in time
O(kn). Consequently, Corollary 9 follows from Theorem 8:

Corollary 9. If UDG(P ) is connected, then a 26-approximation to the geomet-
ric k-centre can be found in O(kn) time, where n = |P |.

Theorems 5 and 8 and Corollary 9 require that UDG(P ) be connected. These
results do not necessarily hold when this condition is not met. In particular,
a disconnected graph consisting of greater than k components does not have a
vertex k-centre; a geometric k-centre might exist, however, since disconnected
components in UDG(P ) can be covered by a single facility in UDG(P ∪F ). This
gives the following observation:

Observation 10. If UDG(P ) is disconnected, then a vertex k-centre cannot
guarantee any bounded approximation of a geometric k-centre.

We now consider a lower bound on the approximation factor of the vertex
k-centre. We begin with a specific example for k = 9, in which the geometric
9-radius is d, the vertex 9-radius is 9d − 4, and the greedy 2-approximation
algorithm on the unit disc graph gives a 9-radius of 18d−9. The graph is based
on a star with ten arms, each of length 9d− 4. In order to realize this graph as
a unit disc graph, we must add a cycle of edges connecting vertices adjacent to
the hub. See Figure 4. A vertex 9-centre misses at least one of the arms, and
therefore the leaf of that arm has distance at least 9d− 4 from any centre. The
greedy 2-approximation algorithm for the vertex k-centre, with initial facility
placement at a leaf, places all nine centres at leaves, and therefore the final
remaining leaf has distance 2(9d− 4)− 1 = 18d− 9 from any centre; one unit is
subtracted from the value 2(9d − 4) due to the cycle of edges around the hub,
allowing a shortcut on the shortest path between leaves of adjacent arms.

It remains to show how to arrange the discs in the plane to achieve a geo-
metric 9-radius of d. Distinguish four petal nodes along each arm, dividing the
arm into subpaths of lengths 2d, 2d−1, 2d−1, 2d−1, and d−1, respectively, as
shown for one arm in Figure 4. Arrange these 4× 10 petals into eight flowers of
five petals each in such a way that one new disc can intersect all five petals of a
flower. See Figure 5. This accounts for eight centres; place the ninth centre at
the hub of the star. This gives a 9-radius of d: every petal has distance one to a
centre, and any vertex either has distance at most d to the hub, or has distance
at most d− 1 to a petal, hence distance at most d to a centre.

Although the arrangement shown in Figure 5 cannot be realized for very
small values of d, we claim that it is feasible for larger values of d.

We also claim that the example can be generalized to show that for any
fixed k ≥ 9, there is a family of examples (with d growing) that realizes an
asymptotic ratio of 9 between the geometric k-radius and the vertex k-radius,
and an asymptotic ratio of 18 between the geometric k-radius and the vertex k-
radius found by the greedy 2-approximation algorithm. The general example is
based on a star graph with t arms each of length 9d−4, where t = b5(k−1)/4c.

12



2d - 1

2d - 1

2d - 1

d - 1

2d

Figure 4: (Left) The star graph for k = 9 realizes the worst-case ratio between the geometric
k-radius and the vertex k-radius of the corresponding unit disc graph. Each of the ten arms
of the star has length 9d − 4. (Right) A close-up view of the discs forming the hub of the
star is shown (illustrated as the intersection graph of a set of discs of radius 1/2).

Figure 5: The geometric arrangement of the star from Figure 4. The large grey disc at the
hub and the grey paths indicate multiple unit discs. The hub and the 40 petals are drawn as
distinct discs.
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Note that for k ≥ 9 we have t ≥ k + 1. The argument is basically the same as
before, so we only point out the differences. When the star is constructed of
unit discs, the arms will intersect near the hub, but only within a disc of radius
O(t). This shortens the distance from a leaf to another arm of the star by O(t)
but for k (and hence t) fixed, and d growing, this does not affect the asymptotic
behaviour.

6. Algorithmic Results

Building on our observations from Section 4, we describe algorithms for find-
ing a geometric 1-centre in O(n2m) worst-case time and a nearly-optimal ap-
proximate geometric 1-centre in O(n3) time; the resulting approximate solution
has eccentricity at most one greater than the geometric 1-radius, correspond-
ing to an additive approximation factor of at most one. Finally, we describe a
generalization of our algorithm to find a geometric k-centre for any fixed k in
O(mn2k) worst-case time.

6.1. Finding a Geometric 1-Centre
Recall our discussion of properties of arrangements of unit discs in Section 4.

Chazelle and Lee [12] describe how to build the arrangement graph of a set of
n unit discs (and its dual) in O(n2) time. As the graph is constructed, for each
cell C we maintain a list of discs within which C is contained; these correspond
to the neighbours of f in UDG(P ∪ {f}), where f is any point in C. Since a
disc’s centre can be contained in Θ(n) other discs, this increases the running
time to O(n3). A traversal of this graph can be used to enumerate the cells
of AR (faces of the graph) in O(|AR|) time. A geometric 1-centre of P can
be found by considering one point f from each cell in AR and using breadth-
first search to compute the eccentricity of f in UDG(P ∪ {f}). The minimum
such value is the geometric 1-radius of UDG(P ) and the corresponding point
f is a geometric 1-centre. In the pseudocode below, BFS-Depth(G, v) calls a
standard queue-based breadth-first search algorithm to calculate the distance
from v to the furthest vertex in G.

Geometric 1-Centre(P )
1 radius←∞
2 for each cell C ∈ AR

3 f ← any point in C
4 ecc← BFS-Depth(UDG(P ∪ {f}), f)
5 if ecc < radius
6 radius← ecc
7 centre← f
8 return centre

Adding vertex f increases the number of edges in UDG(P ) by at most n.
Therefore, each breadth-first search on UDG(P ∪ {f}) takes Θ(n + m) time.
By Proposition 3, |AR| ∈ O(n2). Therefore, Algorithm Geometric 1-Centre
has worst-case running time O(n2(m + n)). Recall that UDG(P ∪ {f}) must
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be connected for a geometric 1-centre to exist. Therefore, m ≥ n − 1 and the
running time simplifies to O(n2m). In the worst case, therefore, this algorithm
is quartic in n.

Although it suffices to consider only convex cells in AR, the number of such
cells remains Ω(n2) in the worst case by Proposition 4. Therefore, the worst-
case running time of Algorithm Geometric 1-Centre is not improved by
considering only convex cells.

We believe there should be an o(mn2) time algorithm, but we have been
unable to find one. An initial idea is to compute the all-pairs shortest distance
matrix M for UDG(P ) and to consider iteratively placing a facility f in each
cell C ∈ AR. Upon visiting C, we examine the eccentricity of each neighbour
of f in UDG(P ) using M (these eccentricity values can be precomputed for
constant-time table reference). The motivation is that a facility f that mini-
mizes the maximum eccentricity of its neighbours might also minimize the geo-
metric 1-radius of P . Unfortunately, this technique fails to account for edges in
E(UDG(P ∪{f}))\E(UDG(P )) that provide shorter paths between many pairs
of vertices, invalidating the corresponding distances stored in M . Thus, eccen-
tricity in UDG(P ) is not necessarily related to eccentricity in UDG(P ∪ {f}).
We describe a related technique in Section 6.2 that provides an approximate
solution.

A more sophisticated idea is to traverse the cells in the arrangement of discs
in a sensible order, updating all-pairs shortest distance information each time
the search moves to a neighbouring cell using a dynamic shortest path data
structure (e.g., [17, 37, 40, 41]). Unfortunately, our efforts in this direction have
resulted in a prohibitively expensive increase in running time. In particular,
the product of the number of updates required in the worst case and the worst-
case cost per update for existing dynamic all-pairs shortest path data structures
is high. A strategy combining an efficient traversal of the arrangement with a
tailored dynamic all-pairs shortest path algorithm and careful cost analysis may
result in improved running time. As noted in Section 9.4, O(n3) running time
is a natural goal for solving the geometric 1-centre problem since the fastest
known algorithms for finding a vertex 1-centre require nearly Θ(nm) time.

6.2. Finding an Approximate Geometric 1-Centre
As we now show, a faster algorithm is possible if we relax constraints on

optimality and allow the eccentricity of a solution to exceed the geometric 1-
radius by at most one. In brief, Lemma 1 implies that we need only consider a
constant number of neighbours of f to measure the eccentricity of f within an
additive approximation factor of at most one.

As with the previous algorithm, we begin by constructing AR and the cor-
responding lists of discs (and their centres) in which each cell is contained. A
point f is selected within each cell and the corresponding list of disc centres
is partitioned according to the regions R1(f) through R6(f). These regions
correspond to six symmetric sectors whose union forms the unit disc centred
at f . See Figure 6A. The algorithm computes the approximate eccentricity by
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iteratively calculating

min
C∈AR

max
p∈P

min
i∈{1,...,6}

(
1 + distUDG(P )(qi, p)

)
,

where f is any point in cell C and qi is any vertex in P ∩Ri(f). By Lemma 11,
to compute the approximate eccentricity of f it suffices to iterate over all p ∈ P
and compare the graph distance between p and a vertex qi in P ∩Ri(f) for each
nonempty region Ri(f). Adding one to the minimum of these (at most) six dis-
tances gives either distUDG(P∪{f})(f, p) or distUDG(P∪{f})(f, p) + 1, depending
on whether a shortest path from f to p passes through the vertex qi that was
selected. The algorithm makes use of unweighted all-pairs shortest-path dis-
tances on the vertices of UDG(P ). This distance function can be precomputed
in o(mn) time (e.g., see [11]).

Approximate Geometric 1-Centre(P )
1 approxRadius←∞
2 for each cell C ∈ AR

3 f ← any point in C
4 approxEcc← 0
5 for each point p ∈ P
6 dist←∞
7 for i← 1 to 6
8 qi ← any point in Ri(f) ∩ P
9 if distUDG(P )(qi, p) + 1 < dist

10 dist← distUDG(P )(qi, p) + 1
11 if dist > approxEcc
12 approxEcc← dist
13 if approxEcc < approxRadius
14 approxRadius← approxEcc
15 approxCentre← f
16 return approxCentre

Lemma 11. For any set of points P in R2, any point f ∈ R2, and any point
p ∈ P , (

1 + min
i∈{1,...,6}

distUDG(P )(qi, p)− distUDG(P∪{f})(f, p)
)
∈ {0, 1},

where qi is any point in Ri(f) ∩ P .

Proof. For any i ∈ {1, . . . , 6}, any two points a and b in Ri(f) are at most unit
distance apart. Consequently, a and b are adjacent in UDG(P ) and

∀p ∈ P, distUDG(P )(a, p) ≤ distUDG(P )(b, p) + 1.

See Figures 6B and 6C. Any shortest path from f to p must pass through a
vertex in P ∩Ri(f), for some i ∈ {1, . . . , 6}. The result follows. �
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Figure 6: If a and b are in the same sector, distUDG(P )(a, p) and distUDG(P )(b, p) differ by at
most one since distUDG(P )(a, b) = 1.

For every point f , the sets R1(f) ∩ P through R6(f) ∩ P are precomputed
in O(n3) time. Thus, a point can be selected from each set in O(1) time, giving
the following theorem:

Theorem 12. Given a set of points P in R2, Algorithm Approximate Geo-
metric 1-Centre identifies a point f ∈ R2 in O(n3) time such that

eccUDG(P∪{f})(P, {f}) ≤ r + 1,

where r denotes the geometric 1-radius of P and n = |P |.

6.3. Finding a Geometric k-Centre for a Fixed k

When k is fixed, Algorithm Geometric 1-Centre generalizes to give an
O(mn2k)-time algorithm for finding a geometric k-centre of a unit disc graph.
We begin with the following observation:

Observation 13. Given a set of points P ⊆ R2 and a set of points F ⊆ R2

that forms a geometric k-centre of P , for every client p ∈ P , some shortest path
in UDG(P ∪ F ) from p to a facility f ∈ F nearest to p does not contain any
facility f ′ ∈ F , where f ′ 6= f .

An analogous property also holds for a vertex k-centre of any graph. As
a consequence of Observation 13, edges connecting two facilities need not be
considered when selecting locations for a geometric k-centre. Any two or more
facilities located in a cell of AR serve the same set of clients in P , resulting
in redundant facilities. Therefore, by Proposition 3, it suffices to consider at
most

(
n2−n+2

k

)
combinations for assigning k facilities to cells in AR. For each

combination of cells, we calculate the corresponding eccentricity. Thus, Algo-
rithm Geometric 1-Centre is modified such that the outer loop considers all
combinations of k cells. In this case, BFS-Depth(G, V ) begins breadth-first
search at the vertices in the set V , returning the eccentricity of V in graph G.
The corresponding running time is at most

(n + m)
(

n2 − n + 2
k

)
∈ O(mn2k).

This gives the following theorem:
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Theorem 14. For any fixed k ∈ Z+, a geometric k-centre of a set of n unit
discs in R2 can be found in O(mn2k) time.

We refer to this algorithm simply as Geometric k-Centre and provide
pseudocode below.

Geometric k-Centre(P )
1 radius←∞
2 for each combination of cells C = {C1, . . . , Ck} ⊆ AR

3 F ← ∅
4 for each Ci ∈ C
5 fi ← any point in Ci

6 F ← F ∪ fi

7 ecc← BFS-Depth(UDG(P ∪ F ), F )
8 if ecc < radius
9 radius← ecc

10 Centres← F
11 return Centres

7. Hardness Results

In Section 6.3 we described an O(mn2k)-time algorithm for finding a geo-
metric k-centre of a unit disc graph. Of course this running time is exponential
if k is an arbitrary input parameter to the problem. In this section we show
that Geometric k-Centre is NP-hard on unit disc graphs when k is not fixed.
This implies NP-hardness for the more general problem, that is, on intersection
graphs of sets of regions in two or more dimensions.

Theorem 15. When k is an arbitrary input parameter, the geometric k-centre
problem on unit disc graphs is NP-hard.

Proof. Given a graph G and an integer k, the Dominating Set decision
problem is to determine whether there exists a set D ⊆ V (G) such that |D| ≤ k
and every vertex in V (G) is adjacent to some vertex in D. Dominating Set
remains NP-hard if G is a grid graph [16, 32]. We describe a polynomial-time
reduction from Dominating Set on grid graphs to Geometric k-Centre on
unit disc graphs.

Choose any finite set of points P ⊆ Z2 and any integers k ≥ 1 and i ≥ 0. Let
s = 2i + 1 and r = 3i + 1. Let f : Z2 → Z2 denote the uniform scaling function
defined by f((px, py)) = (spx, spy). Similarly, let f−1((px, py)) = (px/s, py/s).
If A is a set, let f(A) = {f(p) | p ∈ A}. Let

P ′ = f(P )
∪ {(sx + i, sy) | 1 ≤ i ≤ s− 1 and {(x, y), (x + 1, y)} ⊆ P}
∪ {(sx, sy + i) | 1 ≤ i ≤ s− 1 and {(x, y), (x, y + 1)} ⊆ P}.
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Figure 7: UDG(P ) has a dominating set of cardinality k if and only if UDG(P ′) has a geometric
k-centre of radius r. In this example s = 3 and r = 4.
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UDG VERTEX k−CENTRE

GRID GRAPH r−DOMINATING SET

GRID GRAPH DOMINATING SET

UDG GEOMETRIC k−CENTRE

GRID GRAPH VERTEX k−CENTRE

Figure 8: In Theorem 15 we describe a reduction from Dominating Set on grid graphs to
Geometric k-Centre on unit disc graphs. The hardness of other problems in this hierarchy
can be derived by a reduction corresponding to a subset of the steps described in our proof
of Theorem 15.

For each p ∈ P ′, let g(p) denote the unique point in f(P ) that is nearest to p
in UDG(P ′) by graph distance. Therefore,

∀p ∈ P ′, distUDG(P ′)(p, g(p)) ≤ bs/2c. (11)

Since the points of P ′ lie on the unit grid, UDG(P ′) is a grid graph. Further-
more, UDG(P ) is a minor of UDG(P ′); that is, UDG(P ) is equal to UDG(P ′)
upon scaling the grid by a factor of s and replacing each edge by a path of length
s. See Figure 7. We claim that UDG(P ) has a dominating set of cardinality at
most k if and only if UDG(P ′) has a geometric k-centre of radius r.
Case 1. (⇒) Suppose UDG(P ) has a dominating set, denoted by D, of cardi-
nality at most k. Observe that f(D) ⊆ P ′. Furthermore,

∀q ∈ f(P ), ∃t ∈ f(D) such that distUDG(P ′)(q, t) ≤ s. (12)

By the triangle inequality, (11), and (12),

∀p ∈ P ′, ∃t ∈ f(D) such that distUDG(P ′)(p, t) ≤ s + bs/2c = r.

Therefore, f(D) is a geometric k-centre of P ′ with radius r.
Case 2. (⇐) Suppose F ⊆ R2 is a geometric k-centre of UDG(P ′) with radius r.
For any point t ∈ R2, there exists some vertex q ∈ P ′ such that Adj(t) ⊆ Adj(q)
in UDG(P ′ ∪ {t}). By Observation 13, no two facilities need to be adjacent in
UDG(P ′ ∪ F ). Consequently, there exists a set F ′ ⊆ P ′ such that |F ′| ≤ k and

∀p ∈ P ′, ∃q ∈ F ′ such that distUDG(P ′)(p, q) ≤ r. (13)
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By the triangle inequality, (11), and (13),

∀p ∈ P ′, ∃q ∈ F ′ such that distUDG(P ′)(p, g(q)) ≤ r + bs/2c < 2s. (14)

Observe that

∀{p1, p2} ⊆ f(P ), distUDG(P ′)(p1, p2) mod s = 0. (15)

Therefore, by (14), (15), and since g(q) ∈ f(P ),

∀p ∈ f(P ), ∃q ∈ F ′ such that distUDG(P ′)(p, g(q)) ≤ s.

Consequently,

∀p ∈ P, ∃q ∈ F ′ such that distUDG(P )(p, f−1(g(q))) ≤ 1.

Let D = f−1(g(F ′)). Since |F ′| ≤ k, therefore |D| ≤ k and D is a dominating
set of UDG(P ) whose cardinality is at most k. �

8. Interval Graphs

Until now we have considered the geometric k-centre problem on unit disc
graphs, that is, in two-dimensional Euclidean space. We now consider the geo-
metric k-centre problem in one dimension and present an algorithm that finds
a solution in O(n) time for any arbitrary k.

8.1. Introduction
We have examined the geometric k-centre problem on unit disc graphs. The

one-dimensional analog of a unit disc graph is simply a unit interval graph, i.e.,
the intersection graph of a set of unit intervals. We can relax the unit-radius
restriction and consider the geometric k-centre problem on an interval graph,
denoted IG(I), of a finite set of closed intervals I in R.

Definition 5 (Geometric k-Centre of an Interval Graph). Given a set of
intervals I = {I1, . . . , In} and a positive integer k, a geometric k-centre of I is
a set of unit intervals F = {F1, . . . , Fk} that minimizes

max
Ii∈I

min
Fj∈F

distIG(I∪F )(Ii, Fj). (16)

Even when k = 1, a geometric k-centre of an interval graph IG(I) cannot be
determined exclusively by the combinatorial description of IG(I). If geometry is
omitted, then adding a universal vertex (an interval that intersects all intervals
in I) provides a trivial solution. As with the unit disc graph induced by a given
set of discs, we consider the interval graph induced by a given set of intervals I.
In general, no unit interval is a universal vertex of IG(I).
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8.2. Related Work: Vertex k-Centre on Interval Graphs
Olariu [35] gives an O(n)-time algorithm for finding a vertex 1-centre of

an interval graph, where n denotes the number of intervals. Bespamyatnikh
et al. [4] present an O(nk)-time algorithm for finding a vertex k-centre of a
circular-arc graph (and therefore also for any interval graph). Cheng et al. [15]
improve the running time with an O(n)-time algorithm for finding a vertex k-
centre of an interval graph. Each of these algorithms requires that the input
list of intervals be sorted (e.g., by left endpoints).

8.3. Finding a Geometric k-Centre of a Set of Intervals
Given any finite set of intervals I and an arbitrary positive integer k, we

describe an algorithm for finding a geometric k-centre of I in O(n) time if IG(I)
is connected, where n = |I|. Our algorithm is straightforward to generalize to
O(n + k log n) time if IG(I) is disconnected.

8.3.1. Range of the Geometric k-Radius
Since a linear-time algorithm exists for finding a vertex k-centre, a simple

attempt at finding a geometric k-centre might be to position a unit interval on
every facility of a vertex k-centre, leading to the following observation:

Observation 16. Given any set of intervals I, the geometric k-radius of I is
at most rv + 1, where rv denotes the vertex k-radius of IG(I). This bound is
tight.

Due to their embedding in one dimension, the vertices of an interval graph
can be partitioned into k contiguous clusters, each of which has diameter at most
dn/ke − 1 if IG(I) is connected. Specifically, Cheng et al. obtain the following
tight bound:

Lemma 17 (Cheng et al. 2007 [15]). Given any set of n intervals I, if IG(I)
is connected, then the vertex k-radius, rv, of I is bounded by⌈

dd/ke − 1
2

⌉
≤ rv ≤

⌈
dd/ke − 1

2

⌉
+ 1, (17)

where d denotes the diameter of IG(I).

The algorithm of Cheng et al. [15] finds a vertex k-centre in O(n) time by
checking whether there exists a solution of radius rv for each of the two possible
integer values for rv bounded by (17). By Observation 16 and Lemma 17, the
geometric k-radius of a connected interval graph is at most⌈

dd/ke − 1
2

⌉
+ 2.

Unlike the vertex k-radius, however, the geometric k-radius can be any integer
in the range [

0,

⌈
dd/ke − 1

2

⌉
+ 2

]
. (18)
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Figure 9: Consider the set of intervals I = {a, . . . , h}. Adjacent dotted lines denote a distance
of one unit. Examples: nextInt(a, 1) = nextInt(a) = b, nextInt(a, 2) = nextInt(nextInt(a)) =
nextInt(b) = d, nextInt(a, 3) = g, nextInt(a, 4) = h, nextInt(a, 5) = h, nextInt+1(a) = d,
nextInt+1(f) = g, nextInt+1(h) = h, nextDisj(a) = f , nextDisj(b) = f , and nextDisj(d) = h.

This is because each facility (consisting of a unit interval) can cover a sequence
of intervals in IG(I), forming a bridge that can potentially reduce the diameter
of each cluster IG(I) significantly. Our solution is to search the range of possible
values for the geometric k-radius.

8.3.2. Preliminary Computation
Given a finite set of intervals I = {I1, . . . , In} such that IG(I) is connected,

we define the following functions for any interval Ii = [ai, bi] ∈ I. See Figure 9.

• Let nextInt(Ii) denote the interval in I whose right endpoint is rightmost
among all intervals that intersect Ii.

• As defined by Cheng et al. [15], let nextInt(Ii, j) denote the iterated applica-
tion of nextInt(·), such that for any interval Ii ∈ I and any positive integer
j,

nextInt(Ii, j) =
{

nextInt(nextInt(Ii, j − 1)) if j ≥ 2,
nextInt(Ii) if j < 2.

• Let nextInt+1(Ii) denote the interval in I whose right endpoint is right-
most among all intervals that intersect the interval [bi, bi + 1]. That is,
nextInt+1(Ii) = nextInt(I ′i), where I ′i = [bi, bi + 1].

• Let nextDisj(Ii) denote the interval in I whose right endpoint is leftmost
among all intervals entirely contained in (bi,∞).

• Let distright(Ii) = distIG(I)(Ii, In), where In denotes the interval in I whose
left endpoint is rightmost.

Lemma 18 (Chen et al. 1998 [14]). A set I of n intervals can be prepro-
cessed in O(n) time to support O(1)-time query for nextInt(Ii) and nextInt(Ii, j)
for any Ii ∈ I and any positive integer j.

Lemma 18 requires that set I be presorted. In particular, we require one list
of intervals sorted by left endpoints and a second list sorted by right endpoints.
Precomputing function nextInt+1(·) can be achieved in O(n) time by scanning
the list of intervals in non-increasing order by their right endpoints as follows:
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Compute-nextInt+1(I) // precondition: ∀i < j, bi ≤ bj

1 i← n
2 for j ← n to 1
3 while ai > bj + 1
4 i← i− 1
5 Rint[j]← Ii

6 return Rint[1 : n]

Similarly, function nextDisj(·) can be precomputed in O(n) time by scanning
two ordered lists of I in parallel, one sorted by left endpoints and one sorted by
right endpoints. Function distright(·) can be computed recursively in O(n) time.
The values computed for each function can be stored in a table of size O(n) for
constant-time reference.

8.3.3. Algorithm
Let I = {I1, . . . , In} denote an input set of intervals such that IG(I) is con-

nected, where for each i, Ii = [ai, bi]. Suppose the intervals are sorted by right
endpoints, i.e., for all i < j, bi ≤ bj . Furthermore, if bi = bi+1 for two inter-
vals Ii and Ii+1, suppose ai ≤ ai+1. Compute functions nextInt(·), nextInt(·, ·),
nextInt+1(·), nextDisj(·), and distright(·) as described in Section 8.3.2.

The algorithm for finding a geometric k-centre of I consists of a binary search
on the integers in the range given in Expression (18), where for each integer r
in the search sequence we check whether there exists a geometric k-centre of
radius at most r. For a given r, this check is achieved by examining a set of
k unit intervals, {F1, . . . , Fk}, defined by a sequence of calls to nextInt(·, ·),
nextInt+1(·), and nextDisj(·), to determine whether r is sufficiently large.

For a given r, start at the first interval I1, and let the first facility be po-
sitioned at F1 = [c1, c1 + 1], where the last interval in I before F1 is If1 =
nextInt(I1, r − 1) = [af1 , bf1 ] and c1 = bf1 . Each interval in {I1, . . . , If1} is
within distance r of F1 in IG(I ∪ {F1}) and lies to the left of F1. Next we
identify intervals within distance r to the right of F1. Let I ′f1

= nextInt+1(If1)
denote the interval whose right endpoint is rightmost among all intervals that in-
tersects F1. Let I ′′f1

= nextInt(I ′f1
, r−2). Observe that distIG(I∪{F1})(I

′′
f1

, F1) =
r − 1. The first interval not within distance r of F1 is nextDisj(I ′′f1

). There-
fore, for every interval Ii = [ai, bi], if ai < a′′i , where I ′′f1

= [a′′i , b′′i ], then
distIG(I∪{F1})(Ii, F1) ≤ r. See Figure 10.

The procedure repeats starting with interval nextDisj(I ′′f1
). The set of inter-

vals F = {F1, . . . , Fk} is determined after k iterations. If distright(I ′fk
) ≤ r − 1,

then distIG(I∪F )(Fk, In) ≤ r, and the set F is a geometric k-centre of I of radius
at most r. Otherwise, the geometric k-radius of I must be strictly greater than
r.

This procedure is repeated for each value of r in the binary search sequence.
Upon termination, the algorithm identifies the value r such that I has a geo-
metric k-centre of radius r, but not r − 1.

Precomputation requires O(n) time. For each value of r examined, checking
whether I has a geometric k-centre of radius r requires O(k) time. The binary
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Figure 10: Geometric k-centre algorithm in one dimension. Suppose k = 2 and r = 3.
If1 = nextInt(I1, r − 1) = I6. The right endpoint of I6 determines the left endpoint of the
unit interval F1. I′f1

= nextInt+1(I6) = I11. I′′f1
= nextInt(I11, r − 2) = I12. The first

interval not within distance r of F1 is nextDisj(I12) = I15. Thus, the intervals I1, . . . , I14
are within distance r of F1. The procedure repeats starting with I15. If2 = nextInt(I15, r −
1) = I19. The right endpoint of I19 determines the left endpoint of the unit interval F2.
I′f2

= nextInt+1(I19) = I20. Since distright(I
′
f2

) ≤ r − 1, the intervals I15, . . . , In are within

distance r of F2. Therefore, the set {F1, F2} is a geometric 2-centre of I of radius r = 3.
At this point the procedure begins again as the binary search continues examining values
r ∈ [0, 3].

search sequence examines O(log(n/k)) values for r. Therefore, if IG(I) is con-
nected, then the total running time is O(n + k log(n/k)). If k ≥ n, then F = I
is a geometric k-centre of I (i.e., no computation is required). If k < n, then
O(n + k log(n/k)) ∈ O(n). Since each client must be examined, a lower bound
of Ω(n) applies. The algorithm is straightforward to generalize to O(n+k log n)
time if IG(I) is disconnected. This gives the following theorem:

Theorem 19. For any arbitrary k ∈ Z+, a geometric k-centre of a set of n
sorted intervals in R can be found in Θ(n) time if IG(I) is connected.

9. Directions for Future Research

9.1. Intersection Graphs
Motivated by gateway placement in wireless networks, we have examined the

problem of finding a geometric k-centre in unit disc graphs. Of course, unit disc
graphs are not the only model for representing wireless networks. In addition to
the results described in this paper, we have partial results for generalizations to
the setting of disc graphs (intersection graphs of discs of differing radii), to three
dimensions (intersection graphs of balls), and to rectangle intersection graphs.

9.2. Visibility Graphs
Another possible direction is to model obstacles and interference in wireless

networks by applying the geometric k-centre problem to the setting of visibility
graphs. Given a set of points P (clients) in a polygonal region R, the objective
is to select a set F of k points (facilities) in R such that the maximum graph
distance between any client and its nearest facility is minimized in the visibility
graph of P ∪ F in R; a pair of nodes is connected in the visibility graph if
and only if the line segment between them is unobstructed by polygon R. By
applying observations similar to those made in Section 4, a solution can be
found discretely and, furthermore, the corresponding partition of the plane into
visibility regions is a partial order relation for which it suffices to consider the
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sinks. Thus, visibility graphs seems like a natural setting to which to apply some
of the ideas developed in this paper. See [5] and [6] for results on properties of
visibility regions and the corresponding partial order.

9.3. Geometric k-Median
One might consider generalizations of the optimization function that is min-

imized in selecting positions for gateways. In particular, two fundamental prob-
lems of facility location are the k-centre and k-median problems. In this paper
we restrict attention to the first of these. The two problems are defined analo-
gously, with the exception that the maximum over all pi ∈ P in (1) is replaced
by a summation over all pi ∈ P . Whereas a geometric k-centre minimizes the
maximum node-to-gateway distance, a geometric k-median minimizes the aver-
age node-to-gateway distance. The algorithms for finding a geometric 1-centre
and a geometric k-centre for a fixed k presented in this paper are straightforward
to adapt to the problems of identifying a geometric 1-median or a geometric k-
median, respectively. In this case, each call to BFS-Depth is replaced by a call
to BFS-Sum, which returns the corresponding sum of the distances from every
node to the nearest gateway. The resulting running times remain O(mn2) and
O(mn2k), respectively.

9.4. Improved Running Time
Finally, can a geometric 1-centre of a unit disc graph be found in O(n3)

worst-case time? To the authors’ knowledge, the O(n2m)-time algorithm pre-
sented in Section 6.1 is the first solution to this problem; can the O(n2m)-time
be improved? O(nm) or O(n3) running times are natural goals for solving this
problem since the fastest known algorithms for finding a vertex 1-centre require
nearly Θ(nm) time. See Section 6.1 for a brief overview of promising strategies
that failed to achieve o(n2m) time, as well as one possible direction for a future
algorithm which the authors believe has the potential to succeed.

Acknowledgements

The authors would like to thank the following individuals whose ideas and
suggestions have helped shape various aspects of this work: Ian Munro and
Matthew Skala with whom we discussed convexity in continuous metric spaces,
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