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Abstract. Chvátal and Klincsek (1980) gave an O(n3)-time algorithm
for the problem of finding a maximum-cardinality convex subset of an
arbitrary given set P of n points in the plane. This paper examines a
generalization of the problem, the Bottleneck Convex Subsets problem:
given a set P of n points in the plane and a positive integer k, select
k pairwise disjoint convex subsets of P such that the cardinality of the
smallest subset is maximized. Equivalently, a solution maximizes the
cardinality of k mutually disjoint convex subsets of P of equal cardinality.
We show the problem is NP-hard when k is an arbitrary input parameter,
we give an algorithm that solves the problem exactly, with running time
polynomial in n when k is fixed, and we give a fixed-parameter tractable
algorithm parameterized in terms of the number of points strictly interior
to the convex hull.
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1 Introduction

A set P of points in the plane is convex if for every p ∈ P there exists a closed
half-plane H+ such that H+ ∩ P = {p}. Determining whether a given set P
of n points in the plane is convex requires Θ(n log n) time in the worst case,
corresponding to the time required to determine whether the convex hull of P
has n vertices on its boundary [19]. Chvátal and Klincsek [4] gave an O(n3)-time
and O(n2)-space algorithm to find a maximum-cardinality convex subset of any
given set P of n points in the plane. Later, Edelsbrunner and Guibas [8] improved
the space complexity to O(n). In this paper, we examine a generalization of the
problems to multiple convex subsets of P . Given a set P of points in the plane and
a positive integer k, we examine the problem of finding k convex and mutually
disjoint subsets of P , such that the cardinality of the smallest set is maximized
(e.g., see Figure 1). We define the problem formally, as follows.
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(a) (b) (c)

Fig. 1. (a) A point set P . (b) A solution to the Bottleneck Convex Subsets problem
when k = 2. (c) A solution when k = 3.

BOTTLENECK CONVEX SUBSETS
Instance: A set P of n points in R2, and a positive integer k.
Problem: Select k sets P1, . . . , Pk such that
– ∀i ∈ {1, . . . k}, Pi ⊆ P ,
– ∀i ∈ {1, . . . k}, Pi is convex,
– ∀{i, j} ⊆ {1, . . . k}, i 6= j ⇒ Pi ∩ Pj = ∅, and
– min

i∈{1,...,k}
|Pi| is maximized.

Since every subset of a convex set of points remains convex, any k convex sets
can be made to have equal cardinality by removing points from any set whose
cardinality exceeds that of the smallest set. Therefore, an equivalent problem is
to find k mutually disjoint convex subsets of P of equal cardinality, where the
cardinality is maximized. The problem also relates to the problem of finding a
convex point set embedding of a graph in a point set [7], where in this case the
graph consists of k cycles.

1.1 Our Contributions

In this paper we examine the problem of finding k large convex subsets of a
given point set with n points. Our contributions are as follows:

1. We give a polynomial-time algorithm that solves Bottleneck Convex Subsets
for any fixed k. The algorithm constructs a directed acyclic graph G whose
vertices correspond to distinct configurations of edges passing though vertical
slabs between neighbouring points of P . A solution to the problem is found
by identifying a node in G associated with a maximum-cardinality set that
is reachable from the source node.

2. Using a reduction from a restricted version of Numerical 3-Dimensional
Matching, which is known to be NP-complete, we show that Bottleneck
Convex Subsets is NP-hard when k is an arbitrary input parameter.

3. We show that Bottleneck Convex Subsets is fixed-parameter tractable when
parameterized by the number of points that are strictly interior to the convex
hull of the given point set, i.e., the number of non-extreme points. Therefore,
if the number of points interior to the convex hull is fixed, then for every k,
Bottleneck Convex Subsets can be solved in polynomial time.
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1.2 Related Work

A convex k-gon is a convex set with k points. A convex k-hole within a set P is
a convex k-gon on a subset of P whose convex hull is empty of any other points
of P . A rich body of research examines convex k-holes in point sets [22]. By
the Erdős-Szekeres theorem [12], every point set with n points in the Euclidean
plan contains a convex k-gon for some k ∈ Ω(log n). Urabe [23] showed that by
repeatedly extracting such a convex Ω(log n)-gon, one can partition a point set
into O(n/ log n) convex subsets, each of size O(log n).

Given a set P of n points in the plane, there exist O(n3)-time algorithms to
compute a largest convex subset of P [4, 8] and a largest empty convex subset
of P [2]. Both problems are NP-hard in R3 [15]. In fact, finding a largest empty
convex subset is W[1]-hard in R3 [15]. González-Aguilar et al. [16] have recently
examined the problem of finding a largest convex set in the rectilinear setting.

The convex cover number of a point set P is the minimum number of disjoint
convex sets that covers P . The convex partition number of a point set P is the
minimum number of convex sets with disjoint convex hulls (in addition to their
vertex sets being pairwise vertex disjoint) that covers P . Urabe [23] examined
lower and upper bounds on the convex cover number and the convex partition
number. He showed that the convex cover number of a set of n points in R2

is in Θ(n/ log n) and its convex partition number is bounded from above d 2n7 e.
Furthermore, there exist point sets with convex partition number at least dn−14 e.

Arkin et al. [1] proved that both finding the convex cover number and the
convex partition number of a point set are NP-hard problems, and gave a
polynomial-time O(log n)-approximation algorithm for both problems. Although
the Bottleneck Convex Subsets problem appears to be similar to the convex
cover number problem as both problems attempt to find disjoint convex sets,
the objective functions are different. Neither the NP-hardness proof nor the ap-
proximation result for convex cover number [1] readily extends to the Bottleneck
Convex Subsets problem. Previous work has also considered partitioning a point
set into empty convex sets, where the convex hulls of the sets do not contain any
interior point. For the number of empty convex point sets, an upper bound of
d 9n34 e and a lower bound of dn+1

4 e is known [5]. We refer the readers to [10, 11]
for related problems on finding convex sets with various optimization criteria.

Another related problem in this context is to partition a given point set using
a minimum number of lines (Point-Line-Cover), which Megiddo and Tamir [21]
showed to be NP-hard, and was subsquently shown to be APX-hard [3, 20].
Point-Line-Cover is known to be fixed-parameter tractable when parameterized
on the number of lines. Whether the minimum convex cover problem is fixed-
parameter tractable remains an open problem [9]. Note that for any fixed k, one
can decide whether the minimum convex cover number of a point set is at most
k in polynomial time [1].

Previous work on the Ramsey-remainder problem provides insight into the
Bottleneck Convex Subsets problem [13]. Given an integer i, the Ramsey-remainder
is the smallest integer rr(i) such that for every sufficiently large point set, all
but rr(i) points can be partitioned into convex sets of size at least i. There-
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fore, a Bottleneck Convex Subsets problem with sufficiently large n and with

k ≤ bn−rr(k)k c must have a solution where the size of the smallest convex set
is at least k. Note that the Bottleneck Convex Subsets problem is straightfor-
ward to solve for the case when k ≥ n/3, i.e., one needs to compute a balanced
partition without worrying about the convexity of the sets. However, the case
when k = n/4 already becomes nontrivial. Károlyi [18] derived a necessary and
sufficient condition for a set of 4n points in general position to admit a partition
into n convex quadrilaterals, and gave an O(n log n)-time algorithm to decide
whether such a partition exists.

2 A Polynomial-Time Algorithm for a Fixed k

Given a set P of n points in the plane and a fixed integer k, we describe an
O(kn5k+3)-time algorithm that solves Bottleneck Convex Subsets for any fixed
k. The idea is to construct a directed acyclic graph G whose vertices each corre-
spond to a vertical slab of the plane in a given state with respect to the selected
subsets P1, . . . , Pk of P , with an edge from one slab to the slab immediately
to its right if the states of the two neighbouring slabs form a locally mutually
compatible solution. A feasible solution (P1, . . . , Pk are mutually disjoint convex
subsets of P ) corresponds to a directed path starting at the root node in G,
i.e., a sequence of consecutive compatible slabs. Among the feasible solutions,
an optimal solution (mini∈{1,...,k} |Pi| is maximized) corresponds to a path that
ends at a node for which the cardinality of the smallest set is maximized.

Rotate P such that no two of its points lie on a common vertical line. Partition
the plane into n − 1 vertical slabs, S1, . . . , Sn−1, determined by the n vertical
lines through points of P . Let L be the set of

(
n
2

)
line segments whose endpoints

are pairs of points in P . Within each slab, Si, consider the set of line segments
Li = {l ∩ Si | l ∈ L}. A convex point set corresponds to the vertices of a convex
polygon; in a feasible solution, j convex polygons intersect Si for some j ∈
{0, . . . , k}. Each of these polygons has a top segment and a bottom segment in Li.

There are at most
(|Li|

2

)
possible choices of segments in Li for the first polygon,(|Li|−2

2

)
for the second polygon, . . ., and

(|Li|−2(j−1)
2

)
for the jth polygon, giving∏j−1

x=0

(|Li|−2x
2

)
∈ O(|Li|2j) = O(n4j) possible combinations of edges in Si for a

given j ∈ {0, . . . , k}.
We construct an unweighted directed acyclic graph G. Each vertex in V (G)

corresponds to a slab Si, a j ∈ {0, . . . , k}, and a top edge and a bottom edge
for each of the j convex polygons that intersect Si. Consequently, the number
of vertices in G is O(

∑n−1
i=1

∑k
j=0 n

4j) = O(kn4k+1).

Furthermore, we create (n/k)k copies of each vertex associated with a slab
Si, each of which is assigned a distinct value (`1, . . . , `k) ∈ Zk, where for each
j ∈ {1, . . . , k}, `j = |Pj∩(S1∪· · ·∪Si)|, i.e., the number of points of Pj that lie in
the first i slabs. We refer to ` = minj∈{1,...,k} `j as the vertex’s level. Each vertex
at level ` in G corresponds to a slab Si, such that the minimum cardinality of any
polygon in S1∪ . . .∪Si (or partial polygon if it includes points to the right of Si)
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Fig. 2. Each slab Si has various combinations of pairs of edges possible, each of which
corresponds to a vertex in G, which is copied at levels 1 through n/k. Directed edges are
added from a vertex associated with slab Si to a vertex associated with a compatible
slab Si+1. The edge remains at the same level if the cardinality of the smallest set in
S1 ∪ · · · ∪ Si+1 remains unchanged; the level of Si+1 is one greater than the level of Si

if the cardinality of the smallest set in S1 ∪ · · · ∪ Si+1 increases. Some vertices cannot
be reached by any path from any source node at level 1 in slab S1; these vertices and
their out-edges are shaded gray. A feasible solution corresponds to a path rooted at a
source node associated with the slab S1 on level 1. An optimal solution ends at a sink
node at the highest level among all feasible solutions.

is `. Therefore, the resulting graph G has O((n/k)kkn4k+1) ⊆ O( 1
kk−1 · n5k+1)

vertices. See Figure 2.
Every slab has exactly one point of P on its left boundary and one on its

right boundary. For each vertex v in G, let vl and vr denote these two points of
P for the slab corresponding to v. We add an edge from vertex u to vertex v in
G if they are compatible. See Figure 3. The vertices u and v are compatible if:

– u and v correspond to neighbouring slabs, u to Si and v to Si+1, for some i,
and

– all top and bottom segments associated with u that do not pass through pi
continue in v, where pi = ur = vl is the point of P on the common boundary
of Si and Si+1, and

– one of the four following conditions is met:
Case 1. either (a) one top associated with u ends at pi and one top associated

with v begins at pi, forming a right turn at pi, or (b) one bottom asso-
ciated with u ends at pi and one bottom associated with v begins at pi,
forming a left turn at pi (all polygons in Si continue in Si+1; the number
of edges in Si is equal to that in Si+1);

Case 2. one top and one bottom associated with u end at pi, (one polygon ends
in Si and all remaining polygons continue into Si+1);

Case 3. no top or bottom associated with u end at pi, but one top and one
bottom associated with v start at pi (one polygon starts in Si+1 and all
remaining polygons continue from Si into Si+1).

Case 4. all edges in u continue into v and no edge passes through pi = ur = vl
(all polygons in Si continue into Si+1; the number of edges in Si is equal
to that in Si+1).
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(a) Case 1

pi

Si Si+1 (b) Case 2

pi

Si Si+1 (c) Case 3

pi

Si Si+1 (c) Case 4

pi

Si Si+1

Fig. 3. The four cases in which we add an edge between the vertices u (associated with
the slab Si) and v (associated with the slab Si+1) in G; i.e., u and v are compatible.
In this example, k = 2, corresponding to two polygons, for which the edges through Si

and Si+1 are coloured blue and red, respectively. In Figure 3(a), pi lies on the upper
hull of the blue polygon, so the polygon makes a right turn at pi, i.e., the angle below
pi must be convex. Figure 3(d), pi is omitted from the selection.

For a given vertex u at most n − 2 edges satisfy Case 1 (there are at most
n − 2 possible edges that continue from pi to form a convex bend), at most
one edge satisfies Case 2, at most

(
n−3
2

)
edges satisfy Case 3, and at most one

edge satisfies Case 4. Consequently, the number of edges in G is O(n2|V (G)|) ⊆
O( 1

kk−1 · n5k+3).
Any path from a source on level 1 to a highest-level node corresponds to an

optimal solution, and can be found using breadth-first search in time propor-
tional to the number of edges in G. The resulting worst-case running time is
proportional to the number of vertices and edges in G: O(|V (G)| + |E(G)|) =
O( 1

kk−1 ·n5k+3). In addition to storing a single in-neighbour from which a longest
path reaches each node u, we can maintain a list of all of its in-neighbours that
give a longest path, allowing the algorithm to reconstruct all distinct optimal
solutions with the running time increased only by the output size.

The time for constructing the graph G is proportional to its number of edges.
The combinations of

(
n
2j

)
line segments in a slab Si on level j can be enumer-

ated and created in O(1) time each, with O(1) time per edge added if graph
vertices are indexed according to their slab, their level, and the line segments
they include. The level of each node in G is determined in O(1) time per node
by examining the level of any of its in-neighbours; the level increases by one in
Cases 1 and 2 if the point pi is added to the minimum-cardinality set and that
set is the unique minimum.

Theorem 1. Given a set P of n points in the plane, and a positive integer k,
Bottleneck Convex Subsets can be solved exactly in O( 1

kk−1 · n5k+3) time.

3 NP-Hardness

In this section we show that Bottleneck Convex Subsets is NP-hard. We first
introduce some notation. Let x(p), y(p) be the x and y-coordinates of a point p.
An angle ∠pqr determined by points p, q and r is called a y-monotone angle if
y(p) > y(q) > y(r). A y-monotone angle is left-facing (resp. right-facing) if the
point q lies interior to the left (resp., right) half-plane of the line through pr. If
q lies on the line through pr, then we refer to ∠pqr as a straight angle.
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The idea of the hardness proof is as follows. We first prove that given a set
of 3n points in the Euclidean plane, it is NP-hard to determine whether the
points can be partitioned into n y-monotone angles, where none of them are
right facing (Section 3.1). We then reduce this problem to Bottleneck Convex
Subsets (Section 3.2).

3.1 Covering Points by Straight or Left-Facing Angles

In this section we show that given a set of 3n points in the Euclidean plane, it is
NP-hard to determine whether the points can be partitioned into n y-monotone
angles, where none of them are right facing. In fact, we prove the problem to be
NP-hard in a restricted setting, as follows:

ANGLE PARTITION
Instance: A set P of 3n points lying on three parallel horizontal lines (y =
0, y = 1 and y = 2) in the plane, where each line contains exactly n points.
Problem: Partition P into at most n y-monotone angles, where none of
them are right facing.

We reduce Distinct 3-Numerical Matching with Target Sums (DNMTS),
which is known to be strongly NP-complete [17, Corollary 8].

DISTINCT NUMERICAL MATCHING WITH TARGET SUM
Instance: Three sets A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn},
each with n distinct positive integers, where

∑n
i=1 ai +

∑n
i=1 bi =

∑n
i=1 ci.

Problem: Decide whether there exist n triples (ai, bj , ck), where 1 ≤ i, j, k ≤
n, such that ai + bj = ck and no two triples share an element.

Theorem 2. Angle Partition is NP-hard.

Proof. Let M = (X,Y, Z) be an instance of DNMTS, where each set A,B,C
contains n positive integers. We now construct an instance Q of Angle Partition
as follows: (I) For each a ∈ A, create a point at (a, 0). (II) For each b ∈ B, create
a point at (b, 2). (III) For each c ∈ C, create a point at (c/2, 1).

This completes the construction of the point set P of the Angle Partition
instance Q (e.g., see Figure 4(a)). Since the numbers in A,B,C are distinct,
no two points in P will coincide. Note that by definition, a y-monotone angle
must contain one point from each of the lines y = 0, y = 1 and y = 2. Further-

more, every straight angle ∠pqr will satisfy the equation x(p)+x(r)
2 = x(q). This

transformation is inspired by a 3-SUM hardness proof for ‘GeomBase’ [14].
We now show that M has an affirmative solution if and only if P admits a

partition into n y-monotone angles where none of them are right facing.
First consider that M has an affirmative answer, i.e., a set of n triples

(ai, bj , ck), where 1 ≤ i, j, k ≤ n, such that ai + bj = ck and no two triples

share an element. Therefore, we will have
(ai+bj)

2 = ck
2 . Hence we will find a

straight line through (ai, 0), (bk, 2), (cj/2, 1). These lines will form n y-monotone
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A = {16, 14, 10}, B = {8, 6, 12}, C = {18, 28, 20}

(16,0)(14,0)(10,0)

T = {(16, 12, 28), (14, 6, 20), (10, 8, 18)}

y = 0

y = 1

y = 2

(14,1)(10,1)

(6,1) (8,1) (12,1)

(9,1)

(a) (b)

Fig. 4. (a) Construction of Q from an instance M of DNMTS. (b) A solution for M
and the corresponding angles of Q.

straight angles (e.g., see Figure 4(b)). Since none of these angles are right facing,
this provides an affirmative solution for the instance Q.

Consider now the case when Q has an affirmative solution T , i.e., a partition
of P into n y-monotone angles, where none of them are right facing. We first
claim that (Step 1) all these n y-monotone angles must be straight angles and
then (Step 2) show how to construct an affirmative solution for M .

Step 1: Suppose for a contradiction that the solution T contains one or more
left-facing angles. For each left-facing angle ∠rst, where r, s, t are on lines y =

0, y = 1 and y = 2, respectively, we have x(s) < x(r)+x(t)
2 . For each straight angle

∠rst, we have x(s) = x(r)+x(t)
2 . Since we do not have any right-facing angle, the

following inequality holds:
∑

∠rst∈T x(s) <
∑

∠rst∈T
x(r)
2 +

∑
∠rst∈T

x(t)
2 . Since

no two angles share a point, we have
∑n

i=1(ci/2) <
∑n

i=1(ai/2) +
∑n

i=1(bi/2),
which contradicts that M is an affirmative instance of DNMTS.

Step 2: We now transform the y-monotone straight angles of T into n triples
for M . For each angle, ∠rst, where r, s, t are on lines y = 0, y = 1 and y = 2, we
construct a triple (x(r), x(t), 2x(s)). Since ∠rst is a straight angle, x(r) +x(t) =
2x(s). Since no two angles share a point, the triples will be disjoint. ut

3.2 Bottleneck Convex Subsets is NP-Hard

In this section we reduce Angle Partition to Bottleneck Convex Subsets. Let
P be an instance of Angle Partition, i.e., three lines y = 0, y = 1 and y = 2,
each line containing n points. We construct an instance H of Bottleneck Convex
Subsets with k = n.

Construction of H: We first take a copy P ′ of the points of P and include
those in H. Let ∆ be a sufficiently large number (to be determined later). We
now construct n upper chains. The ith upper chain Ui, where 1 ≤ i ≤ n, is
constructed following the step below (see Figure 5).

Construction of Ui: Place two points at the coordinates (i∆,∆2 + 3) and
((i+1)∆, 3). Let C be the curve determined by y = ∆2+3−(x−i∆)2, which
passes through these two points. Place 2n points uniformly on C between
(i∆,∆2 + 3) and ((i+ 1)∆, 3).
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y = 0

y = 1

y = 2

y = 3

(∆,−∆2 − 1) (2∆,−∆2 − 1) (3∆,−∆2 − 1)

(∆,∆2 + 3) (2∆,∆2 + 3) (3∆,∆2 + 3)

U1 U2 U3

V1 V2 V3

(2∆, 3) (3∆, 3) (4∆, 3)

(2∆,−1) (3∆,−1)
y = −1

(4∆,−1)

Fig. 5. Illustration for the construction of H. Note that this is only a schematic rep-
resentation, which violates the property that all the chains are inside the wedge deter-
mined by the y-monotone angles.

Each upper chain contains (2n+2) points. We define the n lower chains symmetri-
cally, where each lower chain Vi starts at (i∆,−∆2−1) and ends at ((i+1)∆,−1).

We now choose the parameter ∆. Let t be the maximum x-coordinate of the
points in P , and set ∆ to be t4. This ensures that for any line ` with non-zero
slope passing through two points of P , the upper and lower chains lie on the
right half-plane of `. This concludes the construction of the Bottleneck Convex
Subsets instance H, where k = n. Note that H has 3n+ n(4n+ 4) = n(4n+ 7)
points. In the best possible scenario, one may expect to cover all the points and
have a partition into n disjoint convex subsets, where each set contains (4n+ 7)
points. The proof of Lemma 1 is in the full version [6].

Lemma 1. Let W be a partition of the upper and lower chains into a set L of
at most n disjoint convex sets. Then each convex set in L contains at least one
point from an upper chain and one point from a lower chain.

Reduction: We now show that the Angle Partition instance P admits an
affirmative solution if and only if the Bottleneck Convex Subsets instance H
admits k(= n) disjoint convex sets with each set containing (4n+ 7) points.

Assume first that P admits an affirmative solution, i.e., P admits a set of n
y-monotone angles such that none of these are right facing. By the construction
of H, the corresponding point set P ′ must have such a partition into y-monotone
angles. For each i from 1 to n, we now form a point set Ci that contains the ith y-
monotone angle, the upper chain Ui and the lower chain Vi. By the construction
of H, all the chains are inside the wedge determined by the y-monotone angle
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and hence Ci is a convex set with (4n+ 7) points. Since the sets are disjoint, we
obtain the required solution to the Bottleneck Convex Subsets instance.

Consider now that the points of H admits n disjoint convex sets with each
set containing (4n+7) points. Since H contains n(4n+7) points, the convex sets
form a partition of H. Let L be such a partition. We now show how to construct
a solution for P using L. Let L′ be a set of convex sets obtained by removing
the points of P ′ from each convex set of L. By Lemma 1, each set of L′ contains
at least one point from the upper chains and one point from the lower chains.
Since there are 3n points on P ′, to partition P ′ into n convex sets, we must need
each convex set of L to contain a y-monotone angle with exactly one point from
y = 0, one point from y = 1 and one point from y = 2. Since each convex set
contains one point from an upper chain and one point from a lower chain, none
of these y-monotone angles can be right facing. Hence we obtain a partition of
P ′ into the required y-monotone angles, which implies a partition also for P .
This completes the reduction. The following theorem summarizes the results.

Theorem 3. The Bottleneck Convex Subsets problem is NP-hard.

4 Point Sets with Few Points inside the Convex Hull

In this section we show that the Bottleneck Convex Subsets problem is fixed-
parameter tractable when parameterized by the number of points r inside the
convex hull, i.e., these points do not lie on the convex-hull boundary.

Theorem 4. Let P be a set of n points and let r be the number of points inte-
rior to the convex hull of P . Then one can solve the Bottleneck Convex Subsets
problem on P in f(r) · nO(1) time, i.e., the Bottleneck Convex Subsets problem
is fixed-parameter tractable when parameterized by r.

Proof (Sketch: see the full version [6] for the complete proof). Let k be the num-
ber of disjoint convex sets that we need to construct. We guess the cardinality of
the smallest convex set in an optimal solution and perform a binary search. For
a guess q, we check whether there exists k disjoint convex sets each with at least
q points. Assume that j of the k convex sets contain points from the interior.
Since there are only r interior points, we enumerate for each j from 0 to r, all
possible j convex sets such that each set in these j convex sets contains at most
q points from the interior of P . For each set of length ` ≤ r, we also consider
all ` possible convex orderings of the points. Therefore, we have

∑k
j=0 r

(
2r

j

)
pos-

sibilities to consider. We need an additional consideration when all the points
of a convex set lie on a straight line L. In that situation, we enumerate two
further cases one that considers the left halfplane and the other that considers
the right halfplane of L. Thus the number of elements in the enumeration is at

most
∑k

j=0 r
(
2r

j

)
2j ≤

∑k
j=0 r2

rj+1 ≤ r2rk+2

. The idea now is to examine whether
these j sets can be extended to contain q points each and to check whether the
remaining points can be used to construct the remaining (k − j) convex sets by
modelling this with a maximum flow problem. ut
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5 Discussion

We examined the Bottleneck Convex Subsets problem of selecting k mutually
disjoint convex subsets of a given set of points P such that the cardinality of
the smallest set is maximized. We described an algorithm that solves Bottleneck
Convex Subsets for small values of k, showed Bottleneck Convex Subsets is
NP-hard for an arbitrary k, and proved Bottleneck Convex Subsets to be fixed
parameter tractable when parameterized by the number of points interior to
the convex hull. The problem is also solvable in polynomial time for specific
large values of k. If k > n/4, then some subset has cardinality at most three;
a solution is found trivially by arbitrarily partitioning P into k subsets of size
bn/kc or dn/ke. If k ∈ {bn/5c+ 1, . . . , n/4} then some subset has cardinality at
most four. As discussed in Section 1.2, Károlyi [18] characterized necessary and
sufficient conditions for a set of n points in general position to admit a partition
into k = n/4 convex quadrilaterals, and gave an O(n log n)-time algorithm to
decide whether such a partition exists; if no such partition exists, then some set
must contain at most three points, which can be solved as described above. It
remains open to determine whether Bottleneck Convex Subsets can be solved in
polynomial time for all k ∈ Θ(n).

As a direction for future research, a natural question is to establish a good
lower bound on the time required to solve these problems for small fixed values
of k. In particular, is the O(n3)-time algorithm of Chvátal and Klincsek [4]
optimal for the case k = 1? Note that our algorithm has time O(n8) when k = 1.
It would also be interesting to examine whether a fixed-parameter tractable
algorithm exists for Bottleneck Convex Subsets when parameterized by k, and
to find approximation algorithms for Bottleneck Convex Subsets when k is an
arbitrary input parameter, with running time polynomial in n and k.
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12. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-
ematica 2, 463–470 (1935)
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Discret. Appl. Math. 109(1-2), 163–175 (2001)

19. Kirkpatrick, D.G., Seidel, R.: The ultimate planar convex hull algorithm? SIAM
J. Comput. 15(1), 287–299 (1986)

20. Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1.
In: Proc. International Colloquium on Automata, Languages and Programming
(ICALP). pp. 624–635 (2000)

21. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane.
Oper. Res. Lett. 1(5), 194–197 (1982)
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