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1 PROBLEM DEFINITION
Wireless networks are often modelled using geometric graphs. Using only local geometric infor-
mation to compute a sequence of distributed forwarding decisions that send a message to its des-
tination, routing algorithms can succeed on several common classes of geometric graphs. These
graphs’ geometric properties provide navigational cues that allow routing to succeed using only
limited local information at each node.

1.1 Network Model
A common geometric graph model for wireless networks is to represent each node by a point in
the Euclidean plane, R2, and to add an edge (u, v) for each pair of nodes that can communicate
by direct wireless transmission. The absence of the edge (u, v) signifies that u cannot transmit
directly to v, requiring a multi-hop transmission via a sequence of intermediate nodes that forms a
route from u to v. The cost c(e) of sending a message over an edge e = (u, v) has been modelled in
different ways; the most common measures include the hop (link) metric (c(e) = 1), the Euclidean
metric (c(e) = |e|, where |e| = dist(u, v) is the Euclidean length of the edge e), and the energy
metric (c(e) = |e|α for α ≥ 2).

In some models, transmission is assumed to be uniform in all directions and of equal range, say
r, for all nodes. Under this assumption, the undirected edge (u, v) exists if and only if dist(u, v) ≤
r. Thus, for each node v there is an edge from v to every node u that lies within a disk of radius
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r centered at v. This is the unit disk graph model for wireless networks. Common classes of
geometric graphs that are used to model wireless networks include:

Unit Disk Graph. Vertices are points inR2 and each edge (u, v) exists if and only if dist(u, v) ≤
r, for a given fixed r > 0.

Plane Graph. Vertices are points inR2 and no two edges cross.

Triangulation. Vertices are points inR2 and every interior face is a triangle.

Quasi-unit Disk Graph. Vertices are points in R2 and each edge (u, v) exists if dist(u, v) ≤ r1,
may exist if r1 < dist(u, v) ≤ r2, but does not exist if dist(u, v) > r2, for given fixed r2 > r1 > 0.

Unit Ball Graph. Vertices are points inR3 and each edge (u, v) exists if and only if dist(u, v) ≤ r,
for a given fixed r > 0.

Gabriel Graph. Vertices are points in R2 and each edge (u, v) exists if and only if the disk with
diameter (u, v) does not contain any other vertices.

Other classes of geometric graphs used to model wireless networks include relative neighbour-
hood graphs, Delaunay triangulations, Yao graphs, convex subdivisions, monotone subdivisions,
edge-augmented plane graphs, and physically-based models such as SINR.

A geometric graph G is civilized with λ-precision if for every pair of nodes u and v in G,
dist(u, v) ≥ λ for a given fixed λ > 0, where λ is independent of n, the number of nodes in G.

1.2 Communication Protocol
In several wireless network protocols, e.g., ad hoc or wireless sensor networks, there is no fixed
infrastructure for routing nor any central servers. All nodes act as hosts as well as routers. Apart
from a node’s immediate neighbourhood, the topology of the network is unknown, i.e., each node
is aware of its own location (its (x, y) coordinates) as well as the coordinates of its neighbours.
Nodes must discover and maintain routes in a distributed manner without knowledge of precom-
puted routing tables, any particular vertex labelling (other than spatial coordinates), nor the sup-
port of a central server. Additionally, some models incorporate constraints for limited memory
and power. Depending on the particular model, a limited amount of information can be stored
in message headers to assist with routing. When a node receives a message, it reads the header
(possibly modifying the header information) before selecting one of its neighbours to which to
forward the message. A stateless algorithm does not modify the header. Networks nodes have no
memory themselves; any dynamic state information is stored in the message header. Furthermore,
no precomputed information about the network is known to the nodes.

1.3 Geometric Routing
Given the coordinates of a target node t in a (wireless) geometric network G, a source node s in G
is tasked with sending a message via a multi-hop route through G from s to t. Routing proceeds
by computing a sequence of distributed forwarding decisions, where each node along the route
selects one of its neighbours to which to forward the message. Geometric routing is uniform in
that all nodes execute the same protocol. Each node makes a forwarding decision as a function of
its coordinates, the coordinates of its neighbours, the coordinates of t, and any available state bits
stored in the message header. The number of state bits available is critical to guaranteeing delivery
in some classes of geometric graphs by enabling the route to avoid looping and reach t. A node
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may modify the state bits before forwarding the message. In some models, this state information
corresponds to storing data about O(1) nodes, e.g., storing the coordinates of O(1) nodes.

The primary objective is to guarantee message delivery to the target node t. Secondary objec-
tives include minimizing the total cost of communication (the sum of c(e) for all edges e on the
route) and minimizing the worst-case or average dilation (the ratio of the cost of the route followed
relative to that of the route of lowest cost). These secondary objectives are motivated by the need
for nodes to conserve power in many wireless networking settings.

2 KEY RESULTS
Local geometric routing assumes only limited control information stored in message headers and
local information available at each node along the route. This locality provides network indepen-
dence that results in natural scalability to larger networks and continued functionality after arbitrary
changes to the network. A routing algorithm is said to succeed on a particular class of geometric
graphs if it guarantees delivery from any source node s to any target node t on any graph in the
class; otherwise, the algorithm fails on that class of graphs.

Below we summarize key local geometric routing algorithms and their properties.

Greedy Routing. Upon receiving a message, a node forwards it to its neighbour closest to the
target node t. Greedy routing is stateless. This strategy succeeds on Delaunay triangulations, but
fails on more general classes of geometric graphs such as non-Delaunay triangulations, convex
subdivisions, plane graphs, and unit disk graphs.

Compass Routing [7]. Upon receiving a message, a node u forwards it to its neighbour v that
minimizes the angle ∠vut with the target node t. Compass routing is stateless. This strategy
succeeds on regular triangulations, but fails on more general classes of geometric graphs such as
non-regular triangulations, convex subdivisions, plane graphs, and unit disk graphs.

Greedy-Compass Routing [1]. Upon receiving a message, a node u considers its two neighbours
on either side of the line segment ut (node u’s compass neighbours) and forwards the message to
the one closest to t. Greedy-compass routing is stateless. This strategy succeeds on all triangu-
lations, but fails on more general classes of geometric graphs such as convex subdivisions, plane
graphs, and unit disk graphs.

Bose et al. [1] show that no stateless algorithm can succeed on convex subdivisions (including
plane graphs and unit disk graphs). Therefore, to succeed on classes of geometric graphs beyond
triangulations, local routing algorithms require storing one or more state bits in the message header
or predecessor information, i.e., the coordinates of the node that last forwarded the message.

One State Bit [3]. Upon receiving a message, a node u chooses between forwarding the message to
its clockwise or counter-clockwise compass neighbour, depending on the value of a state bit. If the
compass neighbour lies opposite the vertical line through t, the state bit is flipped. This algorithm
uses a single state bit. This strategy succeeds on all triangulations and convex subdivisions, but
fails on more general classes of geometric graphs such as plane graphs and unit disk graphs.

Predecessor Awareness and Monotonicity [3]. Each node locally identifies its topmost left neigh-
bour as its parent and its right neighbours as its children. With knowledge of the predecessor, the
node forwards the message to its (i+ 1)st child after receiving it from its ith child, and eventually
back to its parent after receiving it from its last child. The resulting route contains a depth-first
traversal of a spanning tree of the network. This algorithm is stateless, but each node requires
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knowledge of its predecessor, i.e., the coordinates of the node that last forwarded the message.
This strategy succeeds on triangulations, convex subdivisions, monotone subdivisions, and edge-
augmented graphs from these classes, but fails on more general classes of geometric graphs such
as non-monotone plane graphs and unit disk graphs.

Face Routing [4, 7]. The message is forwarded along the perimeters of faces in the sequence of
faces that intersect the line segment from the source node s to the target node t. This strategy
applies the right-hand principle, in which each face in the sequence is traversed in a counter-
clockwise direction, as if one were walking while sliding the right hand along the wall. To avoid
cycling indefinitely, the algorithm must store the coordinates of O(1) nodes that act as progress
markers. Furthermore, each node requires knowledge of its predecessor. This strategy succeeds on
plane graphs, including triangulations, convex subdivisions, and Gabriel graphs. The intersection
of a unit disk graph with the Gabriel graph of a set of points is planar and remains connected if
the original unit disk graph is connected. Furthermore, this subgraph can be computed locally; this
property allows face routing to succeed on unit disk graphs [4], as well as quasi-unit disk graphs
with bounded ratio r2/r1 <

√
2 and unit ball graphs contained within slabs of thickness less than

1/
√

2 [6]. Although unit disk graphs are non-planar in general, the non-planarity is localized; face
routing fails on more general classes of non-planar geometric graphs such as quasi-unit disk graphs
and unit ball graphs [6], and edge-augmented plane graphs. Face routing can have dilation Θ(n),
where n is the number of network nodes.

Adaptive Face Routing (AFR) [9]. Adaptive face routing is a variant of face routing that achieves
optimality on civilized unit disk graphs and civilized planar graphs with the Gabriel property. Like
face routing, O(1) state data are stored in the message header and each node requires knowledge
of its predecessor. The algorithm attempts to estimate the length c of the shortest path from s and
t by ĉ (starting with ĉ = 2|st| and doubling it in every consecutive round). In each round, the face
traversal is restricted to the region formed by the ellipse with the major axis ĉ centered on st. Each
edge is traversed at most four times, and the dilation achieved is Θ(c).

Geometric Ad-hoc Routing (GOAFR+) [8]. Combining methods from greedy routing, face rout-
ing, and adaptive face routing allows this hybrid algorithm to meet the bounds of adaptive routing
on any unit disk graphs and planar graphs with the Gabriel property (not necessarily civilized).
The algorithm first applies greedy routing and switches to face routing when the routed message
enters a local minimum (a dead end), before again resuming greedy routing as early as possible by
applying an early fallback technique.

2.1 General (Non-Geometric) Networks
Is geometry necessary for local routing to succeed? Even with knowledge of the predecessor,
stateless routing algorithms require knowledge of the induced subgraph of nodes up to distance n/3
away in the worst case [2]. That is, stateless routing using only local information is impossible.
With Θ(log n) state bits, local routing on arbitrary (not necessarily geometric) graphs is possible
by deterministically recomputing a polynomial-length universal traversal sequence at each node
along the route, where Θ(log n) bits store an index into the sequence [5].

3 OPEN PROBLEMS
If a node’s coordinates can be stored using O(log n) bits (e.g., if network nodes are positioned
on a nc × nc grid), then face routing can be applied using O(log n) state bits. It remains open
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whether any local geometric routing algorithm can succeed on plane graphs using o(log n) state
bits. Similarly, it would be interesting to characterize broad classes of geometric graphs on which
local geometric routing is possible using O(1) state bits. In addition to guaranteeing delivery,
bounding dilation is of interest. E.g., canO(1) dilation be guaranteed on convex subdivisions using
O(1) state bits? Finally, the problem of traversing a graph (visiting all nodes) by a sequence of local
forwarding decisions is interesting. Stateless algorithms are impossible for any non-Hamiltonian
network. How many state bits are necessary for a local algorithm to traverse a triangulation?
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