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ABSTRACT
Motivated by the gateway placement problem in wireless
networks, we consider the geometric k-centre problem on
unit disc graphs: given a set of points P in the plane, find a
set F of k points in the plane that minimizes the maximum
graph distance from any vertex in P to the nearest vertex in
F in the unit disc graph induced by P∪F . We describe exact
and approximate polynomial-time solutions to this problem
for any fixed k and show that the problem is NP-hard when
k is an arbitrary input parameter.
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F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems; G.2.2 [Mathematics of Computing]: Discrete Math-
ematics—Graph Theory ; C.2.1 [Computer Systems Or-
ganization]: Computer-Communication Networks—Network
Architecture and Design
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1. INTRODUCTION

1.1 Motivation
In a wireless sensor network, sensor nodes collect and send

data to sink nodes, which may either be the users of the data,
or gateways to another (possibly wired) network through
which a remote user can access the data. Sensor nodes per-
form a sensing function as well as a routing and forwarding
function to move data to sink nodes. Since sensor nodes are
battery powered, conserving and making efficient use of en-
ergy is an important consideration for all network protocols.
In particular, forwarding packets depletes battery power at
all nodes on a routing path, a problem that is made worse
if sink nodes are poorly positioned, resulting in longer path
lengths to sink nodes. Similarly, much of the traffic in a
wireless mesh network passes through gateway nodes that
provide connectivity to exterior networks such as the Inter-
net [1]. To optimize bandwidth usage, it is important to
minimize the path length between nodes and gateways [1].

This motivates the problem of optimal sink placement in
a wireless sensor network or gateway placement in a wireless
mesh network. In this paper, we model these problems as
a facility location problem, in which network nodes corre-
spond to clients, and gateways or sink nodes correspond to
facilities. A wireless network is often modelled by a unit disc
graph (e.g., [4, 11, 12, 16, 17]) where the nodes are repre-
sented by points on the plane and a node u is connected to
every node located in the unit disc centred at u. Given a set
of points P in the plane, we consider the problem of finding
a set F of k points in the plane that minimizes the maximum
graph distance between any point in P and the nearest point
in F in the unit disc graph induced by P ∪ F . Although
this problem is similar to the Euclidean k-centre and ver-
tex k-centre problems (see Section 3), this version of the
problem incorporates both geometric and graph-theoretic
constraints, resulting in a new problem which we call the
geometric k-centre problem.

In the geometric k-centre problem, facilities may be se-
lected from anywhere in the plane (as in the Euclidean k-
centre problem) whereas the distance between clients and
facilities is measured by graph distance (as in the vertex k-



centre problem). Thus the geometric k-centre problem is
neither set solely in the host metric space nor on a graph.
Given this new dual setting, existing solutions to the k-
centre problem on graphs or in Euclidean space do not nec-
essarily provide solutions to the geometric k-centre problem.

1.2 Overview of Results
We show that the vertex 1-centre provides a 5-approximation

of the geometric 1-centre; this bound is tight. We describe
polynomial-time algorithms for finding exact and approxi-
mate geometric 1-centres of a unit disc graph. Our technique
generalizes to finding a geometric k-centre for any fixed k.
When k is an arbitrary input parameter, we show that the
geometric k-centre problem is NP-hard on unit disc graphs.

2. DEFINITIONS
Given a continuous metric space S, let dS(p, q) denote

the metric distance between points p and q in S. Given a
graph G = (V, E), let dG(u, v) denote the unweighted graph
distance between vertices u and v in V . Region Ri ⊆ S is
a ball of radius ρ if there is a central point c ∈ Ri such that
Ri = {p | p ∈ S and dS(c, p) ≤ ρ}. Let ∂(Ri) denote the
boundary of region Ri in S and let int(Ri) denote its interior.
We say a set of regions R = {R1, . . . , Rn} is uniform if there
exists a ρ ≥ 0 such that every Ri ∈ R is a ball of radius ρ in
S. Examples of uniform sets of regions include a set of unit
intervals in R under any `p metric, a set of unit discs in R2

under the `2 metric, and a set of unit cubes in R3 under the
`∞ metric.

In this paper we consider the geometric k-centre prob-
lem on intersection graphs of uniform discs. We remind the
reader of the definition of an intersection graph:

Definition 1 (Intersection Graph). Given a set of
regions R = {R1, . . . , Rn} in S, the intersection graph in-
duced by R has vertex set R and edge set {(Ri, Rj) | Ri ∩
Rj 6= ∅}.

Next we define a geometric k-centre on an intersection
graph:

Definition 2 (Geometric k-Centre). Given a set of
regions R = {R1, . . . , Rn} in a metric space S, a positive
integer k, and a non-negative real number ρ, a geometric
k-centre of R is a set of regions F = {F1, . . . , Fk} in S,
such that each Fi ∈ F is a ball of radius at most ρ and F
minimizes the eccentricity of F in R, denoted eccG(R, F ),
where

eccG(R, F ) = max
Ri∈R

min
Fj∈F

dG(Ri, Fj), (1)

and G denotes the intersection graph of R ∪ F .

For a given R, we refer to the minimum value of (1) as the
geometric k-radius of R. In the facility location literature,
R typically represents a set of clients (the input defining
a problem instance) and F represents a set of facilities (a
solution to the problem instance); we use these terms to
differentiate between regions in R and regions in F . The
geometric k-centre problem is closely related to the vertex
k-centre problem:

Definition 3 (Vertex k-Centre). Given a graph G =
(V, E) and a positive integer k, a vertex k-centre of G is a

set of vertices F = {v1, . . . , vk} ⊆ V that minimizes

max
u∈V

min
vj∈F

dG(u, vj). (2)

We refer to the value of (2) as the vertex k-radius of G. A
vertex k-centre is often called simply a k-centre; we add the
prefix “vertex” to distinguish it from a geometric k-centre.
The vertex k-centre problem has been studied extensively
(see Section 3).

Although the geometric k-centre problem can be applied
to several classes of intersection graphs, we primarily focus
on graphs commonly used to model the topology of wireless
networks: unit disc graphs.

Given a point p ∈ R2, let Discr(p) denote the disc of radius
r centred at p. Similarly, given a set of points P ⊆ R2, let
Discr(P ) denote the corresponding set of discs. When r = 1
we omit the subscript r.

Definition 4 (Unit Disc Graph). Given a set of points
P in R2 under the `2 metric, the unit disc graph induced by
P , denoted UDG(P ), is an embedded graph with vertex set
P and edge set {(u, v) | dS(u, v) ≤ 1}.

That is, vertices p and q in P are adjacent in UDG(P ) if and
only if q ∈ Disc(p). See the example in Figure 1. Equiva-
lently, vertices p and q in P are adjacent in UDG(P ) if and
only if Disc1/2(p)∩Disc1/2(q) 6= ∅. Thus, a unit disc graph
is an intersection graph. With respect to our discussion of
geometric k-centres on unit disc graphs, we fix ρ = 1/2 and
identify the location of a client or facility by the point p at
the centre of the corresponding disc.

If P ⊆ Z2, then UDG(P ) is a grid graph. A unit disc
graph is not necessarily planar and its maximum degree can
be as large as |P | − 1. A grid graph, on the other hand, is
planar and has maximum degree at most four. Naturally,
the definition of a unit disc graph generalizes to three or
higher dimensions as a unit ball graph and to one dimension
as a unit interval graph, both of which can be considered
with respect to the geometric k-centre problem.

The arrangement induced by a set of regions R in S, de-
noted AR, is a set of cells, each of which is a maximal con-
nected region such that AR forms a partition of S and for
all C ∈ AR and all Ri ∈ R, int(C) ∩ ∂(Ri) = ∅. When
S = R2, we define the arrangement graph of R as the planar
multigraph G = (V, E) whose vertex set V corresponds to
points at which the boundaries of three or more cells inter-
sect and whose edge set E corresponds to the simple curves
in ∪C∈AR∂(C) \ V . The edges of the dual of the arrange-
ment graph can be directed such that (Ca, Cb) ∈ E if and
only if for every p ∈ P , Ca ∈ Disc(p) ⇒ Cb ∈ Disc(p). See
Figures 2A and 2B.

Given a graph G = (V, E), we employ standard graph-
theoretic notation, where for each vertex v ∈ V , Adj(v) =
{u | (u, v) ∈ E} denotes the set of vertices adjacent to v,
deg(v) = |Adj(v)| denotes its degree, and N(v) = Adj(v) ∪
{v} denotes its neighbourhood.

3. RELATED WORK

3.1 Vertex k-Centre
Given a graph G = (V, E), Hakimi and Kariv [13] give

an algorithm to find a vertex 1-centre in O(mn + n2 log n)
time, where n = |V | and m = |E|. A vertex 1-centre
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Figure 1: (Left) A set of points P , the corresponding set Disc(P ), and UDG(P ). (Middle) The point at the
centre of the shaded unit disc is a geometric 1-centre of P . The corresponding graph UDG(P ∪F ) is illustrated.
(Right) The set of points at the centres of the three shaded unit discs is a geometric 3-centre of P . The
corresponding graph UDG(P ∪ F ) is illustrated.

can also be found by calculating the unweighted all-pairs
shortest path distances and identifying the vertex for which
the maximum distance is minimized; as shown by Chan
[7], this can be done in O(mn/ log n) time if m > log2 n,
O(mn log log n/ log n) time if m > n log log n, and O(n2

log2 log n/ log n) time if m ≤ n log log n. When k is fixed,
a vertex k-centre can be found in O(mknk log n) time [21].
When k is an input parameter, the problem is NP-hard [13].

3.2 Unit Disc Graphs
Clark et al. [9] give hardness results for several problems

on unit disc graphs, including the minimum dominating set
problem (which we use as the basis for our hardness reduc-
tion in Section 4.5). They mention an earlier result by Ma-
suyama et al. [19] regarding hardness of the vertex k-centre
problem on unit disc graphs. Marathe et al. [18] describe ap-
proximation algorithms for NP-hard problems on unit disc
graphs, including a 5-approximation for the minimum dom-
inating set problem. They observe that any independent set
in the neighbourhood of a vertex v has cardinality at most
five. Given P ⊆ R2, Breu [5] describes an O(m + n log n)-
time algorithm for constructing UDG(P ) and an O(n log n)-
time algorithm for enumerating the connected components
of UDG(P ). Breu and Kirkpatrick [6] show it is NP-hard to
decide whether a graph is a unit disc graph. That is, given
only the combinatorial description for a UDG it is NP-hard
to find a unit disc embedding in the plane. This result is
extended by Kuhn et al. [15] who show that it is NP-hard
to approximate within a factor of 1/

√
2. The difficulty in

finding a geometric k-centre of a unit disc graph arises from
the geometric constraints implied by an embedding; given
only a combinatorial description for a graph, the addition
of a universal vertex trivially solves the problem. As such,
we assume knowledge of the graph’s planar embedding in a
problem instance.

3.3 Geometric Sink/Relay Placement
Similar to the geometric k-centre problem in which k is

fixed and the objective is to minimize the geometric k-radius,

Mihandoust and Narayanan [20] consider the related h-hop
covering set problem on a unit disc graph, in which the max-
imum k-radius is fixed and the objective is to minimize k.
They provide PTASs for several variations of this problem.
Aoun et al. [1] follow a similar approach for gateway place-
ment in wireless mesh networks. Efrat et al. [10] consider
the related relay placement problem, in which the objective
is to add the minimum number of facilities (relays) such that
the resulting network is connected. They consider a more
general model in which the range of communication of relays
and network nodes may differ.

4. FINDING A GEOMETRIC K-CENTRE OF
A UNIT DISC GRAPH

We begin by examining properties of arrangements of unit
discs. We then establish bounds on the ratio of the geomet-
ric 1-radius to the vertex 1-radius. We describe polynomial-
time algorithms for finding exact and approximate solutions
to the geometric 1-centre problem on unit disc graphs and
discuss how to generalize the solution for any fixed k. Fi-
nally, we show that the problem is NP-hard when k is an
arbitrary input parameter. Throughout Section 4, P de-
notes an arbitrary set of points in R2, R = Disc(P ), AR

denotes the arrangement induced by Disc(P ), n = |P |, and
m denotes the number of edges in UDG(P ).

4.1 The Arrangement of a Set of Discs
Definition 4 and the definition of an arrangement imply

the following observation:

Observation 1. Given a set P ⊆ R2 and points f1 and
f2 in the same cell of the arrangement of Disc(P ),

eccUDG(P∪{f1})(P, {f1}) = eccUDG(P∪{f2})(P, {f2}).

Therefore, if point f1 is a geometric 1-centre of P , then any
point in the same cell as f1 is also a geometric 1-centre of
P . Consequently, to identify a geometric 1-centre of P it
suffices to consider one point from every cell in AR.
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Figure 2: A. The edges of the dual of the arrangement graph can be directed such that (Ca, Cb) ∈ E if and only
if for every p ∈ P , Ca ∈ Disc(p)⇒ Cb ∈ Disc(p). B. The arrangement induced by these four unit discs partitions
the plane into twenty cells. The partial order of the corresponding dual graph has four sources and two sinks.
To select locations for a facility, it suffices to consider the sinks, which correspond to convex cells (shaded).
C. This example due to Tóth [22] shows an arrangement induced by n unit discs that has Ω(n2) convex cells.

By Propositions 2 and 3, the number of cells (and the
number of convex cells) in any arrangement of discs in the
plane is Θ(n2) in the worst case; this value is directly pro-
portional to the run times of algorithms we describe in Sec-
tions 4.3 and 4.4.

Proposition 2 (Konhauser et al. 1996 [14]). An ar-
rangement of n discs in R2 contains at most n2−n+2 cells.
This bound is tight.

The geometric dual of the arrangement graph of AR is a
planar graph G = (V, E) whose vertex set is AR and whose
edges connect adjacent cells in AR. The edges of G can be
directed such that (Ca, Cb) ∈ E if and only if for every p ∈
P , Ca ∈ Disc(p) ⇒ Cb ∈ Disc(p). Since any facility located
within it will be disconnected from UDG(P ), we omit any
face not contained in a unit disc (e.g., the exterior face)
from V . See Figures 2A and 2B. Observe that G is a partial
order relation. Furthermore, for any cells {Ca, Cb} ⊆ AR

and any points fa ∈ Ca and fb ∈ Cb, if (Ca, Cb) ∈ E, then
UDG(P ∪ {fa}) is a subgraph of UDG(P ∪ {fb}). That is,

eccUDG(P∪{fb})(P, fb) ≤ eccUDG(P∪{fa})(P, fa).

Consequently, when selecting a position for a 1-centre, it suf-
fices to consider only cells in AR that are sinks with respect
to the partial order induced by AR. The sinks correspond
exactly to the convex cells in AR. One might hope that the
number of sinks is asymptotically less than the total num-
ber of cells; this is not the case, as shown by the following
proposition based on an example suggested by Tóth [22].

Proposition 3. For any n ∈ Z+, there exists an ar-
rangement of n unit discs in R2 for which the number of
convex cells is at least bn/4c2.

Proof. Choose any n.
Case 1. Suppose n mod 4 = 0. Position two unit discs

such that their centres are distance 2− 64/(16 + n2) apart.
It is straightforward to show that their intersection is a lune
of width 64/(16 + n2) and height 16n/(16 + n2). Observe
that the height is n/4 times the width. Therefore, n discs
can be positioned such that n/4 vertical lunes each intersect
n/4 horizontal lunes. See Figure 2C. Each lune is convex

and, therefore, the intersection of two lunes is also convex,
resulting in at least n2/16 convex cells.

Case 2. Suppose n = 4k + i for some k ∈ Z and some
i ∈ {1, 2, 3}. Given any sets of unit discs R1 and R2, the
number of convex cells in AR1∪R2 is greater than or equal
to the number of convex cells in AR1 . The result follows by
Case 1 since b(4k + i)/4c2 = b(4k)/4c2.

4.2 Approximating a Geometric 1-Centre by
a Vertex 1-Centre

Facilities in a geometric 1-centre can be positioned any-
where in the plane while facilities in a vertex 1-centre must
coincide with clients. Consequently, the geometric 1-radius
of a unit disc graph is at most the vertex 1-radius. Of course,
the geometric 1-radius can be less than the vertex 1-radius.
Theorem 4 bounds the ratio between the two radii.

Theorem 4. If UDG(P ) is connected, then the vertex
1-radius of UDG(P ) is at most five times its geometric 1-
radius. This bound is tight.

Proof. Choose any finite set P ⊆ R2. Let f ∈ R2 be a
geometric 1-centre of P and let r denote the corresponding
geometric 1-radius. Let {c1, . . . , ct} be an independent set of
Adj(f) in UDG(P∪{f}). It follows that t ≤ 5 [18]. Partition
P into P1, . . . , Pt such that for all {i, j} ⊆ {1, . . . , t},

∀p ∈ Pi, dUDG(P∪{f})(p, ci) ≤ dUDG(P∪{f})(p, cj).

Therefore, for any i and any {p, q} ⊆ Pi, dUDG(P )(p, q) ≤
2r−1. Since UDG(P ) is connected and k ≤ 5, it follows that
for some i and all p ∈ P , dUDG(P )(ci, p) ≤ 5r. Therefore,
the vertex 1-radius of UDG(P ) is at most 5r.

This bound is realized in the limit as s→∞ by the graph
Gs illustrated in Figure 3. For any s ≥ 2, Gs has geometric
1-radius 2+ds/2e (realized by the geometric 1-centre located
at f) and vertex 1-radius d5s/2e.

In other words, a vertex k-centre of P provides a 5-approx-
imation of its geometric k-centre when UDG(P ) is connected.

4.3 Finding a Geometric 1-Centre
Building on our observations from Section 4.1, we de-

scribe algorithms for finding a geometric 1-centre in Θ(n2m)
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Figure 3: illustration in support of Theorem 4

worst-case time and a nearly-optimal approximate geometric
1-centre in Θ(n3) time; the resulting approximate solution
has eccentricity at most one greater than the geometric 1-
radius, corresponding to an additive approximation factor
of at most one.

4.3.1 An Exact Solution using Breadth-First Search
Chazelle and Lee [8] describe how to build the arrange-

ment graph of R in O(n2) time. As the graph is constructed,
for each cell C we maintain a list of discs within which C
is contained; these correspond to the neighbours of f in
UDG(P ∪ {f}), where f is any point in C. Since a disc
can be contained in Θ(n) other discs, this increases the run
time to O(n3). A traversal of this graph can be used to enu-
merate the cells of AR (faces of the graph) in O(|AR|) time.
A geometric 1-centre of P can be found by considering one
point f from each cell in AR and using breadth-first search
to compute the eccentricity of f in UDG(P ∪ {f}). The
minimum such value is the geometric 1-radius of UDG(P )
and the corresponding point f is a geometric 1-centre. In
the pseudocode below, BFS-Depth(G, v) calls a standard
queue-based breadth-first search algorithm to calculate the
distance from v to the furthest vertex in G.

Geometric 1-Centre(P )
1 radius←∞
2 for each cell C ∈ AR

3 f ← any point in C
4 ecc← BFS-Depth(UDG(P ∪ {f}), f)
5 if ecc < radius
6 radius← ecc
7 centre← f
8 return centre

Adding vertex f increases the number of edges in UDG(P )
by at most n. Therefore, each call to breadth-first search
on UDG(P ∪ {f}) takes Θ(n + m) time. By Proposition 2,
|AR| ∈ O(n2). Therefore, Geometric 1-Centre has worst-
case run time Θ(n2(m+n)). Recall that UDG(P∪{f}) must
be connected for a geometric 1-centre to exist. Therefore,
m ≥ n − 1 and the run time simplifies to Θ(n2m). In the
worst case, therefore, this algorithm is quartic in n.

4.3.2 A Faster Approximate Solution

Although it suffices to consider only convex cells in AR,
the number of such cells remains Ω(n2) in the worst case by
Proposition 3. Therefore, the worst-case run time of Geo-
metric 1-Centre is not improved by considering only con-
vex cells. As we now show, a faster algorithm is possible if
we relax constraints on optimality and allow the eccentric-
ity of a solution to exceed the geometric 1-radius by at most
one.

As with the previous algorithm, we begin by constructing
AR and the corresponding lists of discs in which each cell is
contained. A point f is selected within each cell and each of
these lists is partitioned according the corresponding regions
R1(f) through R6(f). These regions correspond to six sym-
metric sectors whose union forms the unit disc centred at
f . See Figure 4A. The algorithm computes the approximate
eccentricity by iteratively calculating

min
C∈AR

max
p∈P

min
i∈{1,...,6}

`
1 + dUDG(P )(qi, p)

´
,

where f is any point in C and qi is any point in Ri(f).
By Lemma 5, to compute the approximate eccentricity of
a point f it suffices to iterate over all p ∈ P and compare
the graph distance between p and a point qi in P ∩Ri(f) for
each nonempty region Ri(f). Adding one to the minimum of
these (at most) six distances gives either dUDG(P∪{f})(f, p)
or dUDG(P∪{f})(f, p) + 1, depending on whether a shortest
path from f to p passes through the point qi that was se-
lected. The algorithm makes use of unweighted all-pairs
shortest-path distances on the vertices of UDG(P ). This
distance function can be precomputed in o(mn) time (e.g.,
see [7]).

Approximate Geometric 1-Centre(P )
1 approxRadius←∞
2 for each cell C ∈ AR

3 f ← any point in C
4 approxEcc← 0
5 for each point p ∈ P
6 dist←∞
7 for i← 1 to 6
8 qi ← any point in Ri(f) ∩ P
9 if dUDG(P )(qi, p) + 1 < dist

10 dist← dUDG(P )(qi, p) + 1
11 if dist > approxEcc
12 approxEcc← dist
13 if approxEcc < approxRadius
14 approxRadius← approxEcc
15 approxCentre← f
16 return approxCentre

Lemma 5. For any set of points P in R2, any point f ∈
R2, and any point p ∈ P ,„

1 + min
i∈{1,...,6}

dUDG(P )(qi, p)− dUDG(P∪{f})(f, p)

«
∈ {0, 1},

where qi is any point in Ri(f) ∩ P .

Proof. For any i ∈ {1, . . . 6}, any two points a and b in
Ri(f) are at most unit distance apart. Consequently, a and b
are adjacent in UDG(P ) and dUDG(P )(a, p) ≤ dUDG(P )(b, p)+
1 for any p ∈ P . See Figures 4B and 4C. Any shortest path
from f to p must pass through a vertex in P ∩ Ri(f), for
some i ∈ {1, . . . , 6}. The result follows.
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Figure 4: If a and b are in the same sector, dUDG(P )(a, p) and dUDG(P )(b, p) differ by at most one.

For every point f , the sets R1(f)∩P through R6(f)∩P are
precomputed in O(n3) time. Thus, a point can be selected
from each set in O(1) time, giving the following theorem.

Theorem 6. Given a set of points P in R2, algorithm
Approximate Geometric 1-Centre identifies a point f ∈
R2 in O(n3) time such that eccUDG(P∪{f})(P, {f}) ≤ r + 1,
where r denotes the geometric 1-radius of P and n = |P |.

4.4 Finding a Geometric k-Centre for a Fixed
k

When k is fixed, our Geometric 1-Centre algorithm
generalizes to give an O(mn2k)-time algorithm for finding a
geometric k-centre of a unit disc graph. We begin with the
following observation:

Observation 7. Given a set of points P ⊆ R2 and a set
of points F ⊆ R2 that forms a geometric k-centre of P , for
every client p ∈ P , some shortest path in UDG(P ∪F ) from
p to a facility f ∈ F nearest to p does not contain any facility
f ′ ∈ F , where f ′ 6= f .

An analogous property also holds for a vertex k-centre of
any graph. As a consequence of Observation 7, edges con-
necting two facilities need not be considered when selecting
locations for a geometric k-centre. Any two or more facili-
ties located in a cell of AR serve the same set of clients in
P , resulting in redundant facilities. Therefore, by Proposi-

tion 2, it suffices to consider at most
`

n2−n+2
k

´
combinations

for assigning k facilities to cells in AR. For each combination
of cells, we calculate the corresponding eccentricity. Thus,
the Geometric 1-Centre algorithm is modified such that
the outer loop considers all combinations of k cells. In this
case, BFS-Depth(G, V ) begins breadth-first search at the
vertices in the set V , returning the eccentricity of V in graph
G. The corresponding run time is at most

(n + m)

 
n2 − n + 2

k

!
∈ O(mn2k).

This gives the following theorem.

Theorem 8. For any fixed k ∈ Z+, a geometric k-centre
of a set of n unit discs in R2 can be found in O(mn2k) time.

Geometric k-Centre(P )
1 radius←∞
2 for each combination of cells C = {C1, . . . , Ck} ⊆ AR

3 F ← ∅
4 for each Ci ∈ C
5 fi ← any point in Ci

6 F ← F ∪ fi

7 ecc← BFS-Depth(UDG(P ∪ F ), F )
8 if ecc < radius
9 radius← ecc

10 Centres← F
11 return Centres

4.5 Finding a Geometric k-Centre for an Ar-
bitrary k

In the last section we described an O(mn2k)-time algo-
rithm for finding a geometric k-centre of a unit disc graph.
Of course this run time is exponential if k is an arbitrary
input parameter to the problem. In this section we show
that Geometric k-Centre is NP-hard on unit disc graphs
when k is not fixed. This implies NP-hardness for the more
general problem, that is, on intersection graphs of sets of
regions in two or more dimensions.

Theorem 9. When k is an arbitrary input parameter, the
geometric k-centre problem on unit disc graphs is NP-hard.

Proof. Given a graph G = (V, E) and an integer k, the
Dominating Set decision problem is to determine whether
there exists a set D ⊆ V such that |D| ≤ k and every vertex
in V is adjacent to some vertex in D. Dominating Set
remains NP-hard if G is a grid graph [9, 19]. Choose any
finite set of points P ⊆ Z2 and any integers k ≥ 1 and i ≥ 0.
Let s = 2i + 1 and r = 3i + 1. Let f : Z2 → Z2 denote the
uniform scaling function defined by f((px, py)) = (spx, spy).
Similarly, let f−1((px, py)) = (px/s, py/s). If A is a set, let
f(A) = {f(p) | p ∈ A}. Let

P ′ = f(P )

∪ {(sx + i, sy) | 1 ≤ i ≤ s− 1 and {(x, y), (x + 1, y)} ⊆ P}
∪ {(sx, sy + i) | 1 ≤ i ≤ s− 1} and {(x, y), (x, y + 1)} ⊆ P}.

For each p ∈ P ′, let g(p) denote the unique point in f(P )
that is nearest to p in UDG(P ′) by graph distance. There-
fore,

∀p ∈ P ′ dUDG(P ′)(p, g(p)) ≤ bs/2c. (3)

Since the points of P ′ lie on the unit grid, GG(P ′) = UDG(P ′).
Furthermore, GG(P ) is a minor of UDG(P ′). That is, GG(P )
is equal to UDG(P ′) upon scaling the grid by a factor of s
and replacing each edge by a path of length s. See Figure 5.
We claim that GG(P ) has a dominating set of cardinality
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Figure 5: (Left) GG(P ) has a dominating set of cardinality k if and only if UDG(P ′) has a geometric k-centre of
radius r. In this example s = 3 and r = 4. (Right) In Theorem 9 we describe a reduction from Dominating Set
on grid graphs to Geometric k-Centre on unit disc graphs. The hardness of other problems in this hierarchy
can be derived by a reduction corresponding to a subset of the steps described in our proof of Theorem 9.

at most k if and only if UDG(P ′) has a geometric k-centre
of radius r.

Case 1. (⇒) Suppose GG(P ) has a dominating set, de-
noted by D, of cardinality at most k. Observe that f(D) ⊆
P ′. Furthermore,

∀q ∈ f(P ) ∃t ∈ f(D) such that dUDG(P ′)(q, t) ≤ s. (4)

By the triangle inequality, (3), and (4),

∀p ∈ P ′ ∃t ∈ f(D) such that dUDG(P ′)(p, t) ≤ s+bs/2c = r.

Therefore, f(D) is a geometric k-centre of P ′ with radius r.
Case 2. (⇐) Suppose UDG(P ′) has a geometric k-centre

of radius r. By Definition 2, there exists a set F ⊆ R2 such
that |F | ≤ k and

∀p ∈ P ′ ∃q ∈ F such that dUDG(P ′∪F )(p, q) ≤ r.

For any t ∈ R2, there exists some q ∈ P ′ such that N(t) ⊆
N(q) in UDG(P ′ ∪ {t}). By Observation 7, no two facilities
need to be adjacent in UDG(P ′ ∪ F ). Consequently, there
exists a set F ′ ⊆ P ′ such that |F ′| ≤ k and

∀p ∈ P ′ ∃q ∈ F ′ such that dUDG(P ′)(p, q) ≤ r. (5)

By the triangle inequality, (5), and (3),

∀p ∈ P ′ ∃q ∈ F ′ such that dUDG(P ′)(p, g(q)) ≤ r+bs/2c < 2s.
(6)

Observe that

∀{p1, p2} ⊆ f(P ) dUDG(P ′)(p1, p2) mod s = 0. (7)

Therefore, by (6), (7), and since g(q) ∈ f(P ),

∀p ∈ f(P ) ∃q ∈ F ′ such that dUDG(P ′)(p, g(q)) ≤ s.

Consequently,

∀p ∈ P ∃q ∈ F ′ such that dGG(P )(p, f−1(g(q)) ≤ 1.

Let D = f−1(g(F ′)). Since |F ′| ≤ k, therefore |D| ≤ k and
D is a dominating set of GG(P ) whose cardinality is at most
k.

5. DIRECTIONS FOR FUTURE RESEARCH
Motivated by gateway placement in wireless networks, we

have examined the problem of finding a geometric k-centre
in unit disc graphs. Of course, unit disc graphs are not the
only model for representing wireless networks. In addition
to the results described in this paper, we have considered the
geometric k-centre problem in one-dimension (i.e., on inter-
val graphs), resulting in linear-time algorithms for finding a

geometric 1-centre and 2-centre and an O(n log n)-time algo-
rithm for finding a geometric k-centre. Details are omitted
due to space constraints. As well, we have partial results
for generalizations to the setting of disc graphs (intersection
graphs of discs of differing radii), to three dimensions, and
to rectangle intersection graphs.

Another possible direction is to model obstacles and in-
terference in wireless networks by applying the geometric
k-centre problem to the setting of visibility graphs. Given
a set of points P (clients) in a polygonal region R, the ob-
jective is to select a set F of k points (facilities) in R such
that the maximum graph distance between any client and its
nearest facility is minimized in the visibility graph of P ∪F
in R; a pair of nodes is connected in the visibility graph if
and only if the line segment between them is unobstructed
by polygon R. By applying observations similar to those
made in Section 4.1, a solution can be found discretely and,
furthermore, the corresponding partition of the plane into
visibility regions is a partial order relation for which it suf-
fices to consider the sinks. Thus, visibility graphs seems like
a natural setting to which to apply some of the ideas devel-
oped in this paper. See [2] and [3] for results on properties
of visibility regions and the corresponding partial order.

One might consider generalizations of the optimization
function that is minimized in selecting positions for gate-
ways. In particular, two fundamental problems of facility
location are the k-centre and k-median problems. In this
paper we restrict attention to the first of these. The two
problems are defined analogously, with the exception that
the maximum over all Ri ∈ R in (1) is replaced by a sum-
mation over all Ri ∈ R. Whereas a geometric k-centre min-
imizes the maximum node-to-gateway distance, a geometric
k-median minimizes the average node-to-gateway distance.
The algorithms for finding a geometric 1-centre and geo-
metric k-centre for a fixed k presented in this paper are
straightforward to adapt to identify a geometric 1-median
or geometric k-median, respectively. In this case, each call
to BFS-Depth is replaced by a call to BFS-Sum, which
returns the corresponding sum of the distances from every
node to the nearest gateway. The resulting run times remain
O(mn2) and O(mn2k), respectively.

Finally, can a geometric 1-centre of a unit disc graph be
found in O(n3) worst-case time? That is, can our O(n2m)-
time algorithm be improved? Cubic time is a natural goal
for solving this problem since the fastest known algorithms
for finding a vertex 1-centre run in nearly O(n3) time.
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