2-Coloring Point Guards in a \boldsymbol{k}-Guarded Polygon*

Stephane Durocher ${ }^{1}$, Myroslav Kryven ${ }^{1}$, Fengyi Liu ${ }^{1}$, Amirhossein Mashghdoust ${ }^{1}$, and Ikaro Penha Costa ${ }^{1}$

1 Department of Computer Science, University of Manitoba
\{stephane.durocher, myroslav.kryven,fengyi.liu,amirhossein.mashghdoust, ikaro. penhacosta\}@umanitoba.ca

Abstract

For every $k \geq 2$, we describe how to construct a polygon P and a set G of points in P, such that P is k-guarded by G (i.e., every point in P is visible to at least k points in G) and for every 2-coloring of G (i.e., for every bipartition of G) at least one of the colors does not guard P. This answers an open question posed by Morin [10].

1 Introduction

The art gallery problem, introduced by Klee [11] in 1973, is a well-known and extensively studied classical problem in the field of Computational Geometry. Given a simple polygon P (without holes) in the plane, the objective is to find a set G of points in P, called guards, such that every point $p \in P$ is visible to at least one guard $g \in G$; that is, the line segment $\overline{p g}$ does not pass outside P. Chvátal [6] showed that $\lfloor n / 3\rfloor$ guards suffice to guard any n-vertex simple polygon P, and that there exist polygons that require $\lfloor n / 3\rfloor$ guards. Fisk [7] later gave a simplified proof (one of the Proofs from THE BOOK [2]) using a 3-coloring argument. The optimization problem of finding a set G of points of minimum cardinality that guards a given simple polygon P is NP-hard [8], and was recently shown to be $\exists \mathbb{R}$-complete [1].

To introduce robustness and redundancy to the model, the art gallery problem generalizes to the k-guarding problem, in which each point in the input polygon P must be visible to at least k guards. Belleville et al. [3] examined a variant of k-guarding, in which guards are placed at the interior of the edges of P. Salleh [12] studied k-guarding with the constraint that guards are placed on the vertices of P, called k-vertex guarding. Salleh showed that $\lfloor 2 n / 3\rfloor$ guards are sometimes necessary when $k=2$, and $\lfloor 3 n / 4\rfloor$ guards are sometimes necessary when $k=3$ (see also [9]). Bereg [4] showed that Fisk's coloring argument can be used to prove these bounds. The k-guarding problem has also been studied from an algorithmic perspective; Busto et al. [5] gave a polynomial-time $O\left(k \log \log O P T_{k}(P)\right)$-approximation algorithm for the k-guarding problem, where $O P T_{k}(P)$ is the optimal number of guards. As observed by Busto et al., if guards must be placed at different vertices of P, then there exist simple polygons that cannot be k-vertex guarded for $k \geq 4$ because some points in P are seen by fewer than k vertices. In k-guarding, this problem is naturally resolved by placing multiple guards arbitrarily close to each other.

During the open problem session at WADS 2023, Morin [10] asked whether there exists a positive integer k such that for all polygons P and all sets G of points that k-guard P, there exists a bipartition of G (equivalently, a 2-coloring of G) that gives two sets that each guard (1-guard) P. Morin presented counter-examples for $k=2$ and $k=3$ for which no such bipartition exists (see Figure 1) and asked whether this property generalizes to higher

[^0]

Figure 1 Examples for $k=2$ and $\boldsymbol{k}=\mathbf{3}$ [10]. The polygon P on the left is 2 -guarded by the set G of three guards (red and blue points). Any 2 -coloring of G partitions G either into 3 and 0 , or 1 and 2 . In both cases, at least one of the three convex vertices of P is not seen by any guard of the color with fewer guards. In this example, the blue guard, whose visibility region is shaded blue, cannot see the vertex p [10]. The polygon P^{\prime} on the right is 3 -guarded by the set G^{\prime} of five guards (red points). There are $\binom{5}{3}=10$ subsets of G^{\prime} of cardinality three. Observe that each of these 10 subsets uniquely 3 -guards exactly one of the 10 convex vertices of P^{\prime}. E.g., the vertex v is 3 -guarded by the three guards that are not consecutive on the boundary of P^{\prime} in the visibility region shaded green, whereas the vertex u is 3 -guarded by the three guards that are consecutive on the boundary of P^{\prime} in the visibility region shaded blue. Any 2-coloring of G will result in one color class containing at most two guards. Consequently, some convex vertex of P is visible only by guards of the same color [10].
values of k. We answer this question in this paper. Observe that for any set G_{1} that guards P, k copies of $G_{1} k$-guard P and can be partitioned into k sets (and, therefore, into two sets) that each guard P. Consequently, Morin's question asks whether every set G that k-guards P can be partitioned into two sets that each guard P.

We formally define k-guarding as considered in this paper.

- Definition 1.1 (k-guarding). Given a simple polygon P, an integer $k \geq 1$, and a set G of points (guards) in P, P is k-guarded by G if for all $p \in P$, there exists $G^{\prime} \subseteq G$, such that $\left|G^{\prime}\right|=k$ and for all $g \in G^{\prime}$, the line segment $\overline{g p}$ does not pass outside P. That is, every point in P is visible to at least k guards in G.

We say that the set of guards G is 2-colorable if there exists a bipartition of G that partitions G into two sets such that each 1-guards P. The notions of k-guardability and 2 colorability characterize the degree to which a set G of guards sees the polygon P. Intuitively, a larger value of k should increase the probability that a set G of guards that k-guards a polygon is 2 -colorable. We show that it is not the case in general. For every $k \geq 2$, we describe (see Section 2) how to construct a polygon P and a set G of guards, such that G k-guards P, but G is not 2 -colorable.

Before presenting details of our construction, we first introduce some helpful definitions.

- Definition 1.2. A k-ary tree is a tree in which every non-leaf vertex has exactly k children.
- Definition 1.3. Given a simple polygon P and a set G of guards in P, a region $R \subseteq P$ is uniquely guarded by $G^{\prime} \subseteq G$ if every point in R is visible (relative to P) to every guard in G^{\prime}, and there exists a point in R that is not visible (relative to P) to any guard in $G \backslash G^{\prime}$.

Figure 2 Proof idea. Our construction embeds a set G of guards in a polygon P_{k}, where G forms a perfect k-ary tree T_{k} of height $k-1$. Every path from root to leaf in T_{k} is a set of k guards in G that has an associated uniquely guarded region in P_{k}. Similarly, every set of siblings in T_{k} is a set of k guards in G that has an associated uniquely guarded region in P_{k}. Consequently, every set of siblings must include at least one node of each color. Therefore, there exists a monochromatic path from the root node to some leaf node. In this example, $k=4$ and the path from the root to node p is monochromatic.

Definition 1.4. For a simple polygon P, a set G of guards in P, and a region $R \subseteq P$ uniquely guarded by $G^{\prime} \subseteq G$, we call a point in R that is only visible to G^{\prime} a witness point, and a region composed of witness points a witness region.

2 Guards of a \boldsymbol{k}-Guarded Polygon Are Not Always 2-Colorable

In this section, we prove our main result. The key idea is sketched in Figure 2, then proved formally in Lemma 2.1 and Theorem 2.2.

Lemma 2.1. For any $k \geq 1$, there exists a polygon P_{k} and a set G of guards in P_{k} that form a perfect k-ary tree T_{k} of height $k-1$ such that:

1. The polygon P_{k} is k-guarded by G.
2. For every root-to-leaf path in T_{k}, the points of G on that path uniquely guard some region of P_{k}.
3. For each internal node of T_{k}, its children uniquely guard some region of P_{k}.

Proof. We will prove existence of a polygon, Π_{k}, defined below, that satisfies Properties 1-3 above. Consider a polygon Π_{h} with a set of guards G arranged in Π_{h} as a perfect k-ary tree of height $h-1$ (guards in each level are aligned horizontally, see Figure 4a) such that:

A The polygon Π_{h} is h-guarded by G.
B For every root-to-leaf path $g_{v_{r}} g_{v}$ (i.e. the path from the root v_{r} with the guard $g_{v_{r}}$ to the leaf v with the guard g_{v} in the tree), the points (guards) of G on that path uniquely guard a convex region Q_{v} of Π_{h} with a witness triangle $\Delta_{v}=A_{v} B_{v} C_{v}$ of Q_{v} such that:
(1) Δ_{v} does not contain any of the guards;
(2) B_{v} is the bottommost point of Q_{v};
(3) $A_{v} \in K_{l} B_{v}$, where K_{l} is the first vertex on Q_{v} after B_{v} clockwise;
(4) $C_{v} \in B_{v} K_{r}$, where K_{r} is the first vertex on Q_{v} after B_{v} counter clockwise.

Figure 3 Base case, Π_{1}

(a) the polygon Π_{h}

(b) the region Q_{v} with the witness triangle Δ_{v}

(c) extending Q_{v} to $Q_{v^{\prime}}$ with the witness triangle $\Delta_{v^{\prime}}$

Figure 4 Illustration in support of the proof of Lemma 2.1

C For each internal node g_{u} in the tree, the children of g_{u} uniquely guard a trapezoidal region R_{u}.

Observe that any polygon P and set G of guards that satisfy Properties A-C also satisfy Properties $1-3$. In what follows, we show how to construct Π_{k} by induction.
Base case. Let Π_{1} be a diamond polygon with a single guard g_{1} at its topmost vertex; see Figure 3. The entire polygon Π_{1} is uniquely guarded by a single guard g_{1}, that defines a perfect k-ary tree of height 0 . Therefore, Properties A-C are trivially satisfied.
Induction step. Now we show how to extend the polygon Π_{h} to Π_{h+1} so that Properties AC hold. Place k guards on a horizontal segment s strictly contained in Δ_{v}; see Figure 4b. For a new guard $g_{v^{\prime}}$, we reshape Q_{v} by drawing rays from A_{v} and C_{v} that cross at some point X in Δ_{v} below s. We ensure that $A_{v} X$ crosses s between $g_{v^{\prime}}$ and the guard g_{l} immediately to the left, and that $C_{v} X$ crosses s between $g_{v^{\prime}}$ and the guard g_{r} immediately to the right. Let $Q_{v^{\prime}}$ denote the convex polygon obtained from Q_{v} by adding the edges $A_{v} X$ and $C_{v} X$ and
removing away from Q_{v} the parts that are below these two edges. Let $X_{l} X$ and $X X_{r}$ be the new edges forming Π_{h+1} by placing $X_{l} \in A_{v} X$ and $X_{r} \in C_{v} X$ right below s (a sufficiently small distance $\varepsilon>0$); see Figure 4c.

We let $\Delta_{v^{\prime}}=A_{v^{\prime}} B_{v^{\prime}} C_{v^{\prime}}$, where $B_{v^{\prime}}=X, A_{v^{\prime}}$ is the point where the ray from g_{r} through X_{r} hits $X_{l} B_{v^{\prime}}$, and $C_{v^{\prime}}$ is the point where the ray from g_{l} through X_{l} hits $X_{r} B_{v^{\prime}}$; see Figure 4c.

Let us show that Property B is satisfied. First, observe that all the guards on the root-to-leaf path $g_{v_{r}} g_{v^{\prime}}$ are contained in the convex region $Q_{v^{\prime}}$ (this holds, because by induction the guards on the root-to-leaf path $g_{v_{r}} g_{v}$ are inside $Q_{v}, Q_{v^{\prime}} \subset Q_{v}$, and the guard $g_{v^{\prime}}$ is inside $Q_{v^{\prime}}$); therefore, all the guards on the root-to-leaf path $g_{v_{r}} g_{v^{\prime}}$ see $Q_{v^{\prime}}$. Second, notice that $\Delta_{v^{\prime}} \subset \Delta_{v}$; therefore, no guards from the previous levels (guarding Π_{h}), except the root-to-leaf path $g_{v_{r}} g_{v}$ and $g_{v^{\prime}}$ can see $\Delta_{v^{\prime}}$. Let us show that out of the new guards (added at level $h+1$) only $g_{v^{\prime}}$ can see $\Delta_{v^{\prime}}$. Observe that all these guards are arranged horizontally and $\Delta_{v^{\prime}}$ is contained below the line through g_{l} (that is, a guard immediately to the left of $g_{v^{\prime}}$) and $C_{v^{\prime}}$, that is, an endpoint of $\Delta_{v^{\prime}}$. Therefore, $\Delta_{v^{\prime}}$ is not seen by g_{l}, nor by any guard left of g_{l}. By an analogous argument, $\Delta_{v^{\prime}}$ is not seen by g_{r}, nor by any guard right of g_{r}. Therefore, $\Delta_{v^{\prime}}$ is a witness triangle of $Q_{v^{\prime}}$ guarded by the root-to-leaf path $g_{v_{r}} g_{v^{\prime}}$. Properties B.(1)-B.(4) are satisfied by construction with the vertices $B_{v^{\prime}}, A_{v^{\prime}}$, and $C_{v^{\prime}}$ respectively; see Figure 4c.

To satisfy Property C, we make a trapezoidal pocket R_{v} of height 2ε and width $\delta(\varepsilon)$ aligned with s (so that every point of the pocket is visible to the children of g_{v}) on the right side of $B_{v} C_{v}$; see Figures 4 b and 4 c . For sufficiently small ε, the width $\delta(\varepsilon)$ of R_{v} can be made arbitrarily small, so that it does not interfere with the rest of the polygon Π_{h} and the right end of R_{v} is only seen to the guards that are children of g_{v}.

Finally, to see that Property A is satisfied (that is, that Π_{h} is h-guarded) observe that every point of the polygon is either contained in at least one convex region Q_{v} that contains h guards or it is contained in some trapezoidal pocket R_{v} that is seen by $k \geq h$ children of g_{v}.

- Theorem 2.2. There exists a polygon P and a set of guards G such that P is k-guarded by G but there is no 2-coloring of G.

Proof. Consider a k-guarded polygon P_{k} from Lemma 2.1 with a set of guards G embedded in P_{k} as a perfect k-ary tree T_{k} of height $k-1$. Suppose there exists a 2-coloring of G. For each internal node g_{u} in T_{k}, the children of g_{u} uniquely guard some region of P_{k}. Since G is 2 -colored, this set of siblings must include at least one blue guard and at least one red guard. Suppose, without loss of generality, that the root is colored blue. Therefore, there is a root-to-leaf path $g_{v_{r}} g_{v}$ that follows only the blue guards. According to Property 2, that path is uniquely guarding some region of P_{k}, and, therefore, there is a point in P_{k} that is only seen by blue guards, contradicting our assumption that there exists a 2 -coloring of G.

3 Directions for Future Research

We conclude with some open questions.
In the construction of polygon P_{k} in the proof of Lemma 2.1, the ratio of the lengths of the longest edge and the shortest edge is exponential in k. Consequently, we ask the following questions.

- Question 1. Is there a polygon P that is k-guarded by a set of guards G that is not 2 -colorable for which the ratio of the lengths of the longest edge and the shortest edge is polynomial in k ?

Is there a simpler construction than P_{k} ? For example, does there exist a weakly visible polygon P (that is, every point of P is visible from some point on a given line segment in P) such that P is k-guarded by some set G of guards, but no bipartition of G exists such that each part guards P ?

- Question 2. Is there a weakly visible polygon P that is k-guarded by a set of guards G that is not 2 -colorable?

We can also examine the complexity (number of vertices) of P_{k} in terms of k. Our construction for P_{k} has $\Theta\left(k^{k}\right)$ vertices.

- Question 3. Can we show that P_{k} always needs $\omega(k)$ vertices?

References

1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is $\exists \mathbb{R}$-complete. Journal of the ACM, 69(1), 2021.
2 Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer, 4th edition, 2009.

3 Patrice Belleville, Prosenjit Bose, Jurek Czyzowicz, Jorge Urrutia, and Joseph Zaks. Kguarding polygons on the plane. In Proc. 6th Canadian Conference on Computational Geometry (CCCG), pages 381-386, 1994.
4 Sergey Bereg. On k-vertex guarding simple polygons. Technical report, Kyoto University, 2009. Computational Geometry and Discrete Mathematics.

5 Daniel Busto, William S. Evans, and David G. Kirkpatrick. On k-guarding polygons. In Proc. 25th Canadian Conference on Computational Geometry (CCCG), pages 283-288, 2013.

6 Václav Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory, Series B, 18(1):39-41, 1975.
7 Steve Fisk. A short proof of Chvátal's Watchman Theorem. Journal of Combinatorial Theory, Series B, 24(3):374, 1978.
8 D. T. Lee and Arthur K. Lin. Computational complexity of art gallery problems. IEEE Transactions on Information Theory, 32(2):276-282, 1986.
9 Kurt Mehlhorn, Jörg Sack, and Joseph Zaks. Note on the paper "K-vertex guarding simple polygons" [Computational Geometry 42 (4) (May 2009) 352-361]". Computational Geometry: Theory and Applications, 42:722, 2009.
10 Pat Morin, Prosenjit Bose, and Paz Carmi. Open problem session. 18th Algorithms and Data Structures Symposium (WADS), 2023.
11 J. O'Rourke. Art Gallery Theorems and Algorithms. International series of monographs on computer science. Oxford University Press, 1987.
12 Ihsan Salleh. K-vertex guarding simple polygons. Computational Geometry: Theory and Applications, 42(4):352-361, 2009.

[^0]: * This work was funded in part by the Natural Sciences and Engineering Council of Canada (NSERC). to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

