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Abstract

The geometric thickness of a graph G is the smallest integer t such that there
exist a straight-line drawing Γ of G and a partition of its straight-line edges into
t subsets, where each subset induces a planar drawing in Γ. Over a decade
ago, Hutchinson, Shermer, and Vince proved that any n-vertex graph with
geometric thickness two can have at most 6n−18 edges, and for every n ≥ 8 they
constructed a geometric thickness-two graph with 6n− 20 edges. In this paper,
we construct geometric thickness-two graphs with 6n−19 edges for every n ≥ 9,
which improves the previously known 6n− 20 lower bound. We then construct
a thickness-two graph with 10 vertices that has geometric thickness three, and
prove that the problem of recognizing geometric thickness-two graphs is NP-
hard, answering two questions posed by Dillencourt, Eppstein and Hirschberg.
Finally, we prove the NP-hardness of coloring graphs of geometric thickness t
with 4t− 1 colors, which strengthens a result of McGrae and Zito, when t = 2.
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1. Introduction

The thickness θ(G) of a graph G is the smallest integer t such that the
edges of G can be partitioned into t subsets, where each subset induces a planar
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graph. Since 1963, when Tutte [23] first formally introduced the notion of graph
thickness, this property of graphs has been extensively studied for its interest
from both the theoretical [2, 5, 7] and practical point of view [19, 21]. A wide
range of applications in circuit layout design and network visualization, have
motivated the examination of thickness in the geometric setting [7, 13, 16]. The
geometric thickness θ(G) of a graph G is the smallest integer t such that there
exist a straight-line drawing (i.e., a drawing on the Euclidean plane, where every
vertex is drawn as a point and every edge is drawn as a straight line segment) Γ
of G and a partition of its straight-line edges into t subsets, where each subset
induces a planar drawing in Γ. If t = 2, then G is called a geometric thickness-
two graph (or, a doubly-linear graph [16]), and Γ is called a geometric thickness-
two representation of G. While thickness does not impose any restriction on
the placement of the vertices in each planar layer, geometric thickness forces
the same vertices in different planar layers to share a fixed point in the plane.
Eppstein [13] clearly established this difference by constructing thickness-three
graphs that have arbitrarily large geometric thickness.

1.1. Structural Properties

Geometric thickness has been broadly examined on several classes of graphs,
e.g., complete graphs [7], bounded-degree graphs [4, 11, 13], and graphs with
bounded treewidth [8, 10]. Hutchinson, Shermer, and Vince [16] examined prop-
erties of graphs with geometric thickness two. They proved that these graphs
can have at most 6n − 18 edges, and for every n ≥ 8 they constructed a ge-
ometric thickness-two graph with 6n − 20 edges. The graphs that gave the
6n − 20 lower bound were rectangle visibility graphs, i.e., these graphs can be
represented such that the vertices are axis-aligned rectangles on the plane with
adjacency determined by the horizontal and vertical visibility. Hutchinson et
al. [16] proved that a rectangle visibility graph can have at most 6n− 20 edges,
therefore, any geometric thickness-two graph with more than 6n− 20 edges (if
exists) cannot be a rectangle visibility graph. Even after several attempts [7, 11]
to understand the structural properties of geometric thickness-two graphs, the
question whether there exists a geometric thickness two graph with 6n−18 edges
remained open for over a decade. Answering this question is quite challenging
since although one can generate many thickness-two graphs with 6n − 18 or
6n − 19 edges, no efficient algorithm is known that can determine the geomet-
ric thickness of such a graph. However, by examining the point configurations
that are likely to support geometric thickness-two graphs with large numbers
of edges, we have been able to construct geometric thickness-two graphs with
6n − 19 edges, which improves the previously known 6n − 20 lower bound on
the maximum number of edges that a graph with geometric thickness two can
have. In Section 2 we have shown that the K9 minus an edge is a thickness-two
graph, which has 6n− 19 edges. We then show that thickness-two graphs that
do not contain K9 minus an edge may also have large number of edges.

Theorem 1 For each n ≥ 9, there exists a geometric thickness-two graph with
n vertices and 6n−19 edges that contains K9 minus an edge as a subgraph. For
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each n ≥ 11, there exists a geometric thickness-two graph with 6n − 19 edges
that does not contain K8.

1.2. Recognition

Although thickness is known for all complete graphs [2] and complete bi-
partite graphs [5], geometric thickness for these graph classes is not completely
characterized. Dillencourt, Eppstein and Hirschberg [7] proved an dn/4e upper
bound on the geometric thickness of Kn, giving a nice construction for repre-
sentations with geometric thickness t = dn/4e. They also gave a lower bound
on the geometric thickness of complete graphs that matches the upper bound
for several smaller values of n. Their bounds show that the geometric thickness
of K15 is greater than its thickness, i.e., θ(K15) = 4 > θ(K15) = 3, which settles
the conjecture of [18] on the relation between thickness and geometric thickness.
Since the exact values of θ(K13) and θ(K14) are still unknown, Dillencourt et
al. [7] hoped that the relation θ(G) > θ(G) could be established with a graph of
smaller cardinality. In Section 3 we prove that the smallest such graph contains
10 vertices.

Theorem 2 For every n ≤ 9 and every graph G on n vertices, θ(G) = θ(G). For
every graph n > 10, there exists a graph G′ on n vertices such that θ(G) > θ(G).

Since determining the thickness of an arbitrary graph is NP-hard [19], Dillen-
court et al. [7] suspected that determining geometric thickness might be also
NP-hard, and mentioned it as an open problem. The hardness proof of Mans-
field [19] relies heavily on the fact that θ(K6,8) = 2. Dillencourt et al. [7]
mentioned that this proof cannot be immediately adapted to prove the hard-
ness of the problem of recognizing geometric thickness-two graphs by showing
that θ(K6,8) = 3. This complexity question has been repeated several times
in the literature [8, 13] since 2000, and also appeared as one of the selected
open questions in the 11th International Symposium on Graph Drawing (GD
2003) [6]. In Section 4 we settle the question by proving the problem to be
NP-hard.

Theorem 3 It is NP-hard to determine whether the geometric thickness of an
arbitrary graph is at most two.

1.3. Colorability

As a natural generalization of the well-known Four Color Theorem for planar
graphs [3], a long-standing open problem in graph theory is to determine the
relation between thickness and colorability [17, 22]. For every t ≥ 3, the best
known lower bound on the chromatic number of the graphs with thickness t is
6t−2, which can be achieved by the largest complete graph of thickness t. On the
other hand, every graph with thickness t is (6t)-colorable [17]. Recently, McGrae
and Zito [20] examined a variation of this problem that given a planar graph
and a partition of its vertices into subsets of at most r vertices, asks to assign
a color (from a set of s colors) to each subset such that two adjacent vertices in
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different subsets receive different colors. They proved that the problem is NP-
complete when r = 2 (respectively, r > 2) and s ≤ 6 (respectively, s ≤ 6r − 4)
colors. In Section 5 we prove the NP-hardness of coloring geometric thickness-t
graphs with 4t−1 colors. As a corollary, we strengthen the result of McGrae and
Zito [20] that coloring thickness-(t = r = 2) graphs with 6 colors is NP-hard.
Our hardness result is particularly interesting since no geometric thickness-t
graph with chromatic number more than 4t is known.

Theorem 4 It is NP-hard to color an arbitrary geometric thickness-t graph with
4t− 1 colors.

2. Geometric Thickness-Two Graphs with 6n− 19 Edges

Let K ′9 be the graph obtained by deleting an edge from K9. In this section
we first construct a geometric thickness-two representation Γ of K ′9, which has
6n − 19 edges. We then show how to add vertices and edges in Γ such that
for any n ≥ 9 one can construct a geometric thickness-two graph with 6n− 19
edges. Although these graphs contain K ′9 as a subgraph, we prove that this
is not a necessary condition, i.e., we also construct geometric thickness-two
graphs with 6n − 19 edges that do not contain K ′9. Hutchinson et al. [16,
Theorem 6] proved that if any geometric thickness-two graph with 6n − 18
edges exists, then the convex hull of its geometric thickness-two representation
must be a triangle. This representation is equivalent to the union of two plane
triangulations that share at least six common edges, i.e., the three outer edges
and the other three edges are adjacent to the three outer vertices, as shown
in black in Figure 1(a). Since each triangulation contains 3n − 6 edges, the
upper bound of 2(3n − 6) − 6 = 6n − 18 follows. These properties of an edge
maximal geometric thickness-two representation motivated us to examine pairs
of triangulations that create many edge crossings when drawn simultaneously.
In particular, we first created a set of points interior to the convex hull such that
addition of straight line segments from each interior point to the three points on
the convex hull creates two plane drawings that, while drawn simultaneously,
contain a crossing in all but the six common edges. Figure 1(b) illustrates such
a scenario. We then tried to extend each of these two planar drawings to a
triangulation by adding new edges such that every new edge crosses at least one
initial edge. We found multiple distinct point sets for which all but one newly
added edge cross at least one initial edge, resulting in multiple distinct geometric
thickness-two representations with 2(3n− 6)− 7 = 6n− 19 edges. For example,
see Figure 1(c), where the underlying graph is K ′9, where K ′9 = K9 \ (d, e).

We now introduce a few more definitions. Let Γ be a geometric thickness-
two representation. A triangle in Γ is empty if it contains exactly three vertices
on its boundary, but does not contain any vertex in its proper interior, e.g., the
triangle ∆ghi in Figure 1(c). A quadrangle Q in Γ created by the intersection
of two empty triangles is called free if neither the interior nor the boundary of
Q contains any vertex of Γ, as shown in Figure 1(c) in dark-green shade.
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Figure 1: (a) Illustration for the shared edges (bold). (b) Initial point set. (c) A geometric
thickness-two representation Γ of K′9, where K′9 = K9 \ (d, e). The planar layers are shown in
red (dashed) and blue (thin). Black (bold) edges can belong to either red or blue layer. Free
quadrangles are shown in dark-green (shaded). Some edges are drawn with bends for clarity.

Theorem 1. For each n ≥ 9, there exists a geometric thickness-two graph with
n vertices and 6n−19 edges that contains K9 minus an edge as a subgraph. For
each n ≥ 11, there exists a geometric thickness-two graph with 6n − 19 edges
that does not contain K8.

Proof. Since K ′9 has a geometric thickness-two representation, as shown in
Figure 1(c), the claim holds for n = 9. We now claim that given an n-vertex
geometric thickness-two representation with 6n− 19 edges that contains a free
quadrangle, one can construct a geometric thickness-two representation with
n + 1 vertices and 6(n + 1) − 19 edges. One can verify this claim as follows.
Place a new vertex p interior to the free quadrangle. Since a free quadrangle
is the intersection of two empty triangles, one can add three straight line edges
from p to the three vertices of each empty triangle such that the new drawing
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Figure 2: (a)–(b) Adding vertices to a geometric thickness-two drawing. (c)–(d) A graph with
11 vertices, 47 edges and geometric thickness two that does not contain K8.
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in each layer remains planar, as shown in Figure 2(a). Since the number of
vertices increases by one, and the number of edges increases by six, the resulting
geometric thickness-two representation must have 6n − 19 + 6 = 6(n + 1) − 19
edges.

Observe that there are at least three free quadrangles in the geometric
thickness-two representation of K ′9, as shown in Figure 1(c). Furthermore, these
quadrangles are independent of each other, i.e., the empty triangles correspond-
ing to each quadrangle are different than the empty triangles of the other two
quadrangles. Therefore, for each i, where 9 ≤ i ≤ 12, we can construct a geomet-
ric thickness-two representation Γi with i vertices and 6i−19 edges that contains
at least one free quadrangle. We use these four geometric thickness-two repre-
sentations as the base case, and assume inductively that for each 9 ≤ i < n there
exists a geometric thickness-two representation Γi with i vertices and 6i − 19
edges that contains at least one free quadrangle. We now construct a geometric
thickness-two representation with n vertices and 6n− 19 edges that contains a
free quadrangle. By induction, Γn−4 has a free quadrangle. We add four vertices
to this quadrangle and complete the triangulation in each planar layer by adding
24 new edges in total, as shown in Figure 2(b). Consequently, the new geometric
thickness-two representation Γn contains 6(n − 4) − 19 + 24 = 6n − 19 edges.
Since the newly added edges create new free quadrangles, Γn also contains a
free quadrangle.

For each n ≥ 11, the proof for the claim that there exists a geometric
thickness-two graph with 6n − 19 edges that does not contain any K8 is sim-
ilar. Figure 2(c) illustrates a geometric thickness-two representation with 11
vertices and 47 edges that contains at least three independent free quadran-
gles: {(∆cik,∆agj), (∆chj,∆aig), (∆dhj,∆bfi)}. The underlying graph does
now contain K8 as a subgraph since it is 7-colorable. To construct a geometric
thickness-two representation Γ for a larger value of n, we add a K8-free sub-
graph interior to a free quadrangle in the same way as in the earlier part of the
proof (see Figures 2(a)–(b)). Hence the resulting graph must also be a K8-free
graph. �

3. Thickness-Two Graphs with θ(G) ≥ 3

Dillencourt et al. [7] showed that θ(K15) = 4 > θ(K15) = 3 and θ(K6,8) =
3 > θ(K6,8) = 2, and asked to determine the smallest graph G such that θ(G) >
θ(G). In this section we show that the smallest graph G such that θ(G) > θ(G)
contains ten vertices, and construct such a geometric thickness-three graph.

To establish this result we enumerate all possible geometric thickness-two
drawings of K ′9 using Aichholzer et al.’s [1] point-set order-type database3. Fig-
ure 3 illustrates all the three combinatorially different configurations of nine
points that support geometric thickness-two drawings of K ′9. It might initially

3The code is available online: http://www.cs.umanitoba.ca/~jyoti/Resources/

DrawK9MinusOneEdge.java
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appear that Figures 3(a) and (b) are the same. However, observe that g lies on
the left half-plane of (d, e) in Figure 3(a) and on the right-half plane of (d, e) in
Figure 3(b).

We enumerated these geometric thickness-two representations by performing
the steps S1 and S2 below for every point-set order-type P that consists of nine
points. We use the concept of intersection graphs of segments: Given a set of
straight line segments L, the proper intersection graph G of L consists of |L|
vertices, where each vertex corresponds to a distinct line segment in L, and two
vertices of G are adjacent if and only if the corresponding straight line segments
properly cross.

S1. Construct a straight-line drawing Γ of K9 on P .

S2. For every edge e∗ in Γ, execute the following.

- Delete e∗ and test whether the proper intersection graph determined
by the remaining straight line segments is 2-colorable. If the graph
is 2-colorable, then Γ is a geometric thickness-two representation of
K ′9.

- Reinsert e∗ in Γ.

Let Γi, 1 ≤ i ≤ 3, be the drawings of K ′9 depicted in Figures 3(a)–(c),
respectively. The seven black (bold) edges in each of these drawings do not
contain any crossing, i.e., these edges are shared in both triangulations. By
Ei and E′i we denote the set of all edges, and the set of black edges in Γi,
respectively. Let E′′i = Ei \E′i. We verify that the partition of the edges of E′′i
into red and blue is unique by checking that the proper intersection graph Gi

of E′′i is connected. Figure 4(a) shows a spanning tree of G1 of Γ1.

Fact 1. Let Γ be a geometric thickness-two representation of K ′9. Then the
partition of the straight-line edges of Γ, except the seven edges that do not contain
any proper crossing, into two planar layers is unique. Moreover, the unsaturated
vertices are connected in each layer of Γ.

We now categorize the vertices of a K ′9 into two types: unsaturated (vertices
of degree 7), and saturated (vertices of degree 8). The vertices d and e of
Figures 3(a)–(c) are unsaturated, and all other vertices are saturated vertices.
Take a new vertex and make it adjacent to the two unsaturated vertices and
any five saturated vertices of a K ′9. Let Gs denote the resulting graph with 10
vertices. The following theorem shows that θ(Gs) = 3 > θ(Gs) = 2. The idea
of the proof is first to show a thickness-two representation of Gs, and then to
show that Gs contains a vertex v that is not straight-line visible to all of its
neighbors in any geometric thickness-two representation of Gs \ v. Finally, the
proof shows that for every graph G with at most 9 vertices, θ(G) = θ(G).

Theorem 2. For every n ≤ 9 and every graph G on n vertices, θ(G) = θ(G).
For every graph n > 10, there exists a graph G′ on n vertices such that θ(G) >
θ(G).
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Figure 3: (a)–(c) Geometric thickness-two representations of K′9, where K′9 = K9 \ (d, e).
Edges are drawn with polylines for clarity.

Proof. We first prove that the thickness of Gs is two. Let v be the vertex of
degree seven in Gs such that Gs\v is a K ′9. Take the geometric thickness-two
representation of K ′9, as shown in Figure 3(a), and place the vertex v interior
to the intersection of the triangles ∆bci and ∆bce. It is now straightforward
to add the edges (with curved lines) from v to the two unsaturated vertices
and five saturated vertices of K ′9 maintaining the planarity of each layer. See
Figure 4(b).

We now prove that the geometric thickness of Gs is three. Since Gs con-
tains a K ′9, any geometric thickness-two representation Γ of Gs must contain a
geometric thickness-two representation Γ′ of K ′9 from Figures 3(a)–(c). Since
Γ contains Γ′, v cannot lie on any straight line segment of Γ′. A vertex u of a
planar drawing is straight-line visible to a point p if the straight line between
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Figure 4: (a) A spanning tree of G1. (b) The thickness of Gs is two.

p and u does not cross any edge or vertex of the drawing. We now prove that
at most six vertices of Γ′ can be straight-line visible to a common point, and
hence v cannot be adjacent to seven vertices.

Delete all the black edges, i.e., the edges common to both triangulations,
from Γ′. Let Γ′′ denote the resulting drawing. Figures 5(a) and (b) show the
candidate drawings that are obtained from Figures 3(a) and (c), respectively.
We do not examine Figure 3(b) separately since its closed regions are similar
to that of Figure 3(a). In each planar layer of Γ′′, v must lie on some bounded
region or on the unbounded region. Observe that the bounded regions in each
planar layer are a collection of triangles and quadrangles. If v lies interior to
an empty triangle in each planar layer, then it can have at most six adjacent
edges. Therefore, v must lie on the unbounded region or on a quadrangle of
some planar layer. Each such region Q is unfilled in Figure 5. Examining every
such case reveals that no point in these regions can have straight-line visibility
to seven distinct vertices of Γ′, and hence θ(Gs) = 3. The details of the case
by case analysis are found in Appendix A. Here we illustrate an example in the
context of Figure 5(a), where the quadrangle Q = idhg that includes v lies in
the blue layer.

One can partition Q into 5 regions Q1, Q2, . . . , Q5, depending on how the
neighboring segments of h intersects Q. Let q be a point in Q. If q ∈ Q1 ∪Q2,
then since {d, g} and {i} lie on the opposite sides of the line determined by
segment hb, vertex g cannot be visible to q. Therefore, q can see only 3 points
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in the blue layer. Observe now that q is either inside a triangle in the red layer,
or inside the quadrangle fche. If q is inside a triangle in the red layer, then q can
see at most six vertices in total, and hence assume that q lies inside fche. Since
{f, h} and {e, c} lie on the opposite sides of the line determined by segment ig,
vertex h cannot be visible to q. Therefore, also in this case q can see at most
six vertices in total. The case when q ∈ Q4 ∪ Q5 can be analyzed in a similar
fashion, where d and g cannot be visible to q simultaneously, and similarly h
and f cannot be visible to q simultaneously. In the remaining case we have
q ∈ Q3, where q can see all the vertices {i, g, h, d} in the blue layer. Since q is
on the outer face in the red layer, only the vertices {b, c, i, h} are visible to q.
Therefore, q has straight-line visibility to at most six points in total.

Finally, observe that for every graph G with at most nine vertices, θ(G) =
θ(G), as follows. Since θ(G) = 1 if and only if θ(G) = 1 [21], we assume that
θ(G) = 2. Since θ(K ′9) = 2, if G is a subgraph of K ′9, then θ(G) = θ(G) = 2.
Otherwise, G = K9, where θ(K9) = θ(G) = 3. Therefore, every graph G with
θ(G) > θ(G) must have at least 10 vertices. �

4. Geometric Thickness-Two Graph Recognition

Mansfield [19] showed that the problem of recognizing thickness-two graphs
is NP-hard. In this section we prove that determining whether θ(G) ≤ 2 is
NP-hard. For any input graph G = (V,E), we construct another corresponding
graph G′ such that G is a graph of thickness two if and only if the geometric
thickness of G′ is two. We first present some preliminary results, which will be
useful to describe the construction of G′. For the clarity of the presentation,
proofs of some of the lemmas are given in Appendix B.

Let G1, G2, . . . , Gk be k ≥ 9 copies of K9 − e. Let d1, e1 be the unsaturated
vertices of G1. For each Gj , j > 1, make d1 adjacent to some unsaturated vertex
dj of Gj . Refer to the remaining unsaturated vertex of Gj as ej . Add a vertex
v and make v adjacent to all the unsaturated vertices of G1, G2, . . . , Gk. Let
Hk denote the resulting graph, which we refer to as a rigid graph. The following
lemma describes some properties of Hk, whose proof is included in Appendix
B.

Lemma 1. Let Hk be a rigid graph. Then in any thickness-two drawing Γ of
Hk, the subgraph G′ induced by the edges (v, d1), (v, dj) and (d1, dj), where
1 < j ≤ k, lies in the same layer.

Observe that G′ is a bipartite graph K2,k−1 with vertex-partition {v, d1},
{d2, . . . , dk}, plus the edge (v, d1). We call the graph G′ the core graph and the
vertex v the pole vertex.

Let H be a chain of three rigid graphs Ha, Hb, Hc, each a copy of H17. For
any Hq, where q ∈ {a, b, c}, let {dqi , e

q
i }, where 1 ≤ i ≤ 17, be the unsatu-

rated vertices of Hq, and let vq be the pole of Hq. We now add the edges
(ea2 , e

b
2), (ea3 , e

b
3), . . . , (ea9 , e

b
9) and (ec2, e

b
10), (ec3, e

b
11), . . . , (ec9, e

b
17). Let H ′ denote

the resulting graph. Figures 6(a)–(b) illustrate a schematic representation of H ′.
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The following lemma describes some properties of H ′, whose proof is included
in Appendix B.

Lemma 2. In any thickness-two drawing Γ of H ′, there exists a path from
va, . . . , vb, . . . , vc that lies on the same layer.

It is straightforward to extend the above lemma for a chain of more than
three rigid graphs, as stated below.

Corollary 1. Let H be a chain of q ≥ 3 rigid graphs H1, H2, . . . ,Hq, each a
copy of H17. Let vi be the pole of Hi, where 1 ≤ i ≤ q. Then in any thickness-
two drawing Γ of H, there exists a path from v1, . . . , v2, . . . , vq that lies on the
same layer.

We are now ready to describe the NP-hardness result.

Theorem 3. It is NP-hard to determine whether the geometric thickness of an
arbitrary graph is at most two.

Proof. We reduce the problem of determining thickness-two graphs, which is
NP-complete [19], to recognition of geometric thickness-two graphs. For any
input graph G = (V,E), we construct another corresponding graph G′ such that
G is a graph of thickness two if and only if the geometric thickness of G′ is two.

We construct G′ by replacing each edge (v, w) by a chain Hvw of four rigid
graphs H1, H2, . . . ,H4, each a copy of H17, such that the vertices v and w
coincide to poles of H1 and H4. Figures 7(a) and (b) depict an input graph
G and a schematic representation of the corresponding graph G′, respectively.
It is straightforward to construct G′ in polynomial time. We now show that G
is a graph of thickness two if and only if G′ admits a geometric thickness-two
representation.

First assume that the thickness of G is two, and let {Er, Eb} be the cor-
responding partition of the edges, i.e., E = (Er ∪ Eb) and Er ∩ Eb = φ. We
now compute a geometric thickness-two representation of G′. Note that the
graphs Gr = (V,Er) and Gb = (V,Eb) are planar. Therefore, we can use the
algorithm of Erten and Kobourov [14, 15] to compute a drawing of G on an
O(|V |3)×O(|V |3) grid R such that the following properties hold:

P1. No two edges of Er or Eb cross.

P2. Each edge is drawn as polygonal chain with at most two bends, and

P3. The vertices and bends lie on some integer grid point of R.

Figure 7(c) illustrates an example. We now replace each edge (v, w) of G with the
corresponding chain Hvw such that the edges between any pair of rigid graphs
lie on the same layer as (v, w). We draw the rigid graphs around the vertices and
bend points such that they do not interfere with the other edges of the drawing.
Figure 7(d) depicts a schematic geometric thickness-two representation of G′
which corresponds to the drawing of Figure 7(c).
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Assume now that G′ admits a geometric thickness-two representation Γ. We
show how to compute a thickness-two drawing of G. By Corollary 1, for each
edge (v, w) in G, there exists a path P = (v, . . . , w) in Hvw such that all edges
of P lie on the same layer of Γ. We delete all edges of Hvw except the edges
of P , and any resulting isolated vertices. Since deletion of vertices and edges
from a geometric thickness-two drawing does not increase geometric thickness,
we end up with a thickness-two representation of G. �

Note that we do not yet know whether the problem of finding geometric
thickness is in NP. Given a certificate, e.g., a partition of the edges of the given
graph G into t sets, it is not clear how to determine whether the graphs induced
by each edge set admit a simultaneous geometric embedding (which would imply
that the geometric thickness of G is at most t).

5. NP-hardness of Colorability

In this section we show the NP-hardness of coloring a graph with geometric
thickness t with 4t− 1 colors. By I(G,T,C) we denote the problem of coloring
a graph G with C colors, where θ(G) ≤ T . We first introduce a few definitions.
A join between two graphs is an operation that given two graphs, adds all
possible edges that connect the vertices of one graph with the vertices of the
other graph. By Gt we denote a class of thickness-t graphs that satisfies the
following conditions:

1. G1 is the class of planar graphs.

2. If t>1, then Gt consists of the graphs obtained by taking a join of K2 and
G, where G ∈ Gt−1.

We now have the following lemma.

Lemma 3. It is NP-hard to color an arbitrary graph G ∈ Gt with 2t+ 1 colors.

Proof. If t = 1, then coloring a planar graph (i.e., t = 1) with 2t+1 = 3 colors
is NP-hard [17]. Assume inductively that the claim holds for any thickness less
than t. We now prove the hardness for thickness t, where t > 1, as follows.

Given an instance I(G, t − 1, 2(t − 1) + 1) where G ∈ Gt−1, we construct
a graph H by joining K2 with a copy of G. Observe that H ∈ Gt. It is now
straightforward to obtain a geometric thickness-t representation for H by adding
the vertices of K2 to a thickness-(t− 1) representation of G (one to the left and
the other to the right of the representation) such that the edges adjacent to
the vertices of K2 lie in the t-th planar layer but do not create any proper
edge crossings. Therefore, θ(H) ≤ t, and it now suffices to prove that G is
(2(t− 1) + 1)-colorable if and only if H is (2t+ 1)-colorable.

If G is (2(t − 1) + 1)-colorable, then we can color the copy of G that is
contained in H with 2(t−1)+1 colors. Finally, we color the vertices of K2 with
two new colors, and thus obtain a 2t+ 1 coloring for H.
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On the other hand, if H is (2t + 1)-colorable, then the vertices of K2 must
have two different colors. The vertices of H that belong to the copy of G
cannot use these two colors. Therefore, G must be (2t + 1 − 2)-colorable, i.e.,
(2(t− 1) + 1)-colorable. �

Note from the proof of Lemma 3 that θ(Gt) ≤ t. We use Lemma 3 to prove
the NP-hardness of coloring geometric thickness-t graphs with 4t − 1 colors.
We employ induction on t. If t = 1, then coloring a planar graph (i.e., t = 1)
with 4t − 1 = 3 colors is NP-hard [17]. We now assume inductively that for
any t′ < t, it is NP-hard to color a geometric thickness-t′ graph with 4t′ − 1
colors. To prove the hardness of coloring a geometric thickness-t graph with
4t − 1 colors, we reduce the hardness of coloring a geometric thickness-(t − 1)
graph with 2(t− 1) + 1 colors. Given an instance I(G, t− 1, 2(t− 1) + 1), where
G ∈ Gt−1, we construct a graph H(G, t) such that θ(H(G, t)) ≤ t and H(G, t)
is (4t− 1)-colorable if and only if G is (2(t− 1) + 1)-colorable.

5.1. Construction of H(G, t)

Let the number of vertices in G be n. Take n copies H1, H2, . . . ,Hn of K2t,
and join each vertex of G with a distinct Hi, 1 ≤ i ≤ n. Finally, take a copy
H ′ of K2t−1 and join it with every Hi. Let the resulting graph be H(G, t). To
prove that θ(H(G, t)) = t, we first review a construction of Dillencourt et al. [7]
that gives a thickness-t representation of K4t.

Dillencourt et al. [7] proved that the 4t vertices of a K4t can be arranged
in two rings of 2t vertices each, an outer ring and an inner ring, such that it
can be embedded using exactly t planar layers. The vertices of the inner ring
are arranged to form a regular 2t-gon. For each pair of diametrically opposite
vertices, a zigzag path is constructed as illustrated in Figure 8(a). This path has
exactly one diagonal connecting diametrically opposite points (i.e., the diagonal
connecting the two gray points in the figure.) The union of these zigzag paths,
taken over all t pairs of diametrically opposite vertices, contains all the edges of
K2t in the inner ring, as shown in Figure 8(b). Consider now any zigzag path
Z. For each pair of diametrically opposite vertices, we can draw rays in two
opposite directions, so that none of the rays crosses any edge of Z. These rays,
in each direction, meet at a common point (e.g., p or q) forming the outer ring,
as shown in Figure 8(c).

Lemma 4. θ(H(G, t)) ≤ t, where t > 1 and G ∈ Gt−1.

Proof. We compute a geometric thickness-t representation of H(G, t), as fol-
lows. Since G ∈ Gt−1, θ(G)≤t−1. Take a geometric thickness-(t − 1) repre-
sentation of G and rotate it (if necessary) such that no two vertices lie on the
same vertical line. Let Γ denote the resulting drawing. For the ith vertex in Γ,
consider a thin vertical stripe Si through it, as shown in Figure 8(d) in gray.
Consider a horizontal stripe L below Γ that intersects all the vertical strips.
For each i, we construct an inner ring (shown in black disk) that lies inside
the intersection of Si and L, where this ring corresponds to the drawing of Hi.
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Figure 8: (a)–(c) Dillencourt et al.’s construction [7]. (a) A zigzag path in the inner ring.
(b) K2t, where t=3. (c) K4t, where t=3. (d) The geometric thickness-three representation of
H(G, t), where t=3. Each subgraph Hi is determined by an inner ring, shown in black dot
inside the horizontal strip L. The vertices of the outer ring are shown in unfilled circle.

The edges that connect the vertices of G with the vertices of Hi (i.e., the edges
in the vertical stripes) lie in the t-th layer. Note that the inner rings must be
scaled down small enough such that these edges do not create any edge crossing
in any planar layer. Now construct an outer ring as in Dillencourt et al.’s con-
struction [7], and delete a vertex from the ring to obtain a geometric thickness-t
drawing of H ′, as shown in Figure 8(d). �

5.2. Reduction

Given a geometric thickness-t graph G and a certificate coloring of G, one
can check in polynomial time whether the number of colors used is at most
4t − 1, and whether each edge of G receives two different colors at its end
vertices. Therefore, the problem of coloring geometric thickness-t graphs with
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4t−1 colors is in NP. The following theorem proves that the problem is NP-hard.

Theorem 4. It is NP-hard to color an arbitrary geometric thickness-t graph
with 4t− 1 colors.

Proof. If t = 1, then coloring a planar graph (i.e., t = 1) with 4t−1 = 3 colors
is NP-hard [17]. Assume now that t > 1. Given an instance I(G, t−1, 2(t−1)+
1), where G ∈ Gt−1, we construct the corresponding graph H(G, t). We prove
that G is (2(t− 1) + 1)-colorable if and only if H(G, t) is (4t− 1)-colorable.

If G is (2(t − 1) + 1)-colorable, then we can color the copy of G that is
contained in H(G, t) with 2(t − 1) + 1 colors. Since there does not exist any
edge in H(G, t) that connects a vertex of Hi with a vertex of Hj , where i 6= j, we
can color all His with 2t new colors. The remaining vertices (i.e., the vertices
of H ′) induce a K2t−1 such that none of these vertices are adjacent to the
vertices of G. Therefore, we can reuse the 2t − 1 colors that we used to color
the vertices of G. Consequently, number of colors we used to color H(G, t) is
2(t− 1) + 1 + 2t = 4t− 1.

On the other hand, assume that H(G, t) is (4t − 1)-colorable. Since the
vertices of H ′ must have 2t− 1 different colors, and since each Hi is joined with
H ′, the vertices of Hi must use the remaining 2t colors. Since every vertex v
of G is joined with a copy of distinct Hi, v must be colored with a color from
the 2t− 1 colors used to color H ′. Therefore, G must be (2t− 1)-colorable, i.e.,
(2(t− 1) + 1)-colorable. �

6. Discussion and Possible Directions for Future Research

In Section 2 we constructed n-vertex geometric thickness-two graphs with
6n − 19 edges, where the best known upper bound on the number of edges is
6n− 18 [16]. It is still unknown whether there exists a geometric thickness-two
graph with 6n− 18 edges.

Open Question 1. Does there exist a geometric thickness-two graph with n
vertices and 6n− 18 edges?

In Section 3 we proved that any graph G with θ(G) > θ(G) must have at
least 10 vertices. We constructed such a graph G with 10 vertices and 42 edges,
where θ(G) = 3 > θ(G) = 2. An interesting question is whether this inequality
can be established for graphs with fewer edges.

Open Question 2. Does there exist a graph G with fewer than 42 edges satis-
fying the inequality θ(G) > θ(G)?

In Section 4 we proved that recognizing geometric thickness-two graphs is
NP-hard, which settles an open question posed in [6]. Therefore, it seems nat-
ural to examine whether geometric thickness can be approximated efficiently, a
question also posed in [6, 13]. Note that it is possible to determine the thickness
within a constant factor [13].
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Figure 9: Two planar layers of a 11-regular 32-vertex graph with thickness two.

Open Question 3 ([6, 13]). Does there exist a constant-factor approximation
algorithm to determine geometric thickness?

In Section 5 we proved the NP-hardness of coloring arbitrary geometric
thickness-t graphs with 4t − 1 colors, which is particularly interesting since
no graph with geometric thickness t is known that requires more than 4t colors
for its proper coloring. Improving our complexity bound would be an interesting
avenue to explore.

Open Question 4. What is the complexity of coloring a geometric thickness-t
graph with 4t colors? Does every geometric thickness-t graph admit a proper
4t-coloring?

Every planar graph contains a vertex of degree at most five, which is also
the best possible since there exists 5-regular planar graphs. This upper bound
on the minimum degree of planar graphs leads to a simple algorithm for con-
structing 6-colorings of planar graphs [17]. Ringel [22] observed that the average
degree of the graphs with thickness-t is less than 6t, which implies that every
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thickness-t graph contains a vertex of degree at most 6t − 1. Consequently,
the chromatic number of geometric thickness-t graphs is 6t. For example, any
graph G with θ(G) = 2 must contain a vertex with degree at most 11, which
leads to an algorithm for constructing 12-colorings of thickness-two graphs. In
Figure 9 we show that this upper bound of 11 on the smallest degree is tight
by constructing an 11-regular thickness-two graph. While this article was under
review, Duncan [9] proved that there exist (6t−1)-regular graphs with thickness
t. He also proved that there exist 5t-regular graphs with geometric thickness at
most t.

We believe that for t ≥ 2, the upper bound on the minimum degree of
geometric thickness-t graphs is less than the bound for thickness-t graphs. While
there exist 11-regular thickness-two graphs, no geometric thickness-two graph
is known with minimum degree greater than 7.

Open Question 5. What is the smallest integer k such that every geometric
thickness-t graph contains a vertex of degree at most k?

Acknowledgements. We thank the anonymous reviewers for their suggestions
that helped improve the presentation of the paper.
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Appendix A.

In the proof of Theorem 2 we claimed that at most six vertices of Γ′ can be
straight-line visible to a common point, where Γ′ is a geometric thickness two
drawing of K9 minus an edge. In this section we give a detailed proof for this
claim. Suppose for a contradiction that we can insert a vertex v such that it
can be straight-line visible to seven distinct vertices of Γ′.

Delete all the black edges, i.e., the edges common to both triangulations,
from Γ′. Let Γ′′ denote the resulting drawing. Figures 5(a) and (b) show the
candidate drawings that are obtained from Figures 3(a) and (c), respectively.
We do not examine Figure 3(b) separately since its closed regions are similar
to that of Figure 3(a). In each planar layer of Γ′′, v must lie on some bounded
region or on the unbounded region. Observe that the bounded regions in each
planar layer are a collection of triangles and quadrangles. If v lies interior to
an empty triangle in each planar layer, then it can have at most six adjacent
edges. Therefore, v must lie on the unbounded region or on a quadrangle of
some planar layer. Each such region Q is unfilled in Figure 5. We examine
each candidate region Q, and show that Q cannot contain any point v which is
straight-line visible to seven distinct vertices.

We distinguish two main cases depending on whether Q is a region in Fig-
ure 5(a) (Case A), or Figure 5(b) (Case B).

Case A (Q belongs to Figure 5(a)): We consider several sub-cases, as
follows.

Case A1 (Q = idhg) : In this case one can partition Q into 5 regions
Q1, Q2, . . . , Q5, depending on how the neighboring segments of h intersects Q.
Let q be a point in Q.

If q ∈ Q1 ∪Q2, then since {d, g} and {i} lie on the opposite sides of the line
determined by segment hb, vertex g cannot be visible to q. Therefore, q can see
only 3 points in the blue layer. Observe now that q is either inside a triangle in
the red layer, or inside the quadrangle fche.

If q is inside a triangle in the red layer, then q can see at most six vertices
in total, and hence assume that q lies inside fche. Since {f, h} and {e, c} lie
on the opposite sides of the line determined by segment ig, vertex h cannot be
visible to q. Therefore, also in this case q can see at most six vertices in total.
The case when q ∈ Q4 ∪ Q5 can be analyzed in a similar fashion, where d and
g cannot be visible to q simultaneously, and similarly h and f cannot be visible
to q simultaneously.

In the remaining case we have q ∈ Q3, where q can see all the vertices
{i, g, h, d} in the blue layer. Since q is on the outer face in the red layer, only
the vertices {b, c, i, h} are visible to q. Therefore, q has straight-line visibility
to at most six points in total.

Case A2 (Q = fdha) : In this case v either lies in ∆dbf∩Q, or in ∆dch∩Q,
or outside of ∆bdc.

If v ∈ ∆dbf ∩Q, then v can see either {d, b, g} or {f, b, g} in the red layer.
Since both of these sets contain a vertex common to {f, d, h, a}, vertex v cannot
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have straight-line visibility to more than six distinct vertices.
If v ∈ ∆dch ∩ Q, then v can have straight-line visibility to one of the fol-

lowing sets in the red layer: {d, c, g}, {d, b, g}, {f, b, g}, {f, g, c}, {f, e, h, c},
and {f, e, g}. Each of these sets except {f, e, h, c} contains a vertex common
to V (Q) = {f, d, h, a}, whereas the set {f, e, h, c} contains two vertices that are
common to V (Q) = {f, d, h, a}. Therefore, vertex v cannot have straight-line
visibility to more than six distinct vertices.

If v is outside of ∆bdc, then it is in the unbounded face in red layer. This
case is considered later in Case A5.

Case A3 (Q = fehc) : Consider first the case where v lies in ∆iae ∩ Q.
Here v can have straight-line visibility to one of the following sets in the blue
layer: {f, d, i}, {i, d, h, g}, {f, d, h, a}, {a, h, g}, {g, i, e}, and {a, g, e}. Each of
these sets of cardinality three has a vertex common to V (Q) = {f, e, h, c}. The
set {f, d, h, a} has two vertices common to V (Q) = {f, e, h, c}. Therefore, v
cannot see any of these sets and also have straight-line visibility to more than
six distinct vertices. The remaining set is {i, d, h, g}, but by Case A1, v cannot
belong to the quadrangle idhg.

If v is outside of ∆iae, then v is in the unbounded face in the blue layer.
This case is considered later in Case A4.

Case A4 (Q is the unbounded face in the blue layer): Let Hae be
the half-plane containing i, which is determined by the line through a and e.
Similarly, let Hbe be the half-plane containing i, which is determined by the line
through b and e. We distinguish two cases depending on whether v ∈ Hae∩Hbe

or not.
Consider first the case when v ∈ Hae ∩ Hbe. If v is also in the half-plane

Hbf , which contains {a, d, g}, then v cannot see h in any layer. Note that in
this scenario v is also in the unbounded face of the red layer. Since there are
only seven vertices {a, b, c, d, e, h, i} in the unbounded faces of the red and blue
layers, v cannot have straight-line visibility to more than six vertices.

We may thus assume that v lies inside the quadrangle bfhe. In this scenario v
can see one of the following sets in the red layer: {b, f, h}, {b, h, c, i}, {h, e, f, c}.
The sets {b, f, h} and {b, h, c, i} contains one and two vertices that are common
to V (Q) = {a, e, b, i}, respectively. Therefore, v cannot see any of these sets
and also have straight-line visibility to more than six distinct vertices. The
remaining set is {h, e, f, c}, where e ∈ V (Q). Therefore, it suffices to show that
f cannot be straight-line visible to v. Since v ∈ Q, it lies in ∆bie. Note that
∆bie ⊂ ∆bhe ⊂ ∆bhe. Therefore, the edge vf must cross either edge eh or bh.
Both eh or bh belong to the red layer. Since f is interior to the blue layer, vf
must belong to the red layer, which implies that vf cannot exist.

Consider now the case when v is outside of Hae ∩ Hbe. If v is also on
the unbounded face of the red layer, then v have to see all the seven vertices
{a, b, c, d, e, h, i}. Note that h and d can be visible to v only in the red layer.
Therefore, in this scenario v must lie on the vertically opposite angles of ∠dch.
Since i lies on the vertically opposite angles of ∠dhc, the visibility from v to h
must be blocked by the edge ci of the red layer.
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If v is outside of Hae ∩Hbe, but not on the unbounded face of the red layer,
then v can see one of the following sets in the red layer: {d, g, c}, {f, g, c},
{f, e, h, c}. Since v ∈ Q, v can see only the vertices {a, e, b} in the blue layer.
Therefore, v can see at most six distinct vertices altogether.

Case A5 (Q is the unbounded face in the red layer): Let Hbd be
the half-plane containing a, which is determined by the line through b and d.
Similarly, let Hdc be the half-plane containing a, which is determined by the line
through d and c. We distinguish two cases depending on whether v ∈ Hbd∪Hdc

or not. We can concentrate only on the case when v is not in the unbounded
face of the blue layer (otherwise, we refer to Case A4).

If v ∈ Hbd ∪Hdc, then v can see one of the following sets in the blue layer:
{a, i, f}, {a, f, d, h}, {a, h, g}, {a, g, e}. Since ∆abi ⊂ ∆abe ⊂ ∆abc, only the
vertices {b, d, c} are visible to v in the red layer. Therefore, at most six distinct
vertices can be visible to v.

If v is outside of Hbd ∪Hdc, then v can see one of the following sets in the
blue layer: {a, i, f}, {f, i, d}, {d, i, g, h}, {i, g, e}. Since ∆bci ⊂ ∆bch ⊂ ∆bcd,
only the vertices {b, h, c, i} are visible to v in the red layer. Therefore, at most
six distinct vertices can be visible to v.

Case B (Q belongs to Figure 5(b)): We consider several sub-cases, as
follows.

Case B1 (Q = igfe) : Note that ∆bgc ⊂ ∆bec ⊂ ∆bfc. Therefore, if
v ∈ ∆egb, then v can see one of the following sets in the red layer: {b, c, e, g},
{b, e, h}, {b, i, h}. The corresponding point sets that are visible to v from the
blue layer are {e, f, g, i}, {e, g, i}, {e, g, i}, respectively. Therefore, v can see at
most six distinct vertices in total.

Otherwise, if v ∈ ∆efg, then v can see one of the following sets in the red
layer: {b, c, e, g}, {c, e, h}, {b, e, h}, {b, i, h}, {i, h, c}, {i, c, d}, {i, f, d}. For the
set {b, c, e, g}, the points that are visible in the blue layers are {i, e, g, f}, which
implies visibility to only six distinct vertices. For the remaining sets, only three
more points are visible in the blue layers, i.e., {e, g, f}.

Case B2 (Q = aefh) : If v is in the unbounded face in the red layer, then
we refer to Case B5. Otherwise, v can lie in ∆bef or in ∆cfh.

If v ∈ ∆bef , then v can see one of the following sets in the red layer: {b, i, f},
{d, i, f}, {i, c, d, f}, {i, c, h}, {b, h, i}, {b, e, h}. Since ∆ebc ⊂ ∆fbc and e, h to
the opposite sides of the edge fg, v cannot see both e and h simultaneously in
the blue layer. Therefore, the set visible to v in the blue layer is {a, e, f}. Hence
the number of distinct points visible to v is at most six.

If v ∈ ∆cfh, then v can see one of the following sets in the red layer:
{c, d, i, f}, {d, i, f}, {i, c, h}. Since ∆ebc ⊂ ∆fbc and e, h to the opposite sides
of the edge fg, v cannot see both e and h simultaneously in the blue layer.
Therefore, the set visible to v in the blue layer is {a, h, f}. Hence the number
of distinct points visible to v is at most six.

Case B3 (Q = icfd) : If v is in the unbounded face in the blue layer, then
we refer to Case B4. Otherwise, v can lie in ∆adf or in ∆dgi.
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If v ∈ ∆adf , then v can see one of the following sets in the blue layer:
{a, h, d}, {a, e, f, h}. Since ∆ifd ⊂ ∆ifc, the set visible to v in the red layer is
{f, d, c}. Hence the number of distinct points visible to v is at most six.

If v ∈ ∆dgi, then v can see one of the following sets in the blue layer:
{d, g, h}, {a, d, h}, {a, e, f, h}, {f, g, h}, {i, g, e, f}, {a, g, i}. Since ∆ifd ⊂ ∆ifc,
the set visible to v in the red layer is {i, d, c}. Hence the number of distinct
points visible to v is at most six, except when we take the union of the sets
{a, e, f, h} and {i, d, c}. However, by Case B2, v cannot lie in the quadrangle
aefh.

Case B4 (Q is the unbounded face in the blue layer): Since the
vertices on the unbounded face of the blue layer are {a, g, d, b}, v cannot lie
inside any red triangle that is adjacent to b or c. Therefore, v must lie in the
quadrangle icdf or in the unbounded face of both red and blue layer.

If v lies in the the quadrangle icdf , then since ∆abd ⊂ ∆abc, v can see only
the vertices {a, b, d} in the blue layer, which implies that v is visible to at most
six distinct vertices.

Assume now that v is in the unbounded face of both red and blue layer.
Then to make visible adjacent to seven vertices, v must see all the vertices
{a, b, c, d, e, f, g}. Since e, f are internal vertices in the blue layer, they must be
seen from the red layer. Therefore, v must lie in the angle vertically opposite to
∠ecf . Note that ∆bgf ⊂ ∆bcf , and e is lies interior to ∆bgf inside the ∠gcf .
Therefore, the visibility from v to e must be blocked by the edge cg.

Case B5 (Q is the unbounded face in the red layer): Let Hbf be
the half-plane containing a, which is determined by the line through b and f .
Similarly, let Hfc be the half-plane containing a, which is determined by the line
through f and c. We distinguish two cases depending on whether v ∈ Hbf ∪Hfc

or not. We can concentrate only on the case when v is not in the unbounded
face of the blue layer (otherwise, we refer to Case B4).

If v ∈ Hbf ∪Hfc, then v can see one of the following sets in the blue layer:
{a, i, g}, {a, i, e}, {a, e, f, h}, {a, h, d}. Since ∆bcg ⊂ ∆bce ⊂ ∆bcf , only the
vertices {b, f, c} are visible to v in the red layer. Therefore, at most six distinct
vertices can be visible to v.

If v is outside of Hbf∪Hfc, then v can see one of the following sets in the blue
layer: {a, i, g}, {i, g, e, f}, {g, f, h}, {g, h, d}, {g, h, d}. Since ∆bcg ⊂ ∆bce ⊂
∆bcf , only the vertices {b, c, e, g} are visible to v in the red layer. Therefore, at
most six distinct vertices can be visible to v.
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Appendix B.

Let Γ be a thickness-two drawing of K9 − e. Assume that the edges of one
layer of Γ are assigned red color, and the remaining edges are assigned blue
color. Observe that each of the unsaturated vertices {d, e} of Γ is enclosed by a
cycle of distinct color, as follows. If Γ corresponds to Figure 3(a) or (b), then d is
enclosed inside a blue cycle C(d) = (a, f, i, g, a), while e is enclosed inside a red
cycle C(e) = (c, f, h, c). If Γ corresponds to Figure 3(c), then d is enclosed inside
a red cycle C(d) = (c, i, f, c), while e is inside a blue cycle C(e) = (a, i, g, h, a).
Note that d lies outside of C(e), while e lies outside of C(d). Furthermore, d
and e are adjacent to some vertex of C(d) and C(e), respectively. Therefore, we
can represent these configurations as shown in Figures B.1(a)–(b). Let [C(d)]
and [C(e)] be the closed interior of the cycle C(d) and C(e), respectively. As
illustrated in Figures B.1(a)–(b), we have the following observation.

Fact 2. Let H be a graph obtained by adding a vertex v to the unsaturated
vertices d, e of the graph K9 − e. Then any thickness-two drawing of graph H
satisfies the following properties:

- The vertex v lies either inside [C(d)] ∩ [C(e)], or outside of [C(d)] ∪ [C(e)].

- The edges (v, e) and (v, d) must lie in different layers.

Let G1, G2, . . . , Gk be k ≥ 9 copies of K9 − e. Let d1, e1 be the unsaturated
vertices of G1. For each Gj , j > 1, make d1 adjacent to some unsaturated vertex
dj of Gj . Refer to the remaining unsaturated vertex of Gj as ej . Add a vertex
v and make v adjacent to all the unsaturated vertices of G1, G2, . . . , Gk. Let
Hk denote the resulting graph, which we refer to as a rigid graph.

Lemma 1. Let Hk be a rigid graph. Then in any thickness-two drawing Γ
of Hk, the subgraph G′ induced by the edges (v, d1), (v, dj) and (d1, dj), where
1 < j ≤ k, lies in the same layer.

Proof. To prove that the edges of G′ lies in the same layer, we show that for
every j > 1, the edges of the triangle v, d1, dj lie in the same layer.

Let Di be the drawing of Gi in Γ. Consider the graphs G1, Gj . Since v can
see both d1 and e1, by Fact 2, v lies either inside [C(d1)] ∩ [C(e1)] or outside
of [C(d1)] ∪ [C(e1)]. Similarly, since v can see both dj and ej , by Fact 2, v lies
either inside [C(dj)] ∩ [C(ej)] or outside of [C(dj)] ∪ [C(ej)]. Without loss of
generality assume that C(d1) is a blue cycle in Γ.

First assume that v lies inside [C(d1)] ∩ [C(e1)]. By Facts 1 and 2, the
vertices v, dj and ej are connected both in red and blue layers. Therefore, dj
and ej would also lie inside [C(d1)]∩ [C(e1)], i.e., {v, dj , ej} ∈ [C(d1)]∩ [C(e1)].
We now consider Cases 1–2 depending on whether C(dj) is blue or red.

Case 1 (C(dj) is blue): Since {v, dj , ej} ∈ [C(d1)] ∩ [C(e1)] and dj is adja-
cent to some vertex of C(dj) through some blue edge, the cycle C(dj)
cannot enclose C(d1). Furthermore, since the cycle C(d1) is blue and d1
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Figure B.1: (a)–(b) Schematic geometric thickness-two representations of K′9. (c)–(j) Illus-
tration of the proof of Lemma 1.
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is adjacent to some vertex of C(d1) through some blue edge, C(dj) cannot
enclose d1. Therefore, C(dj) must lie interior to C(d1). In this scenario,
the edge (d1, dj) crosses both a blue cycle and a red cycle, i.e., to reach
dj from d1, we need to enter both the blue cycle C(dj) and the red cycle
C(e1), which contradicts that Γ is a thickness-two drawing. Figure B.1(c)
illustrates such a scenario.

Case 2 (C(dj) is red): Since {v, dj , ej} ∈ [C(d1)] ∩ [C(e1)], the cycle C(dj)
must lie inside the red circle C(e1). Since d1 lies outside of C(e1), the
cycle C(dj) does not enclose d1. Hence the edge (d1, dj) must cross C(dj),
and therefore, (d1, dj) would lie in the blue layer. Similarly, the edge
(v, d1) crosses C(e1) and hence lies in the blue layer. Finally, observe that
v cannot lie inside [C(dj)] ∪ [C(ej)]. Therefore, the edge (v, dj) crosses
C(dj), and hence lies in the blue layer. Figure B.1(d) illustrates such a
scenario.

Assume now that v lies outside of [C(d1)] ∪ [C(e1)]. By Facts 1 and 2, the
vertices v, dj and ej are connected both in red and blue layers. Therefore, dj , ej
must lie outside of [C(d1)] ∪ [C(e1)]. We now consider Cases 3–4 depending on
whether C(dj) is blue or red.

Case 3 (C(dj) is blue): Since the cycle C(d1) is blue, C(dj) must lie outside
of C(d1), i.e., either C(d1) and C(dj) are interior disjoint, or [C(d1)] ⊂
[C(dj)]. Note from the analysis of Case 1 that the case when [C(d1)] ⊂
[C(dj)] and v ∈ [C(dj)] ∩ [C(ej)] cannot appear. On the other hand, if v
is outside of [C(dj)] ∩ [C(ej)], then (d1, dj) crosses C(d1), which implies
that (d1, dj) must be red. Since (v, d1) and (v, dj) both cross the cycle
C(d1), they must lie on the red layer. See Figure B.1(f).

The case when C(d1) and C(dj) are interior disjoint is illustrated Fig-
ure B.1(e). Here the edge (d1, dj) crosses C(d1), which implies that (d1, dj)
must be red. Since v lies outside of [C(d1)] ∪ [C(e1)], the edge (v, d1) is
also red. We now examine the edge (v, dj). By Fact 2, v lies either
inside [C(dj)] ∩ [C(ej)] or outside of [C(dj)] ∪ [C(ej)]. If v is outside of
[C(dj)]∪ [C(ej)], then (v, dj) must be red. If v ∈ [C(dj)]∩ [C(ej)], then an
analysis similar to Case 1 shows that (d1, dj) must create an edge crossing
in either red or blue layer. See Figure B.1(g).

Case 4 (C(dj) is red): First assume that d1 ∈ [C(dj)]. In this scenario v
cannot lie outside of [C(dj)]∪[C(ej)], because the edge (v, d1) then crosses
both a red cycle C(dj) and a blue cycle C(d1). Therefore, by Facts 1
and 2, v, d1, e1 must lie inside [C(dj)] ∩ [C(ej)]. An analysis similar to
Case 2 shows that the triangle v, d1, dj lies in the same (red) layer. See
Figure B.1(h).

If d1 6∈ [C(dj)], then let R be the region [C(d1)]∩ [C(dj)]. If v lies outside
of [C(dj)] ∪ [C(ej)], then d1 or dj cannot lie in R. In this scenario the
edge (d1, dj) cannot exist, i.e., to reach dj from d1 we have to cross both a
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red cycle C(dj) and a blue cycle C(d1). See Figure B.1(i). Now consider
the case when v lies inside [C(dj)] ∩ [C(ej)]. An analysis similar to Case
2 shows that the triangle v, d1, dj must be of red color. See Figure B.1(j).

�

Observe that G′ is a bipartite graph K2,k−1 with vertex-partition {v, d1},
{d2, . . . , dk}, plus the edge (v, d1). We call the graph G′ the core graph and the
vertex v the pole vertex. By Facts 1 and 2 one can derive the following.

Fact 3. Let Γ be a thickness-two drawing of some rigid graph Hk. Then the
pole and the unsaturated vertices of Hk are connected in each layer of Γ.

Let H be a chain of three rigid graphs Ha, Hb, Hc, each a copy of H17. For
any Hq, where q ∈ {a, b, c}, let {dqi , e

q
i }, where 1 ≤ i ≤ 17, be the unsatu-

rated vertices of Hq, and let vq be the pole of Hq. We now add the edges
(ea2 , e

b
2), (ea3 , e

b
3), . . . , (ea9 , e

b
9) and (ec2, e

b
10), (ec3, e

b
11), . . . , (ec9, e

b
17). Let H ′ denote

the resulting graph. Figures 6(a)–(b) illustrate a schematic representation of
H ′.

Lemma 2. In any thickness-two drawing Γ of H ′, there exists a path from
va, . . . , vb, . . . , vc that lies on the same layer.

Proof. Let Ga, Gb and Gc be the core graphs of Ha, Hb, Hc, respectively. By
Lemma 1, all the edges of a core graph are of same color. Assume without
loss of generality that Ga is red in Γ. We first prove that there exists a blue
edge between the unsaturated vertices of Ha and Hb. We distinguish two cases
depending on the color of Gb.

Case 1(Gb is red): Since Ga and Gb are red, they are either interior disjoint
or one is interior to some inner face of the other.

Consider first the case when Ga and Gb are interior disjoint. In this case
choose some j, where 2 ≤ j ≤ 9, such that daj and dbj are inner vertices in
Ga and Gb, respectively. Since daj is inside some red cycle Ca in Ga, by

Fact 2, eaj must lie inside Ca. On the other hand, since dbj is inside some

red cycle Cb in Gb, by Fact 2, ebj must lie inside Cb. Consequently, (eaj , e
b
j)

must cross Ca, and this will be the required blue edge.

Consider now the case when one of Ga and Gb is in some inner face of the
other. Without loss of generality assume that Gb lies inside some inner
face fa of Ga. Let Ca be a red cycle of Ga that does not contain fa, but
encloses an unsaturated vertex daj in its interior, where 2 ≤ j ≤ 9. Then

the vertex eaj must lie interior to Ca. Since Gb lies inside fa, the vertex ebj
must lie interior to fa. Hence (eaj , e

b
j) must cross Ca, and this will be the

required blue edge.

Case 2(Gb is blue): In the following we show that this case cannot occur. Let
Ca be some red cycle of Ga such that there exists a vertex dap interior to
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Ca and a vertex daq outside of Ca, where 2 ≤ p, q ≤ 9. If all the edges

between Ha and Hb are red, then the vertex ebp must lie interior to Ca.

Since ebq and ebp are connected in the red layer, ebq must also lie interior to

Ca. Consequently, the edge (eaq , e
b
q) must cross Ca, which contradicts that

all the edges between Ha and Hb are red.

Similarly, we can prove that there exists a blue edge between the unsat-
urated vertices of Hb and Hc. By Fact 3, we can find a path va, . . . , e

a
p,

ebp . . . , vb, . . . , e
b
q+8, e

c
q, vc that lies on the same layer, where 2 ≤ p, q ≤ 9. �
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