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Abstract

Let P be an orthogonal polygon with n vertices. A sliding camera travels back
and forth along an orthogonal line segment s ⊆ P corresponding to its trajectory.
The camera sees a point p ∈ P if there is a point q ∈ s such that pq is a line
segment normal to s that is completely contained in P . In the Minimum-
Cardinality Sliding Cameras (MCSC) problem, the objective is to find a set S
of sliding cameras of minimum cardinality to guard P (i.e., every point in P
can be seen by some sliding camera in S), while in the Minimum-Length Sliding
Cameras (MLSC) problem the goal is to find such a set S so as to minimize the
total length of trajectories along which the cameras in S travel.

In this paper, we answer questions posed by Katz and Morgenstern (2011)
by presenting the following results: (i) the MLSC problem is polynomially
tractable even for orthogonal polygons with holes, (ii) the MCSC problem is
NP-complete when P is allowed to have holes, and (iii) an O(n3 log n)-time 2-
approximation algorithm for the MCSC problem on [NE]-star-shaped orthogonal
polygons with n vertices (similarly, [NW]-, [SE]-, or [SW]-star-shaped orthogo-
nal polygons).
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1. Introduction

The art gallery problem is well known in computational geometry, where
the objective is to cover a geometric shape (e.g., a polygon) with the union of
the visibility regions of a set of point guards while minimizing the number of
guards. The problem’s multiple variants have been examined extensively (e.g.,5

see [2, 3, 4]) and can be classified based on the type of guards (e.g., points or line
segments), the type of visibility model, and the geometric shape (e.g., simple
polygons, orthogonal polygons [5], or polyominoes [6]).

Recently, Katz and Morgenstern [7] introduced a variant of the orthogonal
art gallery problem in which sliding cameras are used to guard the gallery. Let10

P be an orthogonal polygon with n vertices. A sliding camera travels back and
forth along an orthogonal line segment s ⊆ P called its trajectory. The camera
(i.e., the guarding line segment s) can see a point p ∈ P (equivalently, p is
orthogonally visible to s) if and only if there exists a point q on s such that
pq is normal to s and is completely contained in P . There are two variants of15

this problem: in the minimum-cardinality sliding cameras (MCSC) problem,
we wish to minimize the number of sliding cameras so as to guard P entirely,
while in the minimum-length sliding cameras (MLSC) problem the objective
is to minimize the total length of trajectories along which the cameras travel;
we assume that in both variants of the problem, the polygon P and all sliding20

cameras are constrained to be orthogonal. In both problems, every point in
P must be visible to some camera (see Figure 1). In this paper, we answer
questions posed by Katz and Morgenstern [7] by presenting the following results,
some of which appeared in [1] (see also [8]):

• We show that the MLSC problem is solvable in O(n2.3727) time even for25

orthogonal polygons with holes, where n is the number of the vertices of
the polygon.

• We show that the MCSC problem is NP-complete for orthogonal polygons
with holes.

• We give an O(n3 log n)-time 2-approximation algorithm to the MCSC30

problem on [X]-star-shaped orthogonal polygons with n vertices, where
X ∈ {NE, NW, SE, SW} (see Section 5 for the definition of [X]-star-
shaped polygons).

Throughout the paper, we denote an orthogonal polygon with n vertices by
P . A vertex u of P is reflex, if the angle at u that is interior to P is 270◦. We35

denote the set of reflex vertices and the set of edges of P by V (P ) and E(P ),
respectively. We consider P to be a closed region; therefore, the trajectory of
a camera may include an edge of P . We also assume that a camera can see all
points on its trajectory. Let Hu and Vu be the maximum-length horizontal and
vertical line segments, respectively, inside P through a vertex u ∈ V (P ). Let40

L(P ) = {Hu | u ∈ V (P )} ∪ {Vu | u ∈ V (P )}. Moreover, let L be an orthogonal
line segment (with respect to P ) inside P ; the visibility region of L is the union
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Figure 1: An illustration of the MCSC and MLSC problems. Each grid cell has size 1 × 1.
(a) The set of two sliding cameras s1 and s2 as an optimal solution for the MCSC problem
on P ; each shaded region indicates the visibility region of the corresponding camera. (b) A
set of four sliding cameras whose total length is 6, which is an optimal solution for the MLSC
problem on P .

of the points in P that are seen by the sliding camera that travels along L. We
say that a set T of orthogonal line segments contained in P is a cover of P , if
the corresponding cameras can collectively see all points in P ; equivalently, we45

say that the line segments in T guard P entirely.
The rest of the paper is organized as follows. Section 2 presents related work.

In Section 3, we describe a polynomial-time algorithm for the MLSC problem.
Section 4 presents our hardness result for the MCSC problem on polygons with
holes. Finally, we present our 2-approximation algorithm in Section 5. We50

conclude the paper in Section 6.

2. Related Work

The art gallery problem was first introduced by Klee in 1973 [9]. Two years
later, Chvátal [10] gave an upper bound proving that bn/3c point guards are
always sufficient and sometimes necessary to guard a simple polygon with n55

vertices. The orthogonal art gallery problem was first studied by Kahn et al. [11]
who proved that bn/4c guards are always sufficient and sometimes necessary to
guard the interior of a simple orthogonal polygon. Lee and Lin [12] showed
that the problem of guarding a simple polygon using the minimum number
of guards is NP-hard. Moreover, the problem was also shown to be NP-hard60

for orthogonal polygons [13]. Even the problem of guarding the vertices of an
orthogonal polygon using the minimum number of guards is NP-hard [14].

Limiting visibility allows some versions of the problem to be solved in polyno-
mial time. Motwani et al. [15] studied the art gallery problem under s-visibility,
where a point guard p ∈ P can see all points in P that can be reached from p65
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by an orthogonal staircase path contained in P . They use a perfect graph ap-
proach to solve the problem in polynomial time. Worman and Keil [16] defined
r-visibility, in which a point guard p ∈ P can see all points q ∈ P such that
the bounding rectangle of p and q (i.e., the axis-parallel rectangle with diagonal
pq) is contained in P . Given that P has n vertices, they use a similar approach70

to Motwani et al. [15] to solve this problem in Õ(n17) time, where Õ() hides
poly-logarithmic factors. Moreover, Lingas et al. [17] presented a linear-time
3-approximation algorithm for this problem.

Katz and Morgenstern [7] introduced the MCSC problem. They first con-
sidered a restricted version of the problem, where cameras are constrained to75

travel only vertically inside the polygon. Using a similar approach to Motwani
et al. [15] they constructed a graph G corresponding to P and then showed
that (i) solving this problem on P is equivalent to solving the minimum clique
cover problem on G, and that (ii) G is chordal. Since the minimum clique cover
problem is polynomial-time solvable on chordal graphs, they solved the vertical-80

camera MCSC problem in polynomial time. They also generalized the problem
definition such that both vertical and horizontal cameras are allowed (i.e., the
MCSC problem) for which they presented a 2-approximation algorithm for the
case in which the input is an x-monotone orthogonal polygon. They left open
the complexity of the problem and mentioned studying the MLSC problem as85

future work. Seddighin [18] considered the sliding cameras problem under k-
visibility, where a camera’s line of sight can pass through k edges of the polygon.
He first proved that the MLSC problem is NP-hard under k-visibility and then
gave a 2-approximation algorithm for this problem.

A histogram H is a simple orthogonal polygon whose boundary contains some90

edge, called the base, whose length is equal to the sum of the lengths of the edges
of H that are parallel to the base. Moreover, a double-sided histogram is the
union of two histograms that share a common base edge and that are located
on opposite sides of the base. The MCSC problem is equivalent to the problem
of covering P with the minimum number of double-sided histograms, since the95

visibility region of a sliding camera is exactly a double-sided histogram. Fekete
and Mitchell [19] proved that partitioning an orthogonal polygon (possibly with
holes) into a minimum number of histograms is NP-hard. Note that in general,
the fact that an orthogonal polygon can be covered by k histograms does not
imply that it can be partitioned by k histograms. Therefore, their proof does100

not directly imply that covering an orthogonal polygon with minimum number
of double-sided histograms is NP-hard, leaving open the question of whether
the MCSC problem is also NP-hard for orthogonal polygons with holes.

3. The MLSC Problem: An Exact Algorithm

In this section, we give an algorithm that solves the MLSC problem exactly105

in polynomial time even when P has holes. Let T be a cover of P . In this section,
we say that T is an optimal cover for P if the total length of trajectories along
which the cameras in T travel is minimum over that of all covers of P . Our
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algorithm relies on reducing the MLSC problem to the minimum-weight vertex
cover problem in bipartite graphs. We remind the reader of the definition of the110

minimum-weight vertex cover problem:

Definition 1. Given a graph G = (V,E) with positive vertex weights, the
minimum-weight vertex cover problem is to find a subset V ′ ⊆ V that is a
vertex cover of G (i.e., every edge in E has at least one endpoint in V ′) such
that the sum of the weights of vertices in V ′ is minimized.115

The minimum-weight vertex cover problem is NP-hard in general [20]. However,
König’s theorem [21] that describes the equivalence between maximum matching
and vertex cover in bipartite graphs implies that the minimum-weight vertex
cover problem in bipartite graphs is solvable in polynomial time. Given P , we
first construct a vertex-weighted graph GP and then we show (i) that the MLSC120

problem on P is equivalent to the minimum-weight vertex cover problem on GP ,
and (ii) that graph GP is bipartite.

Similar to Katz and Morgenstern [7], we define a partition of an orthogonal
polygon P into rectangles as follows. Extend the two edges of P incident to
every reflex vertex in V (P ) inward until they hit the boundary of P . Let S(P )125

be the set of the extended edges and the edges of P whose endpoints are both
non-reflex vertices of P . We refer to elements of S(P ) simply as edges. The
edges in S(P ) partition P into a set of rectangles; let R(P ) denote the set of
resulting rectangles. We observe that in order to guard P entirely, it suffices to
guard all rectangles in R(P ). The following observations are straightforward:130

Observation 1. Let T be a cover of P and let s be an orthogonal line segment
in T . Then, for any partition of s into line segments s1, s2, . . . , sk the set
T ′ = (T \ {s}) ∪ {s1, . . . , sk} is also a cover of P and the respective sums
of the lengths of segments in T and T ′ are equal.

Observation 2. Let T be a cover of P . Moreover, let T ′ be the set of line135

segments obtained from T by translating every vertical line segment in T hor-
izontally to the nearest boundary of P to its right and every horizontal line
segment in T vertically to the nearest boundary of P below it. Then, T ′ is also
a cover of P and the respective sums of the lengths of line segments in T and
T ′ are equal. We call T ′ a regular cover of P .140

Given P , let H(P ) denote the subset of the boundary of P consisting of line
segments that are immediately to the right of or below P ; in other words, for
each edge e ∈ H(P ), the region of the plane immediately to the right of or below
e does not belong to the interior of P . Let B(P ) denote the partition of H(P )
into line segments induced by the edges in S(P ). The following lemma follows145

from Observations 1 and 2:

Lemma 1. Every orthogonal polygon P has an optimal cover T ⊆ B(P ).

Observation 3. Let P be an orthogonal polygon and consider its correspond-
ing set R(P ) of rectangles induced by edges in S(P ). Every rectangle R ∈ R(P )
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Figure 2: An illustration of the reduction; each grid cell has size 1 × 1. (a) An orthogonal
polygon P along with the elements of B(P ) labelled as a, b, c, . . . , i. (b) The graph GP

associated with P ; the integer value besides each vertex indicates the weight of the vertex.
The vertices of a vertex cover on GP and their corresponding guarding line segments for P
are shown in red.

is seen by exactly one vertical line segment in B(P ) and exactly one horizontal150

line segment in B(P ). Furthermore, if T ⊆ B(P ) is a cover of P , then every
rectangle in R(P ) must be seen by at least one horizontal or one vertical line
segment in T .

We denote the horizontal and vertical line segments in B(P ) that can see a
rectangle R ∈ R(P ) by RH and RV , respectively. Using Observation 3, we now155

describe a reduction of the MLSC problem to the minimum-weight vertex cover
problem. We construct an undirected weighted graph GP = (V,E) associated
with P as follows: each line segment s ∈ B(P ) corresponds to a vertex vs ∈ V
such that the weight of vs is the length of s. Two vertices vs, vs′ ∈ V are
adjacent in GP if and only if the line segments s and s′ can both see a common160

rectangle R ∈ R(P ). See Figure 2. By Observation 3 the following result is
straightforward:

Observation 4. There is a bijection between rectangles in R(P ) and edges in
GP .

Next we show equivalence between the two problems and then prove that165

graph GP is bipartite. To this end, we first need the following result.

Lemma 2. Let R ∈ R(P ) be a rectangle and let T be a cover of P . Then, there
exists a set T ′ ⊆ T such that all line segments in T ′ have the same orientation
(i.e., they are all vertical or they are all horizontal) and they collectively guard
R entirely.170

Proof. Suppose no such set T ′ exists. Let Rv (resp., Rh) be the subregion of
R that is guarded by the union of the vertical (resp., horizontal) line segments
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in T and let Rc
v = R \ Rv (resp., Rc

h = R \ Rh). Since R cannot be guarded
exclusively by vertical line segments (resp., horizontal line segments), we have
Rc

v 6= ∅ (resp., Rc
h 6= ∅). Choose any point p ∈ Rc

v and let Lh be the maximal175

horizontal line segment inside R that crosses p. Since no vertical line segment
in T can guard p, we conclude that no point on Lh is guarded by a vertical line
segment in T . Similarly, choose any point q ∈ Rc

h and let Lv be the maximal
vertical line segment inside R that contains q. By an analogous argument, we
conclude that no point on Lv is guarded by a horizontal line segment. Since Lh180

and Lv are maximal and have perpendicular orientations, Lh and Lv intersect
inside R. Therefore, no orthogonal line segment in T can guard the intersection
point of Lh and Lv, which is a contradiction. �

Theorem 3. The MLSC problem on P reduces to the minimum-weight vertex
cover problem on GP .185

Proof. Let S0 be a vertex cover of GP and let C0 be a cover of P defined in
terms of S0; the mapping from S0 to C0 will be defined later. Moreover, for each
vertex v of GP let w(v) denote the weight of v and for each line segment s ∈ C0

let len(s) denote the length of s. We need to prove that S0 is a minimum-
weight vertex cover of GP if and only if C0 is an optimal cover of P . We show
the following stronger statements: (i) for any vertex cover S of GP , there exists
a cover C of P such that ∑

s∈C
len(s) =

∑
v∈S

w(v),

and (ii) for any cover C of P , there exists a vertex cover S of GP such that∑
v∈S

w(v) =
∑
s∈C

len(s).

Proof of (i). Choose any vertex cover S of GP . We find a cover C for P
as follows: for each edge (vs, vs′) ∈ E, if vs ∈ S we locate a guarding line
segment on the boundary of P that is aligned with the line segment s ∈ B(P ).
Otherwise, we locate a guarding line segment on the boundary of P that is
aligned with the line segment s′ ∈ B(P ). If both vs and vs′ are in S, then
both of the corresponding guarding line segments are located on the boundary
of P . Since at least one of vs and vs′ is in S, we conclude by Observation 4
that every rectangle in R(P ) is guarded by at least one line segment located on
the boundary of P and so C is a cover of P . Moreover, for each vertex in S we
locate exactly one guarding line segment on the boundary of P whose length is
the same as the weight of the vertex. Therefore,∑

s∈C
len(s) =

∑
v∈S

w(v).

Proof of (ii). Choose any cover C of P . We construct a vertex cover S for
GP as follows. By Observation 2, let T ′ be the regular cover obtained from C.
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Moreover, let M be the partition of T ′ into line segments induced by the edges
in S(P ). By Observation 2, M is also a cover of P . Now, let S be the subset
of the vertices of GP such that vs ∈ S if and only if s ∈ M . By Lemma 2 and
the fact that M is a cover of P , for any rectangle R ∈ R(P ), there exists a
set C ′R ⊆ C such that all line segments in C ′R have the same orientation and
collectively guard R. Moreover, since M is obtained from the regular cover T ′

(which is in turn induced by C), a segment in M that covers R is in B(P ).
Therefore, by Observation 4 and the fact that M is a cover of P , we conclude
that S is a vertex cover of GP . Moreover, we observe that∑

v∈S
w(v) =

∑
s∈M

len(s) =
∑
s∈C

len(s). �

We now show that graph GP is bipartite.

Lemma 4. Graph GP is bipartite.

Proof. The proof follows from the facts that (i) we have two types of vertices
in GP ; those that correspond to the vertical line segments in B(P ) and those
that correspond to the horizontal line segments in B(P ), and that (ii) no two190

vertical line segments in B(P ) nor any two horizontal line segments in B(P )
can see a fixed rectangle in R(P ). �

We now examine the running time of the algorithm. For the running time
of Part 1 of the proof of Theorem 3, the described procedure can be completed
in O(n) time; note that this is used to construct the cover after computing the195

vertex cover. For the running time of the construction described in Part 2 of the
proof of Theorem 3, we first compute the running time of constructing graph G.
Graph GP can be constructed in O(n2 log n) time as follows (recall that n is the
number of the vertices of P ). For each line segment s ∈ B(P ), let r(s) be a ray
that is normal to s and starts from a point on s. For every pair s1, s2 ∈ B(P ),200

where s1 is horizontal and s2 is vertical, we check to see if r(s1) and r(s2)
intersect each other inside P . If so, then the line segments s1 and s2 can see
a common rectangle and, therefore, we add an edge between the corresponding
vertices in GP . Considering all pairs s1, s2 ∈ B(P ) takes O(n2) time and the
ray shooting queries can be answered in O(log n) time [22]. Therefore, graph205

GP is constructed in O(n2 log n) time. Next, note that by locating a guard
on every edge of the polygon P , we obtain a feasible solution for the MLSC
problem; hence, we can assume that |C| ∈ O(n), where C is a cover of P . So,
we can compute a regular cover of P from C in O(n2) time, by moving each
line segment in C down or to the right (in O(n) time) until it hits the boundary210

of P . The set M can also be obtained in O(n2) time. Thus, the construction
in the second part of the proof can be completed in O(n2) time. A minimum
vertex cover of GP can be found by solving the maximum matching problem
on GP since these two problems are equivalent on bipartite graphs by Konig’s
theorem [21]. The maximum matching on GP can be solved in O(T (n)) time,215

where T (n) is the time required to multiply two n× n matrices. Since the best
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known algorithm for multiplying two n × n matrix runs in O(n2.3727) [23], our
algorithm runs in O(n2.3727) overall time. Therefore, by Theorem 3, Lemma 4
and the fact that minimum-weight vertex cover is solvable in O(n2.3727) time
on bipartite graphs, we have the main result of this section:220

Theorem 5. Given an orthogonal polygon P , there exists an O(n2.3727)-time
algorithm that finds an optimal cover of P , where n is the number of the vertices
of P .

4. The MCSC Problem: Hardness Result

In this section, we show that the MCSC problem is NP-complete for or-225

thogonal polygons with holes; that is, we show that the following problem is
NP-complete:

MCSC With Holes
Input: An orthogonal polygon P , possibly with holes and an integer k.230

Output: Yes, if there exist k orthogonal line segments inside P that guard P
entirely; No, otherwise.

Given a candidate solution for the MCSC With Holes problem, we can
verify the solution in polynomial time by checking whether the union of the235

visibility regions of cameras in the solution is P . Therefore, the problem is
in NP. We show NP-hardness by a reduction from the minimum hitting of
horizontal unit segments problem, which we call the Min Segment Hitting
problem, defined as follows [24]:

240

Min Segment Hitting
Input: n pairs (ai, bi), i = 1, . . . , n, of integers and an integer k.
Output: Yes, if there exist k orthogonal lines l1, . . . , lk in the plane, i.e., for
each i, li is horizontal or vertical, such that each line segment [(ai, bi), (ai+1, bi)]
is hit by at least one of the lines; No, otherwise.245

Hassin and Megiddo [24] proved that the Min Segment Hitting problem
is NP-complete. Let I be an instance of the Min Segment Hitting problem,
where I is a set of n horizontal unit-length segments with integer coordinates.
We construct an orthogonal polygon P (with holes) such that there exists a250

set of k orthogonal lines that hit the segments in I if and only if there exists
a set C of k + 4 orthogonal line segments inside P that collectively guard P .
Throughout this section, we refer to the segments in I as unit segments and to
the segments in C as line segments.

255

Gadgets. Without loss of generality, assume that no two unit segments overlap
each other. We observe that any two unit segments in I can share at most one
point, which must be a common endpoint of the two unit segments. For each
unit segment si ∈ I, 1 ≤ i ≤ n, we denote the left endpoint of si by (ai, bi)
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(ai, bi)

si

(ai + 1, bi)

p(si)

Figure 3: The L-holes associated with a line segment si ∈ I, where (a) ai is even, and (b) ai
is odd.

and, therefore, the right endpoint of si is (ai +1, bi). Let L(si) denote the set of260

unit segments in I for which the x-coordinate of their left endpoints is equal to
ai. Moreover, let N(si) denote the set of unit segments in I that have at least
one endpoint with x-coordinate equal to ai or ai + 1. Our reduction refers to
an L-hole, which we define as an orthogonal polygon with six vertices such that
exactly one of them is reflex. We constrain each grid cell to have size 1

12 ×
1
12 .265

The L-holes have variable size; in order to specify the size of L-holes, we first
need the following notation.

Let I = {O1, O2, . . . , Or} be a partition of I such that the left endpoints of
all the unit segments in Om, for each 1 ≤ m ≤ r, have the same x-coordinate.
Consider the set Om, for some 1 ≤ m ≤ r, and let |Om| = t, where t = |L(si)|270

for any unit segment si ∈ Om. The idea is to associate exactly four L-holes for
each unit segment s ∈ Om depending on t and the parity of the x-coordinate of
the left endpoint of s.
Case 1. t = 1. Let si be the only unit segment in Om. If ai is even, then
Figure 3(a) shows the L-holes associated with si. If ai is odd, then Figure 3(b)275

shows the L-holes associated with si. In both cases, each L-hole has height and
width of 1/6. However, in the case ai is even (resp., is odd), the L-holes are
located such that the vertical distance between any point on an L-hole and si
is at least 1/12 (resp., 3/12). Note the red vertex on the bottom left L-hole
of si in Figure 3(a) and the blue vertex on the bottom right L-hole of si in280

Figure 3(b); we call this vertex the visibility vertex of si, which we denote p(si).
The L-holes associated with si do not interfere with the L-holes associated with
the line segments in N(si) because for any unit segment sj ∈ N(si) the vertical
distance d between si and sj is either zero or at least one. If d ≥ 1, then it is
trivial that the L-holes of si do not interfere with those of sj . Now, suppose285

that si and sj share a common endpoint; that is d = 0. Since si and sj have
unit lengths, and ai and aj have different parities, the L-holes associated with
si and sj do not interfere with each other. Figure 4 shows an example of such
two unit segments and their corresponding L-holes.
Case 2. t ≥ 2. Let {si1 , si2 , . . . , sit} be the unit segments in Om ordered from290
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top to bottom. We associate each unit segment in Om with four L-holes similar
to Case 1: two left L-holes around its left endpoint and two right L-holes around
its right endpoint. Here, each L-hole has height and width equal to 1

6t ; note
that the size of L-holes remain polynomial in the size of the input. Informally,
the idea is to locate the L-holes in such a way that the L-holes of every two unit295

segments in Om do not block the vertical visibility of their horizontal edges. To
this end, consider the vertical slab of size two grid units to the left of the unit
segments in Om; see Figure 5(a) for an illustration. We first partition the slab
into t vertical subslabs; note that the total width of all L-holes on one side is 1/6.
Consider the subslabs from left to right. Then, we consider the unit segments in300

Om from top to bottom and locate their left L-holes in separate subslabs from
left to right; see Figure 5(a). Note that the left L-holes of each unit segment in
Om lie in the same slab (i.e., they are aligned with each other). Next, we locate
the right L-holes of the unit segments in Om analogously by considering the
vertical slab of size two grid units to the right of the unit segments in Om, and305

then partitioning the slab into t vertical subslabs. Then, consider the subslabs
from right to left: we locate the right L-holes of the unit segments in Om from
top to bottom in separate subslabs from right to left (as opposed to the left L-
holes that were located in separate subslabs from left to right). See Figure 5(b)
for an illustration. We emphasize that, similar to Case 1, the vertical distance310

between any point on an L-hole and its corresponding unit segment is at least
1/12 or 3/12 depending on the parity of the x-coordinate of the left endpoint
of the unit segment. Note that Figure 5 does not show this distance properly
due to space constraints. Our construction ensures the following observation:

Observation 5. Let s be a unit segment in Om. Then, the visibility region of315

the topmost horizontal edge of the upper left L-hole (resp., the lowest horizontal
edge of the lower left L-hole) of s is unbounded from above (resp., from below);
i.e., it is not blocked by any other L-hole. Similarly, the visibility region of the
topmost horizontal edge of the upper right L-hole (resp., the lowest horizontal
edge of the lower right L-hole) of s is unbounded from above (resp., from below).320

See the shaded regions in Figure 5 for an example.

Observation 5 holds even if the unit segments in Case 2 share a common
endpoint; this is illustrated in Figure 6. We now describe the reduction.

Reduction. Given an instance I of the Min Segment Hitting problem,325

we first associate each unit segment in si ∈ I with four L-holes as described
above. After adding the corresponding L-holes, we enclose I a rectangle such
that all unit segments and the L-holes associated with them lie in its interior.
Finally, we create four small rectangles, each located on one corner of the bigger
rectangle as shown in Figure 7; note the visibility vertex of each smaller rectangle330

shown in red. The visibility vertex of a smaller rectangle is only visible to
the line segments that guard the interior of the smaller rectangle. Moreover,
(i) any orthogonal line segment that guards one of the smaller rectangles cannot
intersect any of the unit segments in I, and (ii) there exists a dent on the
entrance to each smaller rectangle to ensure that no orthogonal line segment in335
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si sj

p(si)

p(sj)

Figure 4: An illustration of the L-holes associated with two line segments si and sj in I that
share a common endpoint such that ai is even and L(si) = ∅.

P can see more than one visibility vertex of the smaller rectangles. See Figure 7
for a complete example of the reduction. Let P be the resulting orthogonal
polygon. We now show the following lemma.

Lemma 6. There exist k orthogonal lines such that each unit segment in I is
hit by one of the lines if and only if there exists k + 4 orthogonal line segments340

inside P that collectively guard P .

Proof. (⇒) Suppose that there exists a set S of k lines such that each unit
segment in I is hit by at least one line in S. We can assume that every line L ∈ S
hits at least one unit segment in I; otherwise, we can remove L from S without
affecting the feasibility of S. Let L ∈ S and let LP = L ∩ P . If L is horizontal,345

then L, and therefore LP , does not cross any L-hole inside P . Similarly, if L
is vertical and passes through an endpoint of some unit segment(s) in I, then
neither L nor LP passes through the interior of any L-hole in P .4 Now, suppose
that L is vertical and passes through the interior of a unit segment s ∈ I.
Translate LP horizontally such that it passes through the midpoint of s. Since350

unit segments have endpoints on adjacent integer grid point, LP still crosses the
same set of unit segments of I as it did before this move. Moreover, this ensures
that LP does not cross any L-hole inside P . Consider the set S′ = {LP | L ∈ S}.

The line segments in S′ cannot guard the visibility vertex of any of the
smaller rectangles. Moreover, if all line segments in S′ are vertical or all are355

horizontal, then they cannot collectively guard the bigger rectangle entirely.
Next, we add four orthogonal line segments into S′ each of which guards one of
the smaller rectangles entirely. We choose each of these line segments in such
way that it guards one smaller rectangle and hits the dent that is on the other
corner of the bigger rectangle; see the red dashed line segments in Figure 7.360

We call these four line segments the boundary guards. Let S′′ be the union of
S′ and the boundary guards. Clearly, |S′′| = k + 4. We now show that S′′ is
a feasible solution for the MCSC problem on P . Let p be a point in P . If p
is inside one of the smaller rectangles, then it must be guarded by one of the
boundary guards. Recall the vertical subslabs obtained by dividing the vertical365

4Note that it is possible for L to pass through the boundary of some L-hole.
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1/6

si1

si2

si3

1/6

si4

(b)(a)

Figure 5: The unit segments in Om, where |Om| = 4, and the associated L-holes. (a) The
left slab (shown as the two solid vertical red lines) is divided into four subslabs (separated by
the three dashed vertical red lines) and the left L-holes of the unit segments in Om (ordered
from top to bottom) are located from left to right in separate subslabs. (b) The right slab is
divided into four subslabs and the right L-holes of the unit segments in Om (ordered from top
to bottom) are located from right to left in separate subslabs. Note the unbounded shaded
regions below and above the L-holes associated with unit segment si2 .

slabs when locating the L-holes; note that each of such subslabs contains exactly
two L-holes.

• Suppose that p lies in one of the subslabs. If it is between the L-holes
associated with a unit segment s ∈ I, then p is guarded by the line segment
in S′ whose corresponding line intersects s (if the line is horizontal), or p370
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1/6 1/6

sjsi

1/6 1/6

Figure 6: An illustration of the L-holes associated with two line segments si and sj in I that
share a common endpoint such that ai is odd and |L(si)| = 1 (i.e., the only unit segment in
L(si) is the one that is directly above si).

is guarded by the line segment in S′ whose corresponding line intersects
s or the unit segment(s) to the left or right of s (if the line is vertical).
Otherwise, by Observation 5, one of the horizontal boundary guards must
see p.

• Now, suppose that p does not lie in a vertical subslab. Then, if p lies in-375

side the rectangle induced by the reflex vertices of the L-holes associated
with s (i.e., the shaded rectangle in Figure 3(a) for instance), for some
unit segment s ∈ I, then there are four cases: either (i) p is guarded by
the line segment in S′ whose corresponding line intersects s (if the line is
horizontal), (ii) p is guarded by a line segment in S′ whose corresponding380

line intersects a unit segment in L(s) that is above s (if that line is hori-
zontal), (iii) p is guarded by the line segment in S′ whose corresponding
line intersects the unit segment to the left or right of s (if the line is verti-
cal), or (iv) p is guarded by one of the boundary guards if neither the line
segment described in (i) nor the one described in (iii) can see p. This is385

also true for two unit segments with a common endpoint because for those
regions that the L-holes associated with such two unit segments block the
visibility, point p is visible to at least one of the boundary guards (iv). If
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s1

s2

s3

s4

s5

s6

s4

s2 s5

s3 s6

s1 s4

s2 s5

s3 s6

s1

s2

s3

s4

s5

s6

s1 s4

s2 s5

s3 s6

(a)

(b)

Figure 7: A complete example of the reduction, where I = {s1, s2, . . . , s6}, with the assump-
tion that a1 is even. Each line segment that has a bend represents an L-hole associated with
a unit segment. Note the red vertex inside each smaller rectangle. This vertex, which we call
the visibility vertex of the smaller rectangle, is only visible to the line segments that guard the
interior of the smaller rectangle, which in turn cannot intersect any unit segment in I. The
shaded regions indicate (a) the visibility region of the boundary guards, and (b) the visibility
region of three horizontal sliding cameras induced by a solution to the Min Segment Hitting
problem.

p is not interior to any of such rectangles, then it is seen by the boundary
of the polygon in at least one orthogonal direction and, therefore, one of390

the boundary guards sees p.

Therefore, the set S′′ is a feasible solution for the MCSC problem on P such
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that |S′′| = k + 4.
(⇐) Now, suppose that there exists a set M of k+4 orthogonal line segments

contained in P that collectively guard P . For any line segment c ∈ P , we denote395

the line induced by c by Lc. We now describe how to find k lines that form a
solution to instance I by moving the line segments in M accordingly such that
each unit segment in I is hit by at least one of the corresponding lines. From
the construction of polygon P , no line segment in M can see more than one
visibility vertex of the smaller rectangles. Thus, let M ′ be the set of the four400

line segments in M each of which guards a visibility vertex of a smaller rectangle.
We know that no line segment in M ′ can see p(s), for all s ∈ I. Therefore, for
each unit segment s ∈ I in order, consider a line segment ` ∈ M \ M ′ that
guards p(s); let `′ be the maximal line segment inside P that is aligned with
`. Note that `′ must intersect R, the rectangle induced by the reflex vertices of405

the L-holes associated with unit segment s (see the shaded rectangle in Figure 3
for an example). If `′ is horizontal and L`′ does not align with s, then move
`′ accordingly up or down until it aligns with s. Thus, L`′ is a line that hits
s. Now, suppose that `′ is vertical. If `′ intersects s, then L`′ also intersects s.
If `′ does not intersect s, then the endpoints of `′ must be on the boundary of410

two of the L-holes associated with s; this is because the only way for a maximal
line segment to see p(s) is to intersect R and, therefore, either intersect s or be
bounded by the L-holes of s. Thus, we move `′ horizontally to the left or to the
right until it hits s. Therefore, L`′ is a line that hits s after this move.

Therefore, we have obtained exactly one line from each line segment in M \415

M ′ such that each unit segment in I is hit by at least one of the lines. This
completes the proof of the lemma. �

By Lemma 6 we obtain the main result of this section:

Theorem 7. The MCSC With Holes is NP-complete.

5. A 2-Approximation Algorithm for [X]-Star-Shaped Orthogonal Poly-420

gons

In this section we present a polynomial-time 2-approximation algorithm
for the MCSC problem on [X]-star-shaped orthogonal polygons. Let X ∈
{NE,NW,SE, SW}, where N,S,E and W denote the four main compass di-
rections. An orthogonal polygon P is called [X]-star-shaped, for some X ∈425

{NE,NW,SE, SW}, if there exist a convex vertex p ∈ P such that, for all
points q ∈ P , there exist an orthogonal path from p to q using only compass
directions defined by X. For example, the polygon shown in Figure 8 is a [NE]-
star-shaped orthogonal polygon because there exist an orthogonal path from p
to q with only the North (N) and East (E) compass directions for all points430

q ∈ P ; by definition this path is x- and y-monotone. Note that such a point p
is unique because otherwise there cannot be an orthogonal path from at least
one such point p to the other point p′ with only the compass directions defined
by X; we call such a point p in P the kernel of P .
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q

p

Figure 8: An example of a [NE]-star-shaped orthogonal polygon P . Point p is the kernel point
and the bottom most edge of P is the kernel segment of P .

5.1. Notation435

Let s be the maximal horizontal line segment inside P that passes through
the kernel of P . For the rest of this section, we refer to the kernel of P as the
kernel point of P and to s as the kernel segment of P . For example, the point
p in Figure 8 is the kernel point of P and the bottom most horizontal edge of
P is the kernel segment of P . The kernel point of P is the left endpoint of the440

kernel segment of P . We denote the line and the maximal line segment in P
aligned with an edge e of P by `(e) and s(e), respectively. For a subpolygon P ′

of P , we denote the portion of P ′ that is seen by an orthogonal line segment
s in P by VP ′(s). For a point p ∈ P , we denote the x- and y-coordinates of
p by x(p) and y(p), respectively. For a horizontal line segment s inside P , we445

denote its left and right endpoints by left(s) and right(s), respectively. For
two points {p, q} ∈ P , we denote shortest orthogonal path between p and q in P
by SOP (p, q). The following observation is by Katz and Morgenstern [7]:

Observation 6. Let p and q be two points inside P such that all SOP (p, q)
have at least three bends. Then, no orthogonal line segment inside P can see450

both p and q.

Throughout this section, we assume that P is a [NE]-star-shaped orthog-
onal polygon; the algorithm for other values of X ∈ {NE,NW,SE, SW} is
analogous. In the following, we describe the algorithm in which we denote the
solution set being constructed by S, which is initially empty.455

5.2. Algorithm

Let p be the kernel point of P and let s be the kernel segment of P . Let s′ be
the highest horizontal line segment (i.e., the one with largest y-coordinate) in
P such that VP (s) ⊆ VP (s′). Add s′ to S. Next, if VP (s′) = P , then terminate.
Otherwise, note that P \ VP (s′) is a set of subpolygons M = {P1, P2, . . . } each460

of which is a [NE]-star-shaped orthogonal polygon and which has exactly one
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edge in common with the visibility polygon VP (s′). Let M ′ ⊆ M denote a
maximal set of all Pi ∈ M such that the union of all Pi in M ′ is guarded by
a single vertical line segment si ∈ P that intersects s′. For each such subset
M ′, we add the leftmost such line segment si to S. Then, we solve the problem465

recursively on each subpolygon Pj ∈M \M ′. See Figure 9 for an illustration of
the algorithm.

p

(a)

p

(b)

A3

A2

s4

A4

s1 = s‘

s3

s2

s1 = s‘

s3 s4

s2

s5

s6

s8

s7

Figure 9: An example illustrating the execution of the algorithm on a [NE]-star-shaped poly-
gon P . (a) In the first iteration of the algorithm the line segments s1, s2, s3 and s4 are added
to S. (b) The second iteration of the algorithm in which we first guard subpolygon A2 by s5
and then the subpolygon A3 by s6. Finally, in the third iteration of the algorithm, the line
segments s7 and s8 are added to guard the subpolygon A4. The solution S = {s1, s2, . . . , s8}
is returned at the end; note that any feasible solution requires at least 7 sliding cameras.
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5.3. Running Time

We now examine the running time of the algorithm. Consider the first
iteration of the algorithm. The kernel point of P can be computed in O(n) time,470

where n is the number of the vertices of P [25]. Moreover, the visibility polygon
of the kernel segment of P and so that of s′ is also computed in O(n) time [26].
So, we can then compute each unguarded subpolygon Pi in O(n) time [26]. Next,
for each unguarded subpolygon Pi, we can check to see if Pi is guarded entirely
by a single vertical line segment si in O(ni) time, where ni is the number of the475

vertices of Pi; such a line segment si can be computed in O(ni log ni) time using
a sweep line algorithm. Therefore, the first iteration of the algorithm can be
completed in O(n2 log n) overall time. Since the subpolygon in each recursive
step of the algorithm has at least one vertex less than its parent subpolygon,
the algorithm has at most O(n) recursive steps. Therefore, the algorithm can480

be completed in O(n3 log n) overall time.

5.4. Algorithm Correctness

We first show that S, the solution computed by the algorithm is a feasible
solution. In each recursive step, the visibility polygon of a horizontal line seg-
ment inside P is guarded. Potentially some of the unguarded subpolygons are485

also guarded by the vertical sweeping line, and then the remaining unguarded
subpolygons will be guarded recursively until the entire polygon is guarded.
Therefore, we have the following lemma:

Lemma 8. The set S is a feasible solution for the MCSC problem on P .

We next prove that |S| ≤ 2 · |OPT |, where OPT is an optimal solution for490

the MCSC problem on P . To this end, we first associate a rooted tree T with
the solution S as follows: the root r of T corresponds to the first horizontal line
segment s′ added to S. Each subpolygon Pi ∈M of P \ VP (s′) has exactly one
edge in common with the subpolygon P0 = VP (s′) (that is not an edge of P );
we call this edge the window segment between Pi and P0. The children of r495

are defined as follows. First, the root r has a child that is a leaf node for each
vertical line segment si added to S to guard Pi ∈M ′. Next, for each subpolygon
Pj that remains unguarded, let Tj be the tree whose root corresponds to the
first horizontal line segment located in Pj . Then, the root of Tj becomes a child
of T . Figure 10 shows the tree T associated with the solution S of the polygon500

in Figure 9(b).
We denote the parent of a node v ∈ T by par(v). Let N(T ) denote the

number of nodes in T ; note that N(T ) ∈ O(n). For each node u ∈ T , let s(u)
be the line segment in S that corresponds to u.

Observation 7. Let u be a node in T . If u is a non-leaf node, then s(u) is505

horizontal.
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s1

s2 s3 s4 s5 s6

s7

s8

Figure 10: The tree T associated with
the solution S of the polygon in Fig-
ure 9(b). Note that the subpolygon
P (ui), where ui is the node in T cor-
responding to si, for all 2 ≤ i ≤ 4, is
shaded in Figure 9(a).

Observation 7 implies that if s(u) is ver-
tical, then u must be a leaf node in T . We
associate a subpolygon P (u) with each node
u ∈ T as follows. If s(u) is horizontal, then
P (u) is the visibility polygon of s(u) in P . If
s(u) is vertical, then

P (u) = VP (s(u)) \
⋃

s∈S, and
s is horizontal

VP (s).

That is, P (u) is the set of all points in P that
are visible to s(u), but not to any horizon-
tal line segment in S. Note that P (u) is not
necessarily connected. We now define

Ai =
⋃
u∈Ii

P (u),

where Ii is the set of all line segments in S that are computed in ith step of the
recursion. See A2, A3 and A4 in Figure 9(b) for an example. We now show that
|OPT | ≥ 1/2 ·N(T ).

Lemma 9. Let OPT be an optimal solution for the MCSC problem on P .510

Then, |OPT | ≥ 1/2 ·N(T )

Proof. Let h denote the height of the tree T , where the root r is at height
0. To prove the lemma, we first compute a subset U of nodes in T whose
cardinality is at least half of N(T ) and will then show that |OPT | ≥ |U |; that
is, |OPT | ≥ |U | ≥ 1/2 ·N(T ).515

Consider the following recursive operation on T . Let u be a leaf node at
height h and let v denote its parent. First, add u and all of its siblings to U ;
note that node v is not added to U . Next, remove v and all of its children from
T and let T ′ be the resulting tree. Perform the operation recursively on T ′ until
N(T ′) = 0. For example, U = {s8, s6, s5, s4, s3, s2} for the tree T shown in
Figure 10. Consider the first step of this recursive operation. Observe that the
node u and all of its siblings that are added to U in this step are all the leaf
nodes of T because u is at height h of T . Moreover, we remove the node v from
T only because it has at least one child u, which has been already added to U .
In general, considering tree T ′ in some step of the recursion, at least one node
u of T ′ is added to U for every node v that is removed from T ′. Therefore,

|U | ≥ 1/2 ·N(T ). (1)

We now prove that |OPT | ≥ |U |. To this end, we first associate a fixed
point pu ∈ P (u) with each node u ∈ U , and then will show that for every pair
of nodes u, v ∈ U , SOP (pu, pv) has at least three bends. By Observation 6, this
implies that |OPT | ≥ |U |. For each node u ∈ U , if s(u) is vertical, then let pu
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(a) (b)

pu

pu

pv

pv

s(u)

s(v)

s(v)

s(u)

Figure 11: An illustration in support of the first case of Lemma 9.

be a point in P (u) and pu /∈ P (v) for all siblings v of u in T . Note that at least520

one such point pu must exist because otherwise we would have not added s(u)
into S.

Now, suppose that s(u) is horizontal. If Pi is the input polygon P , then let
pu be the kernel point of P . Otherwise, let w be the parent of u (note that
w exists as u is not the root node), and consider the window segment between525

P (u) and P (w). Then, let pu be a point in P (u) that is not visible to this
window segment; at least one such point exists as otherwise s(u) would have
not been horizontal.

We now prove that SOP (pu, pv) has at least three bends, for every pair of
nodes u, v ∈ U . To this end, let u and v be two nodes in U . We consider three530

cases depending on the orientations of s(u) and s(v).

• s(u) and s(v) are both vertical. Then, either s(u) and s(v) lie in the
same subpolygon Ai, for some i, or they lie in different subpolygons. If
s(u) and s(v) lie in different subpolygons, then Figure 11(a) shows that
SOP (pu, pv) must have at least three bends. Now, suppose that s(u) and535

s(v) lie in the same subpolygon Ai, for some i. Since pu is not visible to
s(v) and pv is not visible to s(u), it is easy to see that SOP (pu, pv) must
have at least three bends; see Figure 11(b) for an illustration.

• s(u) and s(v) are both horizontal. First, note that neither u is the parent
of v in T nor v is the parent of u in T because we never add a node and540

its parent into U . Therefore, w.l.o.g., suppose that the path between u
and v in T passes through par(u), the parent of u. By Observation 7, line
segment s(par(u)) is horizontal and, therefore, s(u), s(v) and s(par(u)) are
all horizontal. Consider SOP (pu, pv); clearly, SOP (pu, pv) must intersect
P (par(u)), the subpolygon corresponding to node par(u). Let Pu and P v

545

denote the portion of SOP (pu, pv) that lie in P (u) and P (v), respectively.
Since pu is not visible to the window segment between P (u) and P (par(u)),
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Pu must have at least one bend before entering P (par(u)). Similarly, P v

must have at least one bend before entering P (par(u)). Since P is [NE]-
star-shaped, Pu and P v can enter P (par(u)) either both from right or550

one from right and the other from left. (i) If both Pu and P v enter
P (par(u)) from right, then clearly they require at least one bend to reach
each other and hence SOP (pu, pv) has at least three bends in total. (ii) If
Pu and P v enter P (par(u)) from opposite directions, then we show in the
following that they still require at least one bend to reach each other and555

so SOP (pu, pv) has at least three bends in total.

Now, suppose that Pu and P v could be connected to each other inside
P (par(u)) with no additional bend. Since they enter P (par(u)) from
opposite directions, the portion of SOP (pu, pv) inside P (par(u)) is just a
single horizontal line segment s. But, then s could be extended into P (u)560

and spans the kernel segments of both P (par(u)) and P (u). That is, the
algorithm would have merged P (par(u)) and P (u) into one subpolygon
by selecting s as the line segment s′ in the algorithm’s description — a
contradiction.

• s(u) and s(v) have different orientations. Suppose w.l.o.g. that s(u) is565

vertical and s(v) is horizontal. Since s(u) is vertical, by Observation 7,
node u must be a leaf node in T . Moreover, node v is an internal node
and it cannot be the parent of u. Therefore, s(par(u)) is horizontal and
different than s(v). Consider SOP (pu, pv), and let Pu and P v denote the
portion of SOP (pu, pv) that lies in P (u) and P (v), respectively. First,570

it is clear that SOP (pu, pv) must intersect P (par(u)). Now, similar to
the previous case, we can show that P v must have at least one bend
before entering P (par(u)), but Pu may have no bends. Nevertheless,
we show that Pu and P v require at least two bends inside P (par(u)) in
order to reach each other. To this end, we first note that SOP (pu, pv)575

cannot have only one bend inside P (par(u)) because both Pu and P v

enter P (par(u)) horizontally (i.e., SOP (pu, pv) is normal to both window
segments between P (u) and P (par(u)), and between P (v) and P (par(v)));
hence, they need an even number of bends to reach each other. Now,
suppose for a contradiction that they reach each other with no bends. By580

an argument analogous to the one shown in the previous case, we can
conclude that the portion of SOP (pu, pv) inside P (par(u)) is just a single
horizontal line segment s, and so the algorithm would have merged P (v)
and P (par(u)) into one subpolygon by selecting s as the line segment
s′ in the algorithm’s description — a contradiction. This means that585

SOP (pu, pv) has at least two bends inside P (par(u)), and hence three
bends in total.

Therefore, SOP (pu, pv) has at least three bends for every pair of nodes
u, v ∈ U , and so by Observation 6,

|OPT | ≥ |U |. (2)

22



By (1) and (2), |OPT | ≥ 1/2 ·N(T ). �

By the definition of tree T , the number of nodes in T corresponds to the
number of line segments in S; that is, |S| = N(T ). Therefore, by Lemma 9, we590

have the following result:

Theorem 10. There exist an O(n3 log n)-time 2-approximation algorithm for
the MCSC problem on any [NE]-star-shaped orthogonal polygon with n vertices.

Our algorithm can be applied analogously to get a 2-approximation algo-
rithm for [X]-star-shaped orthogonal polygons for all X = {NE,NW,SE, SW}.595

Therefore, we obtain the main result of this section:

Theorem 11. There exist an O(n3 log n)-time 2-approximation algorithm for
the MCSC problem on any [X]-star-shaped orthogonal polygon with n vertices,
where X ∈ {NE, NW, SE, SW}.

6. Conclusion600

In this paper, we studied the problem of guarding an orthogonal polygon P
using sliding cameras that was introduced by Katz and Morgenstern [7]. We
considered two variants of this problem: the MCSC problem (in which the
objective is to minimize the number of sliding cameras used to guard P ) and
the MLSC problem (in which the objective is to minimize the total length of605

trajectories along which the cameras travel).
We gave a polynomial-time algorithm that solves the MLSC problem exactly

even for orthogonal polygons with holes, answering a question posed by Katz and
Morgenstern [7]. We also showed that the MCSC problem is NP-complete when
P contains holes, which partially answers another question posed by Katz and610

Morgenstern [7]. Furthermore, we gave an O(n3 log n)-time 2-approximation
algorithm for the MCSC problem on [X]-star-shaped orthogonal polygons, where
n is the number of the vertices.

Although we settled the complexity of the MLSC problem, the complexity
of the MCSC problem on simple orthogonal polygons remains open. For small615

constants α > 0, giving α-approximation algorithms for the MCSC problem on
any orthogonal polygon is another direction for future work. Finally, does the
MCSC problem admit a PTAS or the problem is APX-hard?
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