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1 Introduction

Range scanners are used in many configurations: looking in
to capture objects on a platform or in-situ, looking down to
capture terrain or urban environments, or looking out to cap-
ture rooms or factory floors. In addition to point coordinates,
different scanners may be able to provide surface labels, nor-
mals, or unobstructed segments of scanned rays.

The problem of reconstructing a surface from a set of data
points has been studied for both theoretical and practical in-
terests. Theoretical solutions can provably reconstruct the
original surface when the samples are sufficiently dense rel-
ative to local feature size. Applied solutions handle noisy
data and often incorporate additional information along with
point coordinates, such as estimated normals [3].

We consider problems of reconstructing the 2D floor plan
of a room from different types of scanned data – specifically
whether knowledge about the geometry (monotonicity, or-
thogonality) or topology (connectedness, genus) of the room
allows efficient reconstruction from less dense data.

1.1 Models and problem definition

We consider five models for input scanner data: A point scan
is a set of points on walls. A point-wall scan is a set of
points on walls including the line containing each wall. A
point-normal scan is a set of points with normals perpen-
dicular to the corresponding walls, each towards the room’s
interior. A segment scan is a point-wall scan for which each
point records the position of its scanner; the line segment
from scanner to point must be inside the room. A visibility-
polygon scan is a set of visibility polygons, i.e., the entire
region visible from each scanner. Let n denote number of
elements in a scan.
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Figure 1: Instances of the five models and a solution.
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We ask whether there exists a polygon that is consistent
with the scanned data under the assumption that all walls
have been seen, i.e., that each polygon edge contains at least
one scanned point. When scanning from a single position,
only star-shaped polygons can be reconstructed. We may
impose restrictions on topology or geometry: that the room
is simply connected and that the walls are orthogonal (every
edge is parallel to a coordinate axis) or monotone (any verti-
cal line intersects the boundary in at most two segments).

1.2 Related work
The problem has been well studied if the scanned points
coincide with polygon vertices, rather than points on edge
interiors. When edges must meet a vertex at right angles,
O’Rourke [4] gives an O(n log n) time algorithm to con-
struct a solution polygon, which is unique if it exists. The
problem is NP-hard if both straight and right angles are per-
mitted [5] or if edges must be parallel to one of three (or
more) given directions [1].

1.3 Our results
For a point scan, a solution polygon always exists and can
be computed in O(n log n) time, even if we require it to be
star-shaped or monotone. An orthogonal polygon solution
does not always exist. Details are omitted.

For scans with more information, the problem is NP-hard
(Section 4), even for orthogonal polygons. Some special
cases can be solved in polynomial time: orthogonal mono-
tone polygons for point-wall scans (Section 2), monotone
polygons for point-normal scans (Section 3), and star-shaped
polygons for point-normal scans (details are omitted).

Finally, for most combinations of output restrictions we
know whether a solution to each model is unique; we omit
these results due to space constraints.

2 Orthogonal Monotone Polygons

In this section we consider the reconstruction problem for
orthogonal monotone polygons from point-wall scans. Each
input point corresponds either to a horizontal (H) or vertical
(V) edge. The points can be represented by a sequence σ of
Vs and Hs corresponding to their left-to-right ordering.

Theorem 1 A monotone orthogonal polygon can be recon-
structed from a point-wall scan in O(n log n) time; the solu-
tion is unique.

Proof: (Sketch) If a solution exists, σ contains equally many
Vs and Hs, and begins and ends with V. Consequently, σ
contains HH as substring; we reconstruct the polygon start-
ing from this point. For two consecutive horizontal edges,
the one with greater y-coordinate must be in the upper chain
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and the other in the lower chain. If the next two elements of
σ are VH, then the relative positions of these two data points
tell us to which chain the vertical edge belongs. The horizon-
tal edge then belongs to the same chain as the vertical edge.
Following this step, we again know the y-coordinate of both
the upper and lower chains, so if the next two letters of σ are
again VH, we can resolve these two edges, and so on.

If the next substring is not VH, then it must be H (which
can easily be handled) or VV (we can determine to which
chains the vertical edges belong, but then cannot move on).
The substring HH must follow (possibly later in the se-
quence) each occurrence of a VV substring. We jump for-
ward to this occurrence of HH resolve rightward from that
point on until we reach another VV, jump forward to the next
HH, and so on, until we reach the rightmost data point.

We then repeat the same procedure in the opposite direc-
tion: start at the rightmost HH, resolve each substring HV
leftward (in a symmetric manner) until we reach VV, jump
leftward to the next HH, and so on, until we reach the left-
most data point. Two consecutive VV substrings must have
an HH between them since σ corresponds to an orthogonal
monotone polygon. This resolves the complete polygon and
the solution is unique. �

3 Monotone Polygons

In this section we consider the reconstruction problem for
monotone polygons from a point-normal scan. Each in-
put point knows the orientation and interior of the polygon
boundary passing through it. In the monotone setting, these
half-spaces determine whether each edge belongs to the up-
per or lower chain of the polygon boundary (with the excep-
tion of vertical edges).

Theorem 2 A monotone polygon can be reconstructed from
a point-normal scan in O(n log n) time.

Proof: (Sketch) We use dynamic programming to assign ver-
tical edges to the top or bottom chains. Scan the data points
from left to right and update a function that stores whether
there is a partial solution (upper and lower chains) up to the
current x-coordinate t. If the vertical line through t con-
tains no data point, then the upper chain must be on the line
through the last data point in the upper chain before t, or
through the next data point in the upper chain after t. Sim-
ilarly for the lower chain. This gives four combinations for
which the upper and lower chains end. We store whether a
partial solution exists for each of them, and update accord-
ingly whenever any two of these four lines cross, or when-
ever we reach the x-coordinate of the next data point. �

4 Hardness Results

Given an orthogonal graph G (a graph embedded in the plane
with edges drawn as axis-parallel line segments), it is NP-
hard to determine whether G has a crossing-free spanning
tree [2]. This problem is the basis for our reduction to show:

Theorem 3 Polygon reconstruction under the visibility-
polygon scan model is NP-hard.

Proof: (Sketch) Given any orthogonal graph G, we construct
an instance of the visibility-polygon scan problem by replac-
ing each vertex v with the vertex gadget illustrated in Fig. 2.
In this gadget, there is a gap in the corresponding polygon
edge for every neighbour of v. This allows either connecting
to the neighbouring vertex gadget via a corridor formed by a
pair of parallel edges (blue), or closing the gap by extending
an edge (red).
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Figure 2: Vertex gadgets with degree 4 (A) and degree 2 (B).
Dashes indicate how an edge may be closed or continued,
provided it matches a neighbouring gadget.

If G has a non-crossing spanning tree, then our instance
has a simple polygonal solution formed by including the cor-
ridors that correspond to edges of the spanning tree. The
reverse direction can also be shown to hold. �

It is straightforward to modify the vertex gadget such that
all edges are orthogonal, showing that the visibility-polygon
scan problem remains NP-hard under orthogonality.

5 Discussion and Directions for Future Research

If a solution is not unique, we may ask how many additional
scanners are necessary to reveal the true solution. This ques-
tion is NP-hard since Theorem 3 shows hardness for an in-
stance of the the corresponding decision problem. The prob-
lems of reconstructing a monotone polygon or a star-shaped
polygon from point-wall scanners remain open, as do the
corresponding problems in higher dimensions.
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