
Guarding Monotone Art Galleries with Sliding
Cameras in Linear Time

Mark de Berg1∗, Stephane Durocher2†, and Saeed Mehrabi2§

1 Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven,
The Netherlands. mdberg@win.tue.nl

2 Department of Computer Science, University of Manitoba, Winnipeg, Canada.
{durocher, mehrabi}@cs.umanitoba.ca

Abstract. A sliding camera in an orthogonal polygon P is a point
guard g that travels back and forth along an orthogonal line segment s
inside P . A point p in P is guarded by g if and only if there exists a point
q on s such that line segment pq is normal to s and contained in P . In
the minimum sliding cameras (MSC) problem, the objective is to guard
P with the minimum number of sliding cameras. We give a linear-time
dynamic programming algorithm for the MSC problem on x-monotone
orthogonal polygons, improving the 2-approximation algorithm of Katz
and Morgenstern (2011). More generally, our algorithm can be used to
solve the MSC problem in linear time on simple orthogonal polygons P
for which the dual graph induced by the vertical decomposition of P is a
path. Our results provide the first polynomial-time exact algorithms for
the MSC problem on a non-trivial subclass of orthogonal polygons.

1 Introduction

Art-gallery problems, introduced by Klee in 1973 [10], are one of the most widely
studied problems in computational geometry. In the standard version of the prob-
lem one is given a simple polygon P in the plane that needs to be guarded by
a set of point guards. In other words, one wants to find a set of point guards
such that every point in P is seen by at least one of the guards, where a guard g
sees a point p if and only if the segment gp is contained in P . Chvátal [1] proved
that bn/3c point guards are always sufficient and sometimes necessary to guard
a simple polygon with n vertices. Lee and Lin [9] showed that finding the mini-
mum number of point guards needed to guard an arbitrary polygon is np-hard
for arbitrary polygons. The art-gallery problem is also np-hard for orthogonal
polygons [11] and it even remains np-hard for monotone polygons [8]. Eiden-
benz [4] proved that the art-gallery problem is apx-hard on simple polygons and

∗ Supported by the Netherlands Organisation for Scientific Research (NWO) under
project 024.002.003.
† Supported in part by the Natural Sciences and Engineering Research Council of

Canada (NSERC).
§ Supported in part by a Manitoba Graduate Scholarship (MGS).



2 M. de Berg, S. Durocher, and S. Mehrabi

Ghosh [5] gave an O(log n)-approximation algorithm that runs in O(n4) time on
simple polygons. Krohn and Nilsson [8] gave a constant-factor approximation
algorithm on monotone polygons. They also gave a polynomial-time algorithm
for the orthogonal art-gallery problem that computes a solution of size O(opt2),
where opt is the cardinality of an optimal solution.

Many variants of the art-gallery problem have been studied. The version in
which we are interested was introduced recently by Katz and Morgenstern [6],
and it concerns sliding cameras in orthogonal polygons. A sliding camera in an
orthogonal polygon P is a point guard that travels back and forth along an
orthogonal line segment s ⊂ P . The camera can see a point p ∈ P if and only if
there is a point q ∈ s such that the line segment pq is normal to s and contained
in P . The minimum sliding cameras (MSC) problem is to guard P with the
minimum number of sliding cameras.

Katz and Morgenstern first considered a restricted version of the MSC prob-
lem in which only vertical cameras are allowed. They solved this restricted ver-
sion in polynomial time for simple orthogonal polygons. For the unrestricted
version, where both vertical and horizontal cameras are allowed, they gave a 2-
approximation algorithm for x-monotone orthogonal polygons. (An orthogonal
polygon P is x-monotone if the intersection of P with any every vertical line is
connected.) Later Durocher et al. [2] gave an O(n2.5)-time (3.5)-approximation
algorithm for the MSC problem on simple orthogonal polygons. Durocher and
Mehrabi [3] showed that the MSC problem is np-hard when the polygon P is
allowed to have holes. Durocher and Mehrabi also considered a variant of the
problem, called the MLSC problem, in which the objective is to minimize the
sum of the lengths of line segments along which cameras travel, and proved
that the MLSC problem is polynomial-time solvable even on orthogonal poly-
gons with holes. Seddighin [12] proved that the MLSC problem is np-hard under
k-visibility for any fixed k ≥ 2.

Our main interest is in the standard MSC problem, where the objective is
to minimize the number of cameras. As discussed above, the complexity of the
MSC problem on simple orthogonal polygons remains unknown. Indeed, even for
x-monotone orthogonal polygons there is only an approximation algorithm for
the problem. Recall that the classical art-gallery problem is np-hard on simple
orthogonal polygons [11], simple monotone polygons [8] and even on terrains [7].

Our results. In this paper, we give a linear-time dynamic programming algo-
rithm for the MSC problem on orthogonal x-monotone polygons P . This not
only improves the 2-approximation algorithm of Katz and Morgenstern [6], but
also provides, to the best of our knowledge, the first polynomial-time algorithm
for the MSC problem on a non-trivial subclass of orthogonal polygons. We also
show how to extend this result to so-called orthogonal path polygons. These are
orthogonal polygons for which the dual graph induced by the vertical decom-
position of P is a path. (The vertical decomposition of an orthogonal polygon
P is the decomposition of P into rectangles obtained by extending the vertical
edge incident to every reflex vertex of P inward until it hits the boundary of
P . The dual graph of the vertical decomposition is the graph that has a node



Guarding Monotone Art Galleries with Sliding Cameras in Linear Time 3

for each rectangle in the decomposition and an edge between two nodes if and
only if their corresponding rectangles are adjacent.) Observe that the class of
orthogonal monotone polygons is a subclass of orthogonal path polygons.

2 Preliminaries

For a simple orthogonal and x-monotone polygon P , the leftmost and right-
most vertical edges of P are unique and we denote them by leftEdge(P ) and
rightEdge(P ), respectively. For a sliding camera s in P , we define the visibility
polygon of s as the maximal subpolygon P (s) of P such that every point in P (s)
is guarded by s.

Let VP = {e1 = leftEdge(P ), e2, . . . , em = rightEdge(P )}, for some m > 0,
be the set of vertical edges of P ordered from left to right. For simplicity we
assume that every two vertical edges in VP have distinct x-coordinates, but it is
easy to adapt the algorithm to handle degenerate cases. Let P+

i (resp., P−i ), for
some 1 ≤ i ≤ m, denote the subpolygon of P that lies to the right (resp., to the
left) of the vertical line through ei.

For an orthogonal line segment s in P , we denote the left endpoint and the
right endpoint of s by left(s) and right(s), respectively. If s is vertical, we define
its left and right endpoints to be its upper and lower endpoints, respectively. We
denote the x-coordinate of a point p by x(p). Let si and sj be two horizontal line
segments in P . We define the overlap region of si and sj as the set of points in
P that are visible to both si and sj ; if P (si) ∩ P (sj) is a line or a point (i.e., it
has measure zero), then we consider the overlap region of si and sj to be empty.
We first show that we can restrict our attention to solutions that are in some
suitable canonical form.

Canonical Form. A feasible solution to the MSC problem is a set M of sliding
cameras that guards the entire polygon P . We say that a feasible solution M is
in canonical form if and only if the following properties hold:

(i) Every vertical line segment in M is vertically maximal, meaning that it
extends as far upwards and downwards as possible.

(ii) No vertical line segment in M intersects the interior or passes through the
right endpoint of any horizontal line segment in M .

(iii) The overlap region of si and sj is empty, for every two horizontal line
segments si, sj ∈M such that si 6= sj .

(iv) Every horizontal line segment s ∈ M is rightward maximal, meaning that
s extends at least as far to the right as any horizontal line segment s′ ⊂ P
starting at the same x-coordinate, that is, with x(left(s)) = x(left(s′)).

(v) Let s1, . . . , sk be the sequence of line segments in M ordered from left to
right according to their left endpoint, where in case of ties vertical line
segments come before horizontal line segments, and let Mi := {s1, . . . , si}.
Then, Mi guards every point of P that is to the left of the vertical line
x = x(right(si)).



4 M. de Berg, S. Durocher, and S. Mehrabi

Lemma 1. For any x-monotone orthogonal polygon P , there exists an optimal
solution M for the MSC problem on P that is in canonical form.

Proof. Consider the sequence s1, . . . , sk of line segments in M ordered from
left to right according to their left endpoint, where in case of ties vertical line
segments come before horizontal line segments. This ordering is well defined,
because an optimal solution will never have two vertical line segments with the
same x-coordinates or two horizontal line segments whose left endpoints have
the same x-coordinates. We now show how to modify the line segments in M to
get an optimal solution in canonical form. Without loss of generality, we assume
that all vertical segments in M are already vertically maximal.

We first modify M so that if s1 is horizontal, then left(s1) lies on leftEdge(P ),
the leftmost vertical edge of P . Assume this is not the case. Then, leftEdge(P )
is seen by a vertical line segment sj , for some j > 1. We now replace s1 and sj
by two horizontal line segments, as follows. The first line segment is a rightward
maximal line segment s starting on leftEdge(P )—note that s must intersect sj—
and the second horizontal line segment is a rightward maximal line segment
s′ with x(left(s′)) = x(right(s)). Clearly replacing s1, sj by s, s′ gives another
optimal solution. With a slight abuse of notation we let M denote this new
optimal solution, and we let s1, . . . , sk denote the ordered set of line segments in
the new solution. Note that we now have that if s1 is horizontal, then it starts
at leftEdge(P ) and it is rightward maximal.

Next we turn M into an optimal solution in canonical form. To this end
we go over the line segments in order. When we handle line segment si we will
replace si by a line segment s′i, but we will not modify any other line segment.
Let Mi := {s′1, . . . , s′i}. We maintain the following invariant:

Invariant: After handling si, the modified set M is still an optimal so-
lution. Moreover, Mi has all the required properties: (i) all vertical line
segments in Mi are vertically maximal, (ii) no vertical line segment in
Mi intersects the interior or passes through the right endpoint of any
horizontal line segment in Mi, (iii) the overlap region of any two hori-
zontal line segments in Mi is empty, (iv) every horizontal line segment
in Mi is rightward maximal, and (v) Mi guards everything to the left of
the vertical line x = x(right(si)).

Handling s1 is trivial: we simply set s′1 := s1. If s1 is vertical then this clearly
establishes the invariant—note that no line segment sj with j > 1 can see
anything to the left of s1 that is not also seen by s1 (since s1 is vertically
maximal), which implies that s1 must see everything to its left. If s1 is horizontal
then the invariant holds as well, since we already made sure that s1 is rightward
maximal if it is horizontal. Now suppose the invariant holds after we have handled
si−1, and consider si. There are two cases.

• If si is vertical, then we proceed as follows. Observe that Mi must guard
everything to the left of si, since M is feasible and no line segment sj with
j > i can see a point to the left of si that is not seen by si. Since si is



Guarding Monotone Art Galleries with Sliding Cameras in Linear Time 5

vertical, the fact that Mi−1 satisfies the invariant immediately implies that
Mi has properties (iii) and (iv). So the only problem is that si may intersect
the interior or may pass through the right endpoint of some line segment s′j
with j < i. If this is not the case we simply set s′i := si, otherwise we replace
si by a rightward maximal line segment s′i with x(left(s′i)) = x(right(s′j)).

After the replacement, M is still a feasible (and, hence, optimal) solution.
Indeed, everything to the left of the vertical line x = x(right(s′j)) is guarded
by Mj and to the right of the vertical line x = x(right(s′j)), the new line
segment s′i sees at least as much as si. By the same argument, Mi guards
everything to the left of the vertical line x = x(right(s′i)) and, therefore,
the property (v) holds. Finally, Mi has properties (i) and (ii) because Mi−1
had those properties and the new line segment s′i is horizontal, and Mi has
properties (iii) and (iv) by construction.

There is one subtlety that we must address. Namely, we have to show that
after replacing si by s′i the order of the line segments does not change. In
other words, we must show that s′i is still the i-th line segment in the order.
(Otherwise we would have to argue about a different set Mi.) Obviously
left(s′i) lies to the right of left(s′j) for all j < i. Moreover, there cannot be
any line segment sk with k > i such that left(sk) lies in between si and
left(s′i). Indeed, such a line segment could be omitted, contradicting the
optimality of M .

• If si is horizontal, we proceed as follows. Obviously, the only properties
that may be violated are properties (iii) and (iv). It might be the case that
a vertical line segment sj ∈ M intersects the interior or passes through
the right endpoint of si (thus violating the property (ii)), but this may
happen only if j > i and, therefore, the invariant is still maintained for Mi;
if such line segment sj exists, then the set M will be modified when we
later handle sj . If Mi only violates property (iv), then we replace si by a
rightward maximal line segment s′i with x(left(s′i)) = x(left(si)). If si violates
property (iii), then let s′j ∈Mi−1 be the horizontal line segment that has an
overlap with si. We now replace si by a rightward maximal line segment s′i
with x(left(s′i)) = x(right(s′j)).

Since s′i sees at least as much as si (except possibly for points that were
already seen by s′j), the new solution is still feasible. Moreover, Mi sees
everything to the left of the vertical line x = x(right(s′i)). Therefore, since
Mi−1 satisfies the invariant and because of the way s′i is constructed, Mi has
all the properties (i)–(v). Finally, the new line segment s′i is still the i-th line
segment in the order, as can be verified in the same way as before.

After handling the last line segment sk in M , the set Mk is an optimal solution
in canonical form, thus proving the lemma. ut



6 M. de Berg, S. Durocher, and S. Mehrabi

3 A Dynamic Programming Algorithm

In this section, we present the linear-time exact algorithm for the MSC problem
on orthogonal and x-monotone polygons. Our algorithm is based on a dynamic
programming approach.

3.1 The Recursive Structure

Let P be an orthogonal x-monotone polygon with n vertices. Below we discuss
the recursive structure of the MSC problem on P and we define the subproblems
we use in our dynamic programming algorithm.

Let Mopt = {s1, . . . , sk} be an optimal solution for the MSC problem on P
that is in canonical form, where the segments are numbered from left to right.
Consider a segment sj ∈Mopt. By property (v) of the canonical form, no segment
sj′ ∈Mopt with j > j is needed to guard anything to the left of right(sj). Hence,
after having selected s1, . . . , sj , the subproblem we are left with is to guard P+

i ,
where i is such that right(sj) lies on the line containing the vertical edge ei. Note
that when sj is vertical, we already guarded a part of P+

i , and we have to take
this into account in our subproblem. Hence, we define two types of subproblems.

Type A. Given 1 ≤ i ≤ k, guard P+
i with the minimum number of sliding

cameras.
Type B. Given 1 ≤ i ≤ k, guard P+

i with the minimum number of sliding
cameras, under the assumption that the subregion of P+

i that is visible from
leftEdge(P+

i ) has already been guarded.

We denote the number of guards needed in an optimal solution of Type A on the
polygon P+

i by A[i] and the number of guards needed in an optimal solution of
Type B on the polygon P+

i by B[i]. Note that the minimum number of cameras
needed to guard the entire polygon P is A[1]. In the sequel we show how to
compute the values A[i] and B[i]; computing the actual solution can then be
done in a standard manner.

3.2 Solving the Subproblems

We now give the recursive formulas on which our dynamic programming algo-
rithm is based. Recall that the vertical edges of P are number e1, . . . , ek from
left to right. We denote the vertical line containing ei by `(ei). The following
lemma gives the recursive formula for solving the subproblem of Type A on P+

i .

Lemma 2. Let s be a rightward maximal line segment whose left endpoint lies
on `(ei), and let ei1 be the vertical edge of P on which right(s) lies. Furthermore,
let ei2 be the rightmost vertical edge of P such that s′, the vertically maximal
segment aligned with ei2 , guards everything of P+

i lying to the left of ei2 . See
Figure 1 for an illustration. Then,

A[i] =

{
0 if i = k
min (A[i1], B[i2]) + 1 if i < k



Guarding Monotone Art Galleries with Sliding Cameras in Linear Time 7

s

s′ei

ei2

ei1

`(ei)

Fig. 1: An illustration of the two cases in solving subproblem of Type A on P+
i .

Proof. Trivially A[i] = 0 for i = k, so assume i < k.
Consider the first segment s∗ of an optimal solution for P+

i that is in canon-
ical form. By property (v), we know that s∗ must guard leftEdge(P+

i ). Hence,
if it is horizontal, it must start at leftEdge(P+

i ). By property (iv), segment s∗ is
rightward maximal. Hence, if the first segment is horizontal then the segment s
is the correct choice. After choosing s, we have to guard everything to the right
of s. Note that properties (ii) and (iii) imply that the next segment to be cho-
sen lies in P+

i1
(see Figure 1). Hence, if we decide to pick segment s then we are

indeed left with solving the subproblem of Type A on P+
i1

. Thus in this case
A[i] = A[i1] + 1.

The other option is that the first segment s∗ is vertical. Again, by property (v)
we know that s∗ must guard everything between leftEdge(P+

i ) and s∗. But then
it is obviously best to choose s∗ as far to the right as possible. Hence, s′ is the
correct choice. Now the subproblem we are left with is of Type B and on P+

i2
(see Figure 1), so we have A[i] = B[i2] + 1.

The best way to solve subproblem of Type A on P+
i is the best of these two

options, which proves the lemma. ut

For the subproblems of Type B we have a similar lemma.

Lemma 3. Let ei′ be the leftmost vertical edge in P+
i that is not seen by leftEdge(P+

i ),
let s be a rightward maximal line segment whose left endpoint lies on `(ei′), and
let ei1 be the vertical edge of P on which right(s) lies. Furthermore, let ei2 be the
rightmost vertical edge of P such that s′, the vertically maximal segment aligned
with ei2 , together with leftEdge(P+

i ) guards everything of P+
i lying to the left of

ei2 . See Figure 2 for an illustration. Then,

B[i] =

{
0 if i = k
min (A[i1], B[i2]) + 1 if i < k

Proof. Trivially B[i] = 0 for i = k, so assume i < k.
Consider the first segment s∗ of an optimal solution for P+

i that is in canon-
ical form. First, suppose that s∗ is horizontal. Obviously it is best to make s∗



8 M. de Berg, S. Durocher, and S. Mehrabi

s

s′

ei ei2

ei1ei′

`(ei) `(ei′)

Fig. 2: An illustration of the two cases in solving subproblem of Type B on P+
i .

extend to the right as much as possible, which means left(s∗) should be to the
right as far as possible. However, left(s∗) cannot go beyond ei′ by property (v).
By property (iv), segment s∗ is rightward maximal. Hence, if the first segment
is horizontal then the segment s is the correct choice. After choosing s, we have
to guard everything to the right of s. Note that properties (ii) and (iii) imply
that the next segment to be chosen lies in P+

i1
. Moreover, since s is rightward

maximal and starts to the right of leftEdge(P+
i ), the edge leftEdge(P+

i ) cannot
see anything to the right of right(s). Hence, if we decide to pick segment s then
we are indeed left with solving the subproblem of Type A on P+

i1
(see Figure 2).

Thus, in this case A[i] = A[i1] + 1.

The other option is that the first segment s∗ is vertical. Again, by property (v)
we know that s∗, together with leftEdge(P+

i ), must guard everything between
leftEdge(P+

i ) and s∗. But then it is best to choose s∗ as far to the right as
possible. Hence, s′ is the correct choice. Now the subproblem we are left with is
of Type B and on P+

i2
(see Figure 2), so we have A[i] = B[i2] + 1.

The best way to solve subproblem of Type A on P+
i is the best of these two

options, which proves the lemma. ut

3.3 Algorithmic Details

In this section, we analyze the algorithm and describe how it can be implemented
in linear time. To compute the optimal solution for guarding P+

i , we need to
solve two subproblems; that is, we need to solve a subproblem of Type A and a
subproblem of Type B for P+

i . To solve the subproblem of Type A for P+
i , we

need to solve two subproblems: one is of Type A for which we need to find the
vertical edge ei1 described in Lemma 2, and the other one is of Type B for which
we need to find the vertical edge ei2 described in Lemma 2. Similarly, to solve
the subproblem of Type B for P+

i , we need to solve two subproblems: one is of
Type A for which we need to find the vertical edge ei1 described in Lemma 3,
and the other one is of Type B for which we need to find the vertical edge ei2
described in Lemma 3. Therefore, each vertical edge ei ∈ VP is associated with
at most four other vertical edges of P ; we call these four edges the associated



Guarding Monotone Art Galleries with Sliding Cameras in Linear Time 9

edges of ei. In the following, we show how the associated edges can be computed
in O(n) time for all the vertical edges in VP .

Lemma 4. The associated edges of all the vertical edges in VP can be computed
in O(n) time.

Proof. We show that each type of associated edge can be computed in linear
time for all the vertical edges in VP . The lemma then follows from the fact that
there are four types of associated edges. We first give some definitions. A reflex
vertex v of P is called right reflex (resp. left reflex) if the interior of P lies to
the right (resp., to the left) of the vertical edge incident to v. Moreover, for a
reflex vertex vi of P , we denote the vertical edge incident to vi by ei and the
maximal vertical line segment in P aligned with ei by Li. In the following, we
assume that the sequence of the reflex vertices of P ordered from right to left is
given.
Step 1: the associated edge ei1 described in Lemma 2. To compute this
associated edge, we use a vertical line sweeping P from right to left; the sweep
line halts at each reflex vertex of P . Let UQ and LQ be two double-ended queues
that store the reflex vertices, respectively, on the upper chain and lower chain of
P . By one exception, we assume that UQ (resp., LQ) contains initially the upper
vertex (resp., the lower vertex) of rightEdge(P ). Reflex vertices are added to the
end of the queues, but they might be removed from either the front or the end
of the queues. The vertices are removed from a queue depending on whether the
vertex vi at which the sweep line is currently halted lies on the upper chain or
on the lower chain of P and also depending on where vi lies on the chain relative
to the previously visited vertices. We maintain the following invariant:

Invariant: When the sweep line halts at the reflex vertex vi, then (i) the
queue UQ stores a reflex vertex vj of the upper chain if and only if vj lies
to the right of Li and Li can see at least one point on Lj ; the part of
Lj that is visible to Li is also stored. The vertices in UQ are sorted from
right to left by their x-coordinate, and (ii) the queue LQ stores a reflex
vertex vj′ of the lower chain if and only if vj′ lies to the right of Li and
Li can see at least one point on Lj′ ; the part of Lj that is visible to Li

is also stored. The vertices in LQ are sorted from right to left by their
x-coordinate.

Consider vi, the vertex at which the sweep line is currently halted, and suppose
that vx and vy are the vertices at the front of the two queues. First, we maintain
the invariant. To this end, if the part of Lj that is visible to Li is empty, then
we remove vj from UQ for all vj in UQ. Similarly, if the part of Lj′ that is visible
to Li is empty, then we remove vj′ from LQ for all vj′ in LQ. Next, we set the
associated edge for ei to ex or ey whichever is further to the right from ei. The
vertex vi is then added to the appropriate queue. See Figure 3 for an example.
Since every reflex vertex of P is added to a queue at most once, this step can be
completed in O(n) time.
Step 2: the associated edge ei2 described in Lemma 2. To compute this
associated edge, consider the reflex vertices of P from right to left sorted by



10 M. de Berg, S. Durocher, and S. Mehrabi

2

3

5

6

4

1

ab

c
d

(a)

UQ 2, 3, 4, 5

LQ c

front end

UQ 5

LQ d

front end

(c)

(b)

Fig. 3: An illustration of the sweep line algorithm. (a) An orthogonal x-monotone
polygon P with its reflex vertices on the upper and lower chains labeled from
right to left. (b) The status of queues UQ and LQ when the sweep line halts at
vertex d and the invariant is maintained: the associated edge ei1 for the vertical
edge incident to d is set to the vertical edge incident to vertex c and vertex d
is then added to LQ. (c) The status of queues UQ and LQ when the sweep line
halts at vertex 6 and the invariant is maintained: the associated edge ei1 for the
vertical edge incident to 6 is set to the vertical edge incident to vertex 5 and
vertex 6 is then added to UQ.

their x-coordinate. Then, the associated edge ei2 described in Lemma 2 for a
vertical edge ei is the edge e ∈ VP such that the reflex vertex v incident to e is
the leftmost left reflex vertex of P such that x(v) > x(vi); such vertex v and,
therefore, its incident vertical edge e can be computed in linear time for all the
vertical edges in VP .

Step 3: the associated edge ei1 described in Lemma 3. To compute this
associated edge for an edge ei ∈ VP , we first need to compute the vertical edge
ei′ of P . The edge ei′ for ei is the edge e ∈ VP such that the reflex vertex v
incident to e is the leftmost right reflex vertex of P such that x(v) > x(vi).
Then, the edge ei1 for ei is exactly the associated edge that we have already
computed for ei′ in Step 1. Both vertical edges ei′ and ei1 can be computed in
linear time for all the vertical edges in VP .

Step 4: the associated edge ei2 described in Lemma 3. To find this as-
sociated edge for a vertical edge ei, we first find the leftmost right reflex vertex
vj such that x(vj) > x(vi); observe that every point of P that lies between Li

and Lj (i.e., the maximal vertical line segments in P aligned with ei and ej ,
respectively) is guarded by leftEdge(P+

i ). Therefore, the associated edge ei2 for
ei is in fact the vertical edge that is furthest to the right from Lj such that every
point between Lj and Li2 is guarded by Li2 . But, Li2 is aligned with exactly the
associated edge that we have already computed for ej in Step 2. Therefore, to
compute the associated edge ei2 for a vertical edge ei, we first find the leftmost
right reflex vertex vj to the right of ei and then return the associated edge com-



Guarding Monotone Art Galleries with Sliding Cameras in Linear Time 11

puted in Step 2 for ej . Both vertical edges vj and ei2 can be computed in O(n)
time for all the vertical edges in VP .

Therefore, we can compute all the four associated edges in O(n) time for all
the vertical edges in VP . This completes the proof of the lemma. ut

By Lemma 4, we first compute the associated edges of all the vertical edges
of P in O(n) time. Then, we consider the vertical edges of P in order from
right to left and compute the optimal solution for guarding P+

i in O(1) time by
computing A[i] and B[i] as described, respectively, in Lemma 2 and Lemma 3.
Finally, A[1] is returned as the optimal solution for the MSC problem on P .
Therefore, we have the main result of this section:

Theorem 1. There exists an algorithm that solves the MSC problem on any
simple orthogonal and x-monotone polygon with n vertices in O(n) time.

4 Orthogonal Path Polygons

P1

P4

R3

P3

R2

P2
R1

L1

L2 L3

Fig. 4: An example of an
orthogonal path polygon P
that is not x-monotone
along with an illustration
of partitioning P into x-
monotone subpolygons.

In this section, we show that the dynamic pro-
gramming algorithm given in Section 3 can be
used to solve the MSC problem on any orthogonal
path polygon P with n vertices in O(n) time; that
is, we show that the MSC problem can be solved
in O(n) time on any simple orthogonal polygon
P for which the dual graph G(P ) is a path. To
this end, we first describe the structure of P and
then will show that P can be converted into an
x-monotone polygon by unfolding.

Let P be an orthogonal path polygon with n
vertices. If P is x-monotone, then we solve the
MSC problem on P in linear time by Theorem 1.
If polygon P is not x-monotone, then we first par-
tition P into x-monotone subpolygons as follows.
Since polygon P is not x-monotone, it must have
a vertical edge e whose both endpoints are reflex
vertices of P . Partition P into three subregions by
the maximal vertical line segment L that is aligned
with e. The subregions induced by L are a rect-
angle R and two subregions PL and PU that are
connected to lower and upper parts of one of the
sides of R, respectively. Partition PL and PR re-
cursively until the subregions induced by the par-
titions become x-monotone; see Figure 4 for an illustration. Let P1, P2, . . . , Pk

be the set of x-monotone subpolygons of P from bottom to top. Moreover, let
Li, for all 1 ≤ i < k, be the maximal line segment by which we perform the par-
tition and let Ri, for all 1 ≤ i < k, be the corresponding rectangle. Now, for each
rectangle Ri in order, we unfold P by flipping the subregion Pi+1∪Pi+2∪· · ·∪Pk



12 M. de Berg, S. Durocher, and S. Mehrabi

R1

L1

L2

R2

Fig. 5: An illustration of transforming a non-x-monotone polygon into an x-
monotone polygon by unfolding the polygon.

across the line through Li such that Ri+1 lies to the same side of Li as Ri lies.
The i-th flip ensures that the subregion P1∪P2∪· · ·∪Pi+1 of P is an x-monotone
polygon. Therefore, polygon P is converted to an x-monotone polygon after the
last flip. See Figure 5 for an illustration.

To summarize, we first convert P into an x-monotone polygon using at most
k < n flip operations as described above and then solve the MSC problem on the
resulting x-monotone polygon using the dynamic programming algorithm given
in Section 3. We can compute the set of line segments Li, for all 1 ≤ i < k, in
O(n) time by detecting each vertical edge of P whose both endpoints are reflex
vertices of P . Next, by keeping track of the lower and upper chains of P starting
from L1, we can compute the flipped polygon in O(n) time. Therefore, we have
the following theorem:

Theorem 2. There exists an algorithm that solves the MSC problem on any
orthogonal path polygon with n vertices in O(n) time.

5 Conclusion

In this paper, we gave a linear-time exact dynamic programming algorithm for
the problem of guarding a simple orthogonal and x-monotone polygon with the
minimum number of sliding cameras (i.e., the MSC problem). This improves the
2-approximation algorithm of Katz and Morgenstern [6]. Moreover, we showed
that our dynamic program can be used to solve the MSC problem on orthogonal
polygons for which the dual graph induced by the vertical decomposition of P
is a path (i.e., orthogonal path polygons). However, the complexity of the MSC
problem on any simple orthogonal polygon remains open.

References

1. V. Chvátal. A combinatorial theorem in plane geometry. J. Comb. Theory, Ser.
B, 18:39–41, 1975.



Guarding Monotone Art Galleries with Sliding Cameras in Linear Time 13

2. S. Durocher, O. Filtser, R. Fraser, A. D. Mehrabi, and S. Mehrabi. A (7/2)-
approximation algorithm for guarding orthogonal art galleries with sliding cameras.
In Proc. LATIN, volume 8392 of LNCS, pages 294–305, 2014.

3. S. Durocher and S. Mehrabi. Guarding orthogonal art galleries using sliding cam-
eras: algorithmic and hardness results. In Proc. MFCS, volume 8087 of LNCS,
pages 314–324, 2013.

4. S. Eidenbenz. Inapproximability results for guarding polygons without holes. In
Proc. ISAAC, volume 1533 of LNCS, pages 427–436, 1998.

5. S. K. Ghosh. Approximation algorithms for art gallery problems in polygons. Disc.
App. Math., 158(6):718–722, 2010.

6. M. J. Katz and G. Morgenstern. Guarding orthogonal art galleries with sliding
cameras. Int. J. Comp. Geom. & App., 21(2):241–250, 2011.

7. J. King and E. Krohn. Terrain guarding is NP-hard. In SODA, pages 1580–1593,
2010.

8. E. Krohn and B. J. Nilsson. Approximate guarding of monotone and rectilinear
polygons. Algorithmica, 66(3):564–594, 2013.

9. D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE
Trans. Inf. Theory, 32(2):276–282, 1986.

10. J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press, Inc.,
New York, NY, USA, 1987.

11. D. Schuchardt and H.-D. Hecker. Two NP-hard art-gallery problems for ortho-
polygons. Math. Logic Quart., 41(2):261–267, 1995.

12. S. Seddighin. Guarding polygons with sliding cameras. Master’s thesis, Sharif
University of Technology, 2014.


