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The boundaries of any two translations of a convex object intersect in at most two points. This
property is generalized beyond convexity by 2-admissibility, which applies to a broad class of sets of
geometric objects: a set S of objects, each of which is bounded by a closed Jordan curve in the plane,
is 2-admissible if the boundaries of every pair of objects in S intersect at most twice. Examples include
well-studied objects such as disks or squares, sets of translations of convex objects, or the shadows of
2-intersecting functions (for which the hardness of set cover remains open [1]). Mustafa and Ray [2]
described a PTAS to identify a hitting set for any given set of 2-admissible regions. In specific cases,
an instance of a hitting set problem can be dualized to a corresponding set cover problem (e.g., for sets
of unit disks or unit squares), but whether such a dualization is possible for all sets of 2-admissible
objects remained unknown. We investigate geometric duality with respect to 2-admissible regions
to address this gap, as establishing complete duality between 2-admissible hitting set problems and
2-admissible set cover problems would yield PTAS solutions for the latter.

Rather surprisingly, the problems cannot always be dualized, which we prove by counterexample.
However, the counterexample characterizes a property that prevents dualization, and we conjecture
that instances of problems lacking this property may always be dualized.

Definitions. Given a geometric range space S = (X,R), the geometric set cover problem is to
find a subset R? ⊆ R of minimum cardinality so that all elements of X are covered by R?, i.e.,
X = (∪R∈R?R)∩X. Given a range spaceH = (P,Q), the hitting set problem is to find a subset P ? ⊆ P
of minimum cardinality so that all sets ofQ contain at least one element of P ?, i.e., P ?∩Q 6= ∅, ∀Q ∈ Q.
Given a geometric set R ∈ R or Q ∈ Q, we call R ∩ R2 and Q ∩ R2 objects.

Given an instance of the geometric set cover problem S = (X,R) (the primal setting), an instance
of the hitting set problem H = (P,Q) is a geometric dual of S (in the dual setting) if there are
bijections between X and Q as well as R and P so that |X| = |Q|, |R| = |P |, and any point pi ∈ P
hits a range Qj ∈ Q if and only if the corresponding point xj ∈ X is covered by the range Ri ∈ R
in the primal setting. An optimal solution P ? for the dual setting corresponds exactly to an optimal
solution R? for the primal setting.

A Counterexample for Complete Duality

In Figure 1, we present a counterexample for complete duality. We construct the counterexample by
first describing a hitting set instance that cannot be made 2-admissible, and then we present a set
cover instance that is 2-admissible and is the dual of the impossible configuration.

Consider four points P1 = {A,B,C,D} in the plane and all four combinatorially distinct 2-
admissible objects Q1 = {α, β, γ, δ} that are hit by exactly three of the points, as shown in Figure 1(a).
Consider a fifth point E and the set QE containing all sets of cardinality three hit by E and two points
in P1 while remaining 2-admissible. Any pair of points in P1 hits all four sets in Q1. Furthermore, any
set in QE must both include and exclude at least one point from each set in Q1, and so the boundary



A B

C D

α βγ δ

(a)

A B

C D

α βγ δ

E

(b)

A B
C

D

E

ABC

ABD

ABE

ACD

ACE

ADE

BCD

(c)

Figure 1: The counterexample for complete duality. (a) Four points and all combinatorially distinct
2-admissible objects hit by exactly three points. (b) The dotted curves are some cuts of cardinality
two on the original four points. No cutting curve exists including points B and C while excluding
A and D while intersecting the boundaries of the four objects at most eight times. (c) A set cover
instance requiring the impossible configuration described in (b).

of any object in QE must intersect the boundary of each object in Q1 exactly twice (at least twice
to impose the requisite partition and at most twice for 2-admissibility). Therefore, the boundary of
an object in QE can be regarded as a cutting curve that will intersect the boundaries of the objects
in Q1 exactly 8 times (and then is closed to create a 2-admissible region containing E). Consider the
sequence of entry and exit points of the cutting curve with the objects of Q1. The sequence must
begin by entering three objects, since each point of P1 hits three sets. Exiting an object, say α, before
entering three objects would partition α so that all points hitting α are in one of the partitions, so
the cutting curve sequence begins by entering three objects and concludes by leaving three objects.
The remaining options for the sequence are equivalent: if a sequence begins by entering {α, β, γ} and
ends by leaving {β, γ, δ}, it makes no difference in terms of partitioning whether δ is entered before
leaving α. Therefore, a cutting curve having two points of P1 on each side cannot separate all possible
pairs of P1. In Figure 1(b), {A,B} may be separated from {C,D} or {A,C} from {B,D}, but {A,D}
cannot be separated from {B,C}.

Figure 1(c) illustrates an instance of set cover which is the dual of this impossible configuration.
There are points covered by every subset of the objects {A,B,C,D} of cardinality three, as well as all
three objects covering the points E,A and one other. This counterexample leads us to the following
problem definition: The Pairwise-Cover-Free 2-Admissible Set Cover (P2SC) Problem is a geometric
set cover problem S = (X,R) where the objects are 2-admissible and the object Ri 6⊂ (Rj ∪ Rk) for
any {Ri, Rj , Rk} ⊆ R. The latter condition is critical, as allowing an object to be covered by a pair of
other objects is the property that was exploited to create the counterexample to the general problem.

Conjecture 1. Any instance S = {X,R} of P2SC may be reduced to an instance of a hitting set
problem H = {P,Q} in polynomial time, so that H is a geometric dual of S.
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