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Abstract. The stabbing number of a partition of a rectilinear polygon
P into rectangles is the maximum number of rectangles stabbed by any
axis-parallel line segment contained in P . We consider the problem of
finding a rectangular partition with minimum stabbing number for a
given rectilinear polygon P . First, we impose a conforming constraint
on partitions: every vertex of every rectangle in the partition must lie
on the polygon’s boundary. We show that finding a conforming rectan-
gular partition of minimum stabbing number is NP-hard for rectilinear
polygons with holes. We present a rounding method based on a linear
programming relaxation resulting in a polynomial-time 2-approximation
algorithm. We give an O(n log n)-time algorithm to solve the problem
exactly when P is a histogram (some edge in P can see every point in
P ) with n vertices. Next we relax the conforming constraint and show
how to extend the first linear program to achieve a polynomial-time
2-approximation algorithm for the general problem, improving the ap-
proximation factor achieved by Abam, Aronov, de Berg, and Khosravi
(ACM SoCG 2011).

1 Introduction

A polygon P is rectilinear if all of its edges are axis-parallel. A rectangular
partition of a rectilinear polygon P is a decomposition of P into rectangles whose
interiors are disjoint. Rectilinear polygon decomposition has several applications,
including VLSI layout design [10] and image processing [6].

Let P be a rectilinear polygon and let R be a rectangular partition of P .
Given a line segment ` inside P , we say that ` stabs a rectangle of R if ` passes
through the interior of the rectangle. The (rectilinear) stabbing number of R
is the maximum number of rectangles of R stabbed by any axis-parallel line
segment inside P . Moreover, the vertical (resp., horizontal) stabbing number
of R is defined as the maximum number of rectangles stabbed by any vertical
(resp., horizontal) line segment inside P . We say an edge of a rectangle in a
rectangular partition of P is fully anchored if both of its endpoints are on the
boundary of P . Consequently, a rectangular partition of P is called conforming,
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if all edges of its rectangles are fully anchored. A conforming rectangular (cr)
partition of P is optimal if its stabbing number is minimum over of all such
partitions of P .

De Berg and van Kreveld [3] prove that every n-vertex rectilinear polygon
has a rectangular partition with stabbing number O(log n). They show that
this bound is asymptotically tight, as the stabbing number of any rectangular
partition of a staircase polygon with n vertices is Ω(log n). De Berg and van
Kreveld [3] and Hershberger and Suri [7] give polynomial-time algorithms that
compute partitions with stabbing number O(log n). Recently, Abam et al. [1]
consider the problem of computing an optimal rectangular partition of a simple
rectilinear polygon P , that is, a rectangular partition whose stabbing number
is minimum over all such partitions of P . By finding an optimal partition for
histogram polygons in polynomial time (see Section Section 3), they obtain an
O(n7 log n log log n)-time 3-approximation algorithm for this problem. As Abam
et al. note, however, the computational complexity of the general problem is
unknown.

De Berg et al. [2] studied a related problem in which the objective is to
partition a given set of n points in Rd into sets of cardinality between n/2r
and 2n/r for a given r, where each set is represented by its bounding box, such
that the stabbing number, defined as the maximum number of bounding boxes
intersected by any axis-parallel hyperplane, is minimized. They show the problem
is NP-hard in R2. They also give an exact O(n4dr+3/2 log2 n)-time algorithm in
Rd as well as an O(n3/2 log2 n)-time 2-approximation algorithm in R2 when r is
constant. Fekete et al. [5] prove that the problem of finding a perfect matching
with minimum stabbing number for a given point set is NP-hard, where the
(rectilinear) stabbing number of a matching is the maximum number of edges of
the matching intersected by any (axis-parallel) line. They also show that, for a
given point set, the problems of finding a spanning tree or a triangulation with
minimum stabbing number are NP-hard.

This paper examines the problem of finding an optimal rectangular partition
of a given rectilinear polygon, both in the unrestricted version of the prob-
lem (partitions need not be conforming) considered by Abam et al. [1] and in
the case of conforming rectangular (cr) partitions. For cr partitions, we give
an O(n log n)-time algorithm for computing an optimal partition when the in-
put polygon is a histogram with n vertices in Section 3, a polynomial-time 2-
approximation algorithm for arbitrary rectilinear polygons (possibly with holes)
in Section 4, and we show NP-hardness for finding an optimal partition on rec-
tilinear polygons with holes in Section 5. To the authors’ knowledge, this is
the first complexity result related to determining the minimum stabbing num-
ber of a rectangular partition of a rectilinear polygon, partially answering an
open problem posed by Abam et al. [1]. For general (not necessarily conforming)
rectangular partitions we give a polynomial-time 2-approximation algorithm in
Section 6 that improves on the 3-approximation algorithm of Abam et al. [1].
Complete proofs for the results of Sections 5 and 6 are omitted due to space
constraints.
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2 Preliminaries

Let P be a simple rectilinear polygon and let R be a cr partition of P . We refer
to any maximal line segment whose interior lies in the interior of P and on the
boundary of some rectangle in R as a partition edge. That is, the partition edges
of R correspond to the “cuts” that divide P into rectangles. A vertex u of P
is a reflex vertex if the angle at u interior to P is 3π/2. We denote the set of
reflex vertices of P by VR(P ). For each reflex vertex u ∈ VR(P ), we denote the
maximal horizontal (resp., vertical) line segment contained in the interior of P
with one endpoint at u by Hu (resp., Vu) and refer to it as the horizontal line
segment (resp., vertical line segment) of u. Observe that for every reflex vertex u
of P , at least one of Hu and Vu must be present in R. The following observation
allows us to consider only a discrete subset of the set of all possible rectangular
partitions of P to find an optimal partition:

Observation 1. Any rectilinear polygon P has an optimal rectangular partition
in which every partition edge has at least one reflex vertex of P as an endpoint.

Consequently, every partition edge is either Hu or Vu for some u ∈ VR(P ).
Given an integer k ≥ 1, a k-Sum Linear Program (KLP)1 [11] consists of an

m× n matrix A, an m-vector b, and an n-vector X = (x1, x2, . . . , xn) for which
the objective is to

minimize max
S⊆N :|S|=k

∑
j∈S

cjxj (1)

subject to AX ≥ b

X ≥ 0,

where N = {1, 2, . . . , n}. Observe that when k = n, the KLP is equivalent to a
classical linear program (LP).

3 Finding an Optimal CR Partition of a Histogram

In this section, we present an algorithm for computing an optimal cr partition
of a histogram. A histogram (polygon) H is a simple rectilinear polygon that has
one edge e that can see every point in P . Equivalently, as defined by Katz and
Morgenstern [8], a simple orthogonal polygon P is a vertical (resp., horizontal)
histogram if it is monotone with respect to some horizontal (resp., vertical) edge
e that spans P ; we call e the base of H.

Abam et al. [1] give a polynomial-time algorithm for computing an optimal
rectangular partition of a histogram. A rectangular partition of a histogram is
not necessarily a cr partition. Figure 1(a) shows a histogram whose optimal

1 Throughout the paper, we use KLP to abbreviate either k-Sum Linear Program or
k-Sum Linear Programming. Similarly, we use LP to denote either Linear Program
or Linear Programming.
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(a) (b)

Fig. 1. A vertical histogram H. (a) An optimal rectangular partition of H with stabbing
number 2. (b) Any cr partition of H has stabbing number at least 3.

rectangular partition has stabbing number 2. However, any cr partition of this
histogram has stabbing number at least 3; see Figure 1(b). Without loss of
generality, suppose each histogram is a vertical histogram.

Let H be a histogram with n vertices and let H− denote the set of horizontal
edges of H. Recall that every cr partition of H must include at least one of the
edges Hu or Vu for every reflex vertex u in H. The algorithm begins with an
initial partition of H, consisting exclusively of horizontal partition edges, that
will be modified to produce an optimal cr partition of H by greedily replacing
horizontal edges with vertical edges. The initial partition of H is obtained by
adding the edge Hu for each reflex vertex u.

Observation 2. For any cr partition of any vertical histogram H and any
reflex vertex u in H, the vertical partition edge Vu may be included at u if and
only if no horizontal partition edge is included directly below u (otherwise it
would intersect Vu).

Observation 2 suggests a hierarchical tree structure that determines a partial
order in which each horizontal partition edge can be removed and replaced by
a vertical partition edge, provided it does not intersect any horizontal partition
edge below it. Thus, we construct a forest (initially a single tree denoted T0)
associated with the partition; the algorithm proceeds to update the forest and,
in doing so, modifies the associated partition as horizontal partition edges are
replaced by vertical ones. Define a tree node for each edge in H− ∪ S, where
S = {Hu | u ∈ VR(H)}. Add an edge between two vertices u and v if some
vertical line segment intersects both edges associated with u and v, but no other
edge of H− ∪S. When the polygon H is a histogram, the resulting graph, T0, is
a tree. See the example in Figure 2(a). We now describe how to construct T0 in
O(n log n) time. Note that the set S need not be known before construction.

Each edge in H− is adjacent to two vertical edges on the boundary of H,
which we call its left and right neighbours, respectively. Sort the edges of H− lex-
icographically, first by y-coordinates and then by x-coordinates. The algorithm
sweeps a horizontal line ` across H from bottom to top. Initially, ` coincides with
the base of H; root the tree T0 at a node u that corresponds to the base of H.
The construction refers to a separate balanced search tree that archives the set
of vertical edges of H on or below the sweepline, indexed by x-coordinates. Ini-
tially, only the leftmost and rightmost vertical edges of H are in the search tree,
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(a)

(b) (c)p′

p

q′q

Fig. 2. (a) A histogram H and the tree T0 that corresponds to the initial partition of
H. (b) The edge associated with node p is removed from the partition and is replaced
by two vertical edges anchored at the reflex vertices q and q′. The red vertices denote
the roots of the three new resulting trees. (c) The algorithm terminates after one more
iteration, giving an optimal cr partition of H (with stabbing number 5) along with
the corresponding forest.

i.e., the base’s neighbours. The construction of the tree T0 proceeds recursively
on u as follows.

Suppose the next edges of H− encountered by the sweepline ` are e1, . . . , ek,
each of which has equal y-coordinate. Add the respective left and right neigh-
bours of e1, . . . , ek to the search tree. Let l1 and r1 denote the x-coordinates
of the respective left and right endpoints of edge e1. Add a node representing
e1 to T0 as a child of u. Check whether the left neighbour of e1 (indexed by
l1) lies below `. If not, then find the predecessor of l1 in the search tree and
let y denote its x-coordinate. Let u′ denote the line segment on line ` with re-
spective endpoints at the x-coordinates y and l1. Add a node representing u′ to
T0 as a child of u. Recursively construct the subtree of u′. Apply an analogous
procedure to the right neighbour of e1 (indexed by r1). Repeat for each edge
ei ∈ {e2, . . . , ek}. Upon completion, the tree T0 is constructed storing a repre-
sentation of the initial horizontal partition (see Figure 2(a)). Finally, each tree
node stores its height and links to its children in order of x-coordinates; the tree
can be updated accordingly after construction. The running time for construct-
ing T0 is bounded by sorting O(n) edges and a sequence of O(n) searches and
insertion on the search tree, resulting in O(n log n) time to construct T0.

We now describe a greedy algorithm to construct an optimal cr partition of
H using T0. Observe that the horizontal stabbing number of the initial partition
is initially one, whereas its vertical stabbing number corresponds to the height of
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T0. The algorithm stores the forest’s trees in a priority queue indexed by height.
While the vertical stabbing number of H remains greater than its horizontal
stabbing number, split the tree of maximum height, say T . To do this, remove
the horizontal partition edge stored in a tree node p, where p is a child of the
root of T on a longest root-to-leaf path in T . The choice of T and p is not
necessarily unique; it suffices to select any tallest tree T and any longest path in
T . Observe that p has at least one and possibly two reflex vertices as endpoints,
denoted a and b. Remove the horizontal partition edge associated with p and
add a vertical partition edge (Va or Vb) for each neighbour of p that lies above
p on the boundary of H. The tree T is then divided into up to three new trees:
a) the subtrees of the root of T to the left of p, b) the subtree rooted at p, and
c) the subtrees of the root of T to the right of p. The root of each new tree
corresponds to the base edge of H. See Figure 2(b). The following observation
is straightforward:

Observation 3. The horizontal stabbing number of the partition associated with
the forest corresponds to the number of trees in the forest, whereas its vertical
stabbing number corresponds to the height of the tallest tree in the forest.

Once the height of the tallest tree becomes less than or equal to the number
of trees in the forest, we return either the current partition or the previous
partition, whichever has lower stabbing number. The number of steps is O(n),
where each step requires O(log n) time to determine the tree with maximum
height using the priority queue.

The algorithm’s correctness follows from Observations 2 and 3, and the fact
that reducing the vertical stabbing number requires reducing the height of the
tallest tree, which is exactly how the algorithm proceeds, decreasing the height
of a tallest tree by one on each step. Therefore, we have the following theorem:

Theorem 1. Given a histogram H, an optimal cr partition of H can be found
in O(n log n) time, where n is the number of vertices of H.

4 An Approximation Algorithm for Rectilinear Polygons

In this section, we present an LP relaxation for the problem of finding an optimal
cr partition of a rectilinear polygon, possibly with holes. We show that a simple
rounding of the LP relaxation leads to a 2-approximation algorithm for this
problem. Our algorithm works even when the input polygon has holes.

Let P be a rectilinear polygon. We define two binary variables uh and uv for
every reflex vertex u ∈ VR(P ) that correspond to Hu and Vu, respectively. Each
variable’s value (1 = present, 0 = absent) determines whether its associated
partition edge is included in the partition. If two reflex vertices align, then they
share a common variable. For each reflex vertex u in VR(P ), let `−u and `

|
u be

respective maximal horizontal and vertical line segments that pass through fε(u)
and are completely contained in P , where fε(u) denotes an ε translation of the
point u along the bisector of the interior angle determined by the boundary of P
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locally at u, for some ε less than the minimum distance between any two vertices
of P . This perturbation ensures that `−u and `

|
u lie in the interior of P , as in the

definition of stabbing number. See Figure 3. Let S−
u (resp., S

|
u) be the set of

reflex vertices in VR(P ), like v, such that Vv (resp., Hv) intersects `−u (resp., `
|
u).

For each reflex vertex u ∈ VR(P ), let

uΣ− = 1 +
∑

p∈S−u

pv, and uΣ| = 1 +
∑

p∈S
|
u

ph.

Thus, uΣ− and uΣ| denote the number of rectangles stabbed by `−u and `
|
u,

respectively, and their maximum values among all reflex vertices u in P corre-
spond to one less than the respective horizontal and vertical stabbing numbers
of P . Consequently, the stabbing number of the partition of P determined by
the binary variables is

1 + max
u∈VR(P )

{max{uΣ− , uΣ|}}. (2)

u

fε(u) `−u

v
w

`|u

ε

Fig. 3. The maximal line segments
`−u and `

|
u that pass through the

point fε(u) are shown in red and
blue, respectively. In this example,
uΣ− = 1+uv +vv +wv and uΣ| =
1 + uh.

A partition divides the polygon into con-
vex regions (more specifically, rectangles) if
and only if at least one partition edge is rooted
at every reflex vertex. Thus, a cr partition of
P corresponds to an assignment of truth val-
ues to the set of binary variables such that
(i) no two edges of the partition cross, and
(ii) for every reflex vertex u, at least one of
Vu and Hu is present in the partition.

Therefore, the problem of finding an opti-
mal cr partition can be formulated as a k-sum
integer linear program as follows:

minimize (2) (3)
subject to uh + uv ≥ 1, ∀u ∈ VR(P ),

vh + uv ≤ 1, if Hv intersects Vu,

uh, uv ∈ {0, 1}, ∀u ∈ VR(P ).

To obtain an integer linear program, we introduce an additional variable y. The
following integer linear program is equivalent to the above KLP (see Section 2):

minimize y (4)
subject to y − uΣ− ≥ 0 ∀u ∈ VR(P ),

y − uΣ| ≥ 0 ∀u ∈ VR(P ),
uh + uv ≥ 1, ∀u ∈ VR(P ),
− vh − uv ≥ −1, if Hv intersects Vu,

uh, uv ∈ {0, 1}, ∀u ∈ VR(P ). (5)
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Since the number of sums in (2) is O(n2), the size of the integer linear program
above is polynomial in n. Next, we relax the above program by replacing (5)
with uh, uv ∈ [0, 1],∀u ∈ VR(P ) and obtain the following LP:

minimize y (6)
subject to y − uΣ− ≥ 0 ∀u ∈ VR(P ),

y − uΣ| ≥ 0 ∀u ∈ VR(P ),
uh + uv ≥ 1, ∀u ∈ VR(P ),
− vh − uv ≥ −1, if Hv intersects Vu,

uh, uv ≥ 0, ∀u ∈ VR(P ).

We observe that the constraints uh, uv ≤ 1 are redundant since we can reduce
any uh > 1 (resp., uv > 1) to uh=1 (resp., uv=1) without increasing the value
of the objective function for any feasible solution. Let s∗ be a solution to the
above LP. We round s∗ to a feasible solution for our problem as follows. For each
vertex u ∈ VR(P ), let

uh =

{
0, if s∗(uh) ≤ 1/2,

1, if s∗(uh) > 1/2,
and uv =

{
0, if s∗(uv) < 1/2,

1, if s∗(uv) ≥ 1/2.
(7)

We first show that, for every reflex vertex u, at least one of Vu and Hu is present
in the partition.

Lemma 1. For each vertex u ∈ VR(P ), at least one of uh and uv is equal to 1
after rounding a solution to (6).

Proof. We give a proof by contradiction. Suppose that after rounding a solution
to (6), uh = uv = 0 for some u ∈ VR(P ). Since uh = 0 by (7) we have s∗(uh) ≤
1/2 and, similarly, since uv = 0 we have s∗(uv) < 1/2. Therefore, s∗(uh) +
s∗(uv) < 1, which contradicts the constraint uh + uv ≥ 1 of (6). �

The next lemma proves that no two edges of the partition obtained by the LP
cross each other.

Lemma 2. If Hv intersects Vu, for two vertices u, v ∈ VR(P ), then at most one
of the variables vh and uv is 1 after rounding a solution to the LP.

Proof. We give a proof by contradiction. Suppose that for two vertices u, v ∈
VR(P ): (i) Hv intersects Vu, and, (ii) both vh and uv are 1 after rounding. Since
after rounding vh=1 by (7) we have s∗(vh) > 1/2. Similarly, since after rounding
uv=1 we have s∗(uv) ≥ 1/2. Therefore, s∗(vh) + s∗(uv) > 1, which contradicts
the constraint vh + uv ≤ 1 (or equivalently −vh − uv ≥ −1) of the LP. �

By combining Lemmas 1 and 2, we get the following result:

Corollary 1. The partition determined by a feasible solution to the LP after
rounding is a cr partition.
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(a) (b)

Fig. 4. A simple rectilinear polygon P for which (a) the optimal partition has stabbing
number 4 while (b) assigning Vu (or Hu) to every reflex vertex u of P results in a
partition with stabbing number at least 10.

By (7), the value of each variable after rounding is at most twice the value
of the corresponding variable in the LP solution. Moreover, it is easy to see
that the number of constraints in (6) is polynomial in VR(P ), allowing a 2-
approximate solution to be found in polynomial time. Therefore, we have the
following theorem:

Theorem 2. There exists a polynomial-time algorithm that constructs a cr par-
tition of any given rectilinear polygon P with stabbing number at most twice that
of any cr partition of P .

Remark. A preliminary attempt at obtaining a 2-approximation might be to
assign to each reflex vertex u its vertical partition edge, Vu (or, equivalently,
assigning the horizontal partition edge Hu to each u). Unfortunately, this is not
the case: Figure 4 shows a rectilinear polygon for which the optimal cr partition
has stabbing number 4. However, the partition obtained by assigning Vu (or Hu)
consistently to every vertex u ∈ VR(P ) has stabbing number at least 10. In fact,
the polygon in this example can be extended to show that this heuristic does
not provide any constant-factor approximation.

5 Hardness for Rectilinear Polygons with Holes

In this section we present an overview of a reduction showing that the following
problem is NP-hard; the complete details of the reduction are omitted due to
space constraints.

Optimal CR partition
Input: A rectilinear polygon P possibly with holes
Output: An optimal cr partition of P

We show that Optimal CR Partition is NP-hard by a reduction from
Planar Variable Restricted 3SAT (Planar VR3SAT). The Planar
VR3SAT problem is a constrained version of 3SAT in which each variable
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Fig. 5. An example of a variable gadget X
linked by three respective corridors to its
occurrences (x, x and x) in clauses. Each
pair of dashed triangular and rectangular
holes form a negation gadget that negates
the truth value of x in the associated clause
linked by the adjacent corridor. Each stair-
case consists of c steps. Full details of the
variable gadget appear in the complete ver-
sion of this paper. x̄

x̄

x

v

reverse staircase

normal staircase

walls

u

can appear in at most three clauses and the corresponding variable-clause graph
must be planar. Efrat et al. [4] show that Planar VR3SAT is NP-hard.

Let I = {C1, C2, . . . , Ck} be an instance of Planar VR3SAT with k clauses
and n variables, X1, X2, . . . , Xn. We construct a polygon P with holes such
that P has a cr partition with stabbing number at most 5c if and only if I
is satisfiable, where c is a constant that does not depend2 on I. Given I, we
first construct the variable-clause graph of I in the non-crossing comb-shape
form of Knuth and Raghunathan [9]. Without loss of generality, we assume that
the variable vertices lie on a vertical line and the clause vertices are connected
from left or right of that line. Then, we replace each variable vertex Xi with a
polygonal variable gadget to which three connecting corridors are attached from
its left. The corridors are then connected to the clause gadgets whose associated
clauses contain that variable. Figure 5 shows an example of a variable gadget;
note the vertex v. Due to the structure of the variable gadget, any cr partition
must contain exactly one of the edges Vv or Hv; including Vv (resp., Hv) in the
partition corresponds to a truth assignment of true (resp., false) for the variable
x. Moreover, choosing Vv or Hv imposes constraints on how the rest of the
variable gadget and its associated clause gadgets can be partitioned. Due to space
constraints, we omit detailed descriptions of variable gadgets and clause gadgets.
The overall construction implies the following lemma whose proof appears in the
complete version of this paper:

Lemma 3. P has a cr partition with stabbing number at most 5c, for some
constant c, if and only if I is satisfiable.

By Lemma 3, we obtain the following theorem:

Theorem 3. Optimal CR Partition is NP-hard.

2 The definition of the precise value of c refers to specific details of the reduction that
have been omitted due to space constraints. Note, however, that the value of c can
be specified in polynomial time.
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6 Generalizing the Approximation Algorithm

In this section we relax the conforming constraint and consider the problem
originally examined by Abam et al. [1], of finding an optimal rectangular par-
tition that is not necessarily conforming. That is, partition edges need not be
fully anchored; equivalently, vertices of partition rectangles may lie in the poly-
gon’s interior. We extend the LP relaxation presented in Section 4 to achieve a
2-approximation algorithm for this generalized problem for rectilinear polygons.
In addition to improving the 3-approximation algorithm of Abam et al. [1], we
present a simple algorithmic solution that also works when the input rectilin-
ear polygon has holes. We present a brief overview of the LP relaxation in this
section; the details of the algorithm are omitted due to space constraints.

The idea is to consider the arrangement of line segments induced by the
intersection of vertical line segments (e.g., Vu for some reflex vertex u) with
horizontal line segments (e.g., Hv for some reflex vertex v) inside the polygon
P . We refer to these shorter line segments as fragments and associate a binary
variable with each fragment (as opposed to associating a binary variable with
each potential partition edge as in Section 4). By Observation 1 it suffices to
consider rectangular partitions for which each partition edge is anchored at some
reflex vertex. Thus, a rectangular partition corresponds to an assignment of
binary values that observes the following constraints:

1. Every reflex vertex is adjacent to at least one fragment included in the
partition.

2. A fragment may be included in a partition if and only if each of its endpoint
meets either a) the polygon boundary, b) the continuation of a partition edge
along an adjacent fragment, or c) two fragments that form a perpendicular
partition edge.

3. At most three of four fragments with a common endpoint can be included
in a partition.

A partition’s stabbing number is represented as before by the maximum sum
of binary variables crossed by any line segment `−u or `

|
u, where u is a reflex

vertex in P . The constraints 1–3 can be expressed as a linear program; details
are omitted due to space restrictions. Rounding a solution to the linear program
as in Section 4 gives the following theorem:

Theorem 4. There exists a polynomial-time algorithm that constructs a rectan-
gular partition of any given rectilinear polygon P with stabbing number at most
twice that of any rectangular partition of P .

7 Conclusion

This paper considers the problem of finding an optimal partition of a rectilin-
ear polygon P (i.e., a partition with minimum stabbing number over all such
partitions of P ) for two different types of partitions.
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For the first type, cr partitions (in which no partition edge can end in the
interior of another edge of the partition) we first described an O(n log n)-time
algorithm when P is a histogram polygon with n vertices. Next we presented
a LP relaxation of the problem to achieve a polynomial-time 2-approximation
algorithm for any given rectilinear polygon with n vertices (possibly with holes).
We also proved that the problem is NP-hard for rectilinear polygons with holes.
The complexity of the problem for simple rectilinear polygons (without holes)
remains open.

For the second type, in which endpoints of partition edges may lie in the in-
terior of P , we gave a polynomial-time 2-approximation algorithm for rectilinear
polygons. Our algorithm, based on the extension of our LP relaxation for cr
partitions, not only improves the 3-approximation algorithm of Abam et al. [1],
but also provides a simple solution that works when polygons have holes. The
complexity of the general problem remains open for both simple rectilinear poly-
gons and rectilinear polygons with holes, providing another interesting direction
for future research.
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