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Abstract
For every k ≥ 2, we describe how to construct a polygon P and a set G of points in P , such that P

is k-guarded by G (i.e., every point in P is visible to at least k points in G) and for every 2-coloring
of G (i.e., for every bipartition of G) at least one of the colors does not guard P . This answers an
open question posed by Morin [10].

1 Introduction

The art gallery problem, introduced by Klee [11] in 1973, is a well-known and extensively
studied classical problem in the field of Computational Geometry. Given a simple polygon
P (without holes) in the plane, the objective is to find a set G of points in P , called guards,
such that every point p ∈ P is visible to at least one guard g ∈ G; that is, the line segment pg

does not pass outside P . Chvátal [6] showed that ⌊n/3⌋ guards suffice to guard any n-vertex
simple polygon P , and that there exist polygons that require ⌊n/3⌋ guards. Fisk [7] later
gave a simplified proof (one of the Proofs from THE BOOK [2]) using a 3-coloring argument.
The optimization problem of finding a set G of points of minimum cardinality that guards
a given simple polygon P is NP-hard [8], and was recently shown to be ∃R-complete [1].

To introduce robustness and redundancy to the model, the art gallery problem general-
izes to the k-guarding problem, in which each point in the input polygon P must be visible to
at least k guards. Belleville et al. [3] examined a variant of k-guarding, in which guards are
placed at the interior of the edges of P . Salleh [12] studied k-guarding with the constraint
that guards are placed on the vertices of P , called k-vertex guarding. Salleh showed that
⌊2n/3⌋ guards are sometimes necessary when k = 2, and ⌊3n/4⌋ guards are sometimes nec-
essary when k = 3 (see also [9]). Bereg [4] showed that Fisk’s coloring argument can be used
to prove these bounds. The k-guarding problem has also been studied from an algorithmic
perspective; Busto et al. [5] gave a polynomial-time O(k log log OPTk(P ))-approximation
algorithm for the k-guarding problem, where OPTk(P ) is the optimal number of guards. As
observed by Busto et al., if guards must be placed at different vertices of P , then there exist
simple polygons that cannot be k-vertex guarded for k ≥ 4 because some points in P are
seen by fewer than k vertices. In k-guarding, this problem is naturally resolved by placing
multiple guards arbitrarily close to each other.

During the open problem session at WADS 2023, Morin [10] asked whether there exists
a positive integer k such that for all polygons P and all sets G of points that k-guard P ,
there exists a bipartition of G (equivalently, a 2-coloring of G) that gives two sets that each
guard (1-guard) P . Morin presented counter-examples for k = 2 and k = 3 for which no
such bipartition exists (see Figure 1) and asked whether this property generalizes to higher
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Figure 1 Examples for k = 2 and k = 3 [10]. The polygon P on the left is 2-guarded by
the set G of three guards (red and blue points). Any 2-coloring of G partitions G either into 3 and
0, or 1 and 2. In both cases, at least one of the three convex vertices of P is not seen by any guard
of the color with fewer guards. In this example, the blue guard, whose visibility region is shaded
blue, cannot see the vertex p [10]. The polygon P ′ on the right is 3-guarded by the set G′ of five
guards (red points). There are

(5
3

)
= 10 subsets of G′ of cardinality three. Observe that each of

these 10 subsets uniquely 3-guards exactly one of the 10 convex vertices of P ′. E.g., the vertex v

is 3-guarded by the three guards that are not consecutive on the boundary of P ′ in the visibility
region shaded green, whereas the vertex u is 3-guarded by the three guards that are consecutive
on the boundary of P ′ in the visibility region shaded blue. Any 2-coloring of G will result in one
color class containing at most two guards. Consequently, some convex vertex of P is visible only
by guards of the same color [10].

values of k. We answer this question in this paper. Observe that for any set G1 that guards
P , k copies of G1 k-guard P and can be partitioned into k sets (and, therefore, into two sets)
that each guard P . Consequently, Morin’s question asks whether every set G that k-guards
P can be partitioned into two sets that each guard P .

We formally define k-guarding as considered in this paper.

▶ Definition 1.1 (k-guarding). Given a simple polygon P , an integer k ≥ 1, and a set G of
points (guards) in P , P is k-guarded by G if for all p ∈ P , there exists G′ ⊆ G, such that
|G′| = k and for all g ∈ G′, the line segment gp does not pass outside P . That is, every
point in P is visible to at least k guards in G.

We say that the set of guards G is 2-colorable if there exists a bipartition of G that
partitions G into two sets such that each 1-guards P . The notions of k-guardability and 2-
colorability characterize the degree to which a set G of guards sees the polygon P . Intuitively,
a larger value of k should increase the probability that a set G of guards that k-guards a
polygon is 2-colorable. We show that it is not the case in general. For every k ≥ 2, we
describe (see Section 2) how to construct a polygon P and a set G of guards, such that G

k-guards P , but G is not 2-colorable.
Before presenting details of our construction, we first introduce some helpful definitions.

▶ Definition 1.2. A k-ary tree is a tree in which every non-leaf vertex has exactly k children.

▶ Definition 1.3. Given a simple polygon P and a set G of guards in P , a region R ⊆ P is
uniquely guarded by G′ ⊆ G if every point in R is visible (relative to P ) to every guard in
G′, and there exists a point in R that is not visible (relative to P ) to any guard in G \ G′.
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Figure 2 Proof idea. Our construction embeds a set G of guards in a polygon Pk, where G

forms a perfect k-ary tree Tk of height k − 1. Every path from root to leaf in Tk is a set of k guards
in G that has an associated uniquely guarded region in Pk. Similarly, every set of siblings in Tk is a
set of k guards in G that has an associated uniquely guarded region in Pk. Consequently, every set
of siblings must include at least one node of each color. Therefore, there exists a monochromatic
path from the root node to some leaf node. In this example, k = 4 and the path from the root to
node p is monochromatic.

▶ Definition 1.4. For a simple polygon P , a set G of guards in P , and a region R ⊆ P

uniquely guarded by G′ ⊆ G, we call a point in R that is only visible to G′ a witness point,
and a region composed of witness points a witness region.

2 Guards of a k-Guarded Polygon Are Not Always 2-Colorable

In this section, we prove our main result. The key idea is sketched in Figure 2, then proved
formally in Lemma 2.1 and Theorem 2.2.

▶ Lemma 2.1. For any k ≥ 1, there exists a polygon Pk and a set G of guards in Pk that
form a perfect k-ary tree Tk of height k − 1 such that:

1. The polygon Pk is k-guarded by G.
2. For every root-to-leaf path in Tk, the points of G on that path uniquely guard some region

of Pk.
3. For each internal node of Tk, its children uniquely guard some region of Pk.

Proof. We will prove existence of a polygon, Πk, defined below, that satisfies Properties 1–3
above. Consider a polygon Πh with a set of guards G arranged in Πh as a perfect k-ary tree
of height h − 1 (guards in each level are aligned horizontally, see Figure 4a) such that:

A The polygon Πh is h-guarded by G.
B For every root-to-leaf path gvr

gv (i.e. the path from the root vr with the guard gvr
to

the leaf v with the guard gv in the tree), the points (guards) of G on that path uniquely
guard a convex region Qv of Πh with a witness triangle ∆v = AvBvCv of Qv such that:

(1) ∆v does not contain any of the guards;
(2) Bv is the bottommost point of Qv;
(3) Av ∈ KlBv, where Kl is the first vertex on Qv after Bv clockwise;
(4) Cv ∈ BvKr, where Kr is the first vertex on Qv after Bv counter clockwise.
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Figure 4 Illustration in support of the proof of Lemma 2.1

C For each internal node gu in the tree, the children of gu uniquely guard a trapezoidal
region Ru.

Observe that any polygon P and set G of guards that satisfy Properties A–C also satisfy
Properties 1–3. In what follows, we show how to construct Πk by induction.
Base case. Let Π1 be a diamond polygon with a single guard g1 at its topmost vertex; see
Figure 3. The entire polygon Π1 is uniquely guarded by a single guard g1, that defines a
perfect k-ary tree of height 0. Therefore, Properties A–C are trivially satisfied.
Induction step. Now we show how to extend the polygon Πh to Πh+1 so that Properties A–
C hold. Place k guards on a horizontal segment s strictly contained in ∆v; see Figure 4b. For
a new guard gv′ , we reshape Qv by drawing rays from Av and Cv that cross at some point X

in ∆v below s. We ensure that AvX crosses s between gv′ and the guard gl immediately to
the left, and that CvX crosses s between gv′ and the guard gr immediately to the right. Let
Qv′ denote the convex polygon obtained from Qv by adding the edges AvX and CvX and



Durocher et al. 58:5

removing away from Qv the parts that are below these two edges. Let XlX and XXr be the
new edges forming Πh+1 by placing Xl ∈ AvX and Xr ∈ CvX right below s (a sufficiently
small distance ε > 0); see Figure 4c.

We let ∆v′ = Av′Bv′Cv′ , where Bv′ = X, Av′ is the point where the ray from gr through
Xr hits XlBv′ , and Cv′ is the point where the ray from gl through Xl hits XrBv′ ; see
Figure 4c.

Let us show that Property B is satisfied. First, observe that all the guards on the root-
to-leaf path gvr

gv′ are contained in the convex region Qv′ (this holds, because by induction
the guards on the root-to-leaf path gvr gv are inside Qv, Qv′ ⊂ Qv, and the guard gv′ is
inside Qv′); therefore, all the guards on the root-to-leaf path gvr

gv′ see Qv′ . Second, notice
that ∆v′ ⊂ ∆v; therefore, no guards from the previous levels (guarding Πh), except the
root-to-leaf path gvr

gv and gv′ can see ∆v′ . Let us show that out of the new guards (added
at level h + 1) only gv′ can see ∆v′ . Observe that all these guards are arranged horizontally
and ∆v′ is contained below the line through gl (that is, a guard immediately to the left
of gv′) and Cv′ , that is, an endpoint of ∆v′ . Therefore, ∆v′ is not seen by gl, nor by any
guard left of gl. By an analogous argument, ∆v′ is not seen by gr, nor by any guard right
of gr. Therefore, ∆v′ is a witness triangle of Qv′ guarded by the root-to-leaf path gvr

gv′ .
Properties B.(1)–B.(4) are satisfied by construction with the vertices Bv′ , Av′ , and Cv′

respectively; see Figure 4c.
To satisfy Property C, we make a trapezoidal pocket Rv of height 2ε and width δ(ε)

aligned with s (so that every point of the pocket is visible to the children of gv) on the right
side of BvCv; see Figures 4b and 4c. For sufficiently small ε, the width δ(ε) of Rv can be
made arbitrarily small, so that it does not interfere with the rest of the polygon Πh and the
right end of Rv is only seen to the guards that are children of gv.

Finally, to see that Property A is satisfied (that is, that Πh is h-guarded) observe that
every point of the polygon is either contained in at least one convex region Qv that contains
h guards or it is contained in some trapezoidal pocket Rv that is seen by k ≥ h children
of gv. ◀

▶ Theorem 2.2. There exists a polygon P and a set of guards G such that P is k-guarded
by G but there is no 2-coloring of G.

Proof. Consider a k-guarded polygon Pk from Lemma 2.1 with a set of guards G embedded
in Pk as a perfect k-ary tree Tk of height k − 1. Suppose there exists a 2-coloring of G. For
each internal node gu in Tk, the children of gu uniquely guard some region of Pk. Since G

is 2-colored, this set of siblings must include at least one blue guard and at least one red
guard. Suppose, without loss of generality, that the root is colored blue. Therefore, there
is a root-to-leaf path gvr

gv that follows only the blue guards. According to Property 2,
that path is uniquely guarding some region of Pk, and, therefore, there is a point in Pk

that is only seen by blue guards, contradicting our assumption that there exists a 2-coloring
of G. ◀

3 Directions for Future Research

We conclude with some open questions.
In the construction of polygon Pk in the proof of Lemma 2.1, the ratio of the lengths

of the longest edge and the shortest edge is exponential in k. Consequently, we ask the
following questions.
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▶ Question 1. Is there a polygon P that is k-guarded by a set of guards G that is not
2-colorable for which the ratio of the lengths of the longest edge and the shortest edge is
polynomial in k?

Is there a simpler construction than Pk? For example, does there exist a weakly visible
polygon P (that is, every point of P is visible from some point on a given line segment in
P ) such that P is k-guarded by some set G of guards, but no bipartition of G exists such
that each part guards P?
▶ Question 2. Is there a weakly visible polygon P that is k-guarded by a set of guards G

that is not 2-colorable?
We can also examine the complexity (number of vertices) of Pk in terms of k. Our

construction for Pk has Θ(kk) vertices.
▶ Question 3. Can we show that Pk always needs ω(k) vertices?
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