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1 The Euclidean 2-centre
A Euclidean 2-centre of a finite and nonempty set of points P in R

2 is a set of two points, denoted Ξ(P ) =
{ξ1(P ), ξ2(P )}, that minimizes the maximum Euclidean (`2) distance from any point p in P to the point
ξi(P ) ∈ Ξ(P ) nearest to p. Equivalently, ξ1(P ) and ξ2(P ) correspond to the centres of two circles whose union
contains the points of P , such that the radius of the larger circle is minimized. Traditionally, the points of
P represent positions of clients while the points of Ξ(P ) represent positions of facilities serving these clients.
Given client positions, the problem is to select facility positions that minimize a given objective function
representing cost as a function of distances between clients and facilities. For the k-centre, the optimization
function is the maximum Euclidean distance from any client to the nearest facility.

Several efficient algorithms exist for solving the Euclidean 2-centre problem in R
2. Eppstein [Epp92] gives

algorithms that run in O(n2 log2 n log2 log n) expected time and O(n2 log4 n) worst-case time. The worst-
case time is improved to O(n2 log n) using the algorithm of Jaromczyk and Kowaluk [JK94]. Sharir [Sha97]
reduces the time to O(n log9 n). Eppstein [Epp97] gives a simpler randomized algorithm in O(n log2 n)
expected time. Finally, Chan [Cha99] gives a deterministic algorithm in O(n log2 n log2 log n) time. The
general Euclidean k-centre problem in R

2 is NP-hard when k is an input parameter [MS84].

2 Mobile Clients and Facilities
Recently, motivated in part by applications in mobile computing, there has been considerable interest in
recasting a number of basic questions of facility location in a mobile context [AdBG+05, AGG02, AGHV01,
AH01, BBKS00, BBKS05, DK05a, DK05b, GGH+03, Her05]. Given a set of mobile clients, modelled as points
in R

2 that change continuously and with bounded velocity, the utility of a mobile facility is determined by
its approximation of the optimization function as well as the continuity and maximum relative velocity of
its motion. In many cases, the optimal location for a facility exhibits unbounded velocity or discontinuous
motion; thus, we seek to identify functions that define the positions of mobile facilities under the dual
objectives of requiring that their motion be continuous and have bounded velocity while also maintaining a
good approximation of the optimization function. Closely related to the mobile Euclidean 2-centre is recent
work of Bereg et al. [BBKS00, BBKS05] and Durocher and Kirkpatrick [DK05b, DK05a] that examines
bounded-velocity (hence, continuous) approximations to the mobile Euclidean 1-centre and to the mobile
Euclidean 1-median, both in R

2.

3 The Mobile Euclidean 2-centre in R and R
2

We show that the Euclidean 2-centre in R moves continuously and with relative velocity at most one. We
give an algorithm for efficient maintenance of the mobile 2-centre in R using the kinetic data structures of
Agarwal et al. [AH01, AGHV01] to maintain the extent of point sets.

By a four-client example, we demonstrate that there exist sets of mobile clients P such that every mobile
Euclidean 2-centre of P moves discontinuously. Any pair of mobile facilities that move continuously must,
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Table 1: comparing approximations of the mobile Euclidean 2-centre
reflection guaranteed lower bound on relative

across λ-approximation worst-case λ velocity
Euclidean 1-centre 4 4 ∞
rectilinear 1-centre 2

√
2 ≈ 2.8284 2

√
2 ≈ 2.8284 2

√
2 + 1 ≈ 3.8284

Steiner centre
√

10(2 −
√

2) ≈ 2.4203 2
√

1 + 1/π2 ≈ 2.0989 8/π + 1 ≈ 3.5465

any mobile point 2 ≥ 3

therefore, differ from the Euclidean 2-centre for some client configurations. When this occurs, the distance
from some client to the nearest facility must exceed the optimal value. Let Υ(P ) = {υ1(P ), υ2(P )} denote
a mobile facility pair, where υi : P(R2) → R

2. We say that Υ is a λ-approximation of the Euclidean
2-centre if

∀P ∀t, max
p∈P

min
i∈{1,2}

||p(t) − υi(P (t))|| ≤ λ · max
p∈P

min
i∈{1,2}

||p(t) − ξi(P (t))||.

We show that no mobile facility pair with maximum relative velocity less than two can guarantee a λ-
approximation for any fixed λ > 0.

4 Defining Mobile Facilities by Reflection
Typically, a 2-centre problem involves partitioning the clients into two sets and subsequently identifying a
center for each partition. Discontinuities in the position of a mobile 2-centre can occur when the partitions
change discontinuously. To prevent this from occuring, we identify a mobile point, denoted r, that remains
“central” to P while moving under bounded velocity. A client of P , p0, is selected arbitrarily and the
position of the first facility is set to coincide with that of p0. The position of the second facility is found
by reflecting p0 across r. As natural candidates for r, we select bounded-velocity approximations of the
mobile Euclidean 1-centre. These include the mobile rectilinear 1-centre [BBKS00, BBKS05] and the mobile
Steiner centre [DK05b]. For comparison, we also examine the case when r is the mobile Euclidean 1-centre
[BBKS00, BBKS05].

If r moves with relative velocity at most v, then the reflection of p0 across r moves with relative velocity
at most 2v +1. As shown by Bespamyatnikh and Kirkpatrick [BBKS00], the rectilinear 1-centre moves with
relative velocity at most

√
2, whereas the velocity of the Euclidean 1-centre is unbounded. As shown by

Durocher and Kirkpatrick [DK05b], the relative velocity of the Steiner centre is at most 4/π. All three of
these velocity bounds are tight, inducing the relative velocities in Tab. 1.

For facilities defined by reflection across the Euclidean 1-centre and across the rectilinear 1-centre, we
show tight bounds on the λ-approximation of 4 and 2

√
2, respectively. For facilities defined by reflection

across the Steiner centre, we show 2
√

1 + 1/π2 ≤ λ ≤
√

10(2 −
√

2). See Tab. 1.

Finally, we show that no bounded-velocity λ-approximation of the Euclidean 3-centre exists in R.
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