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Abstract. Given an array A of size n, we consider the problem of an-
swering range majority queries: given a query range [i..j] where 1 ≤ i ≤
j ≤ n, return the majority element of the subarray A[i..j] if it exists.
We describe a linear space data structure that answers range majority
queries in constant time. We further generalize this problem by defining
range α-majority queries: given a query range [i..j], return all the ele-
ments in the subarray A[i..j] with frequency greater than α(j−i+1). We
prove an upper bound on the number of α-majorities that can exist in a
subarray, assuming that query ranges are restricted to be larger than a
given threshold. Using this upper bound, we generalize our range major-
ity data structure to answer range α-majority queries in O( 1

α
) time using

O(n lg( 1
α

+ 1)) space, for any fixed α ∈ (0, 1). This result is interesting
since other similar range query problems based on frequency have nearly
logarithmic lower bounds on query time when restricted to linear space.

1 Introduction

The majority element, or majority, of an array A[1..n] is the element, if any, that
occurs more than n

2 times in A. The majority element problem is to determine
whether a given array has a majority element, and if so, to report that ele-
ment. This problem is fundamental to data analysis and has been well studied.
Linear time deterministic and randomized algorithms for this problem, such as
the Boyer-Moore voting algorithm [4], are well known, and they are sometimes
included in the curriculum of introductory courses on algorithms.

In this paper, we consider the data structure counterpart to this problem. We
are interested in designing a data structure that represents an array A[1..n] to
answer range majority queries: given a query range [i..j] where 1 ≤ i ≤ j ≤ n,
return the majority element of the subarray A[i..j] if it exists, and ∞ otherwise.
Here we define the majority of a subarray A[i..j] as the element whose frequency
in A[i..j], i.e., the number of occurrences of the element in A[i..j], is more than
half of the size of the interval [i..j].

We further generalize this problem by defining the α-majorities of a subarray
A[i..j] to be the elements whose frequencies are more than α(j − i + 1), i.e., α
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times the size of the range [i..j], for 0 < α < 1. Thus an α-majority query on
array A[1..n] can be defined as: given a query range [i..j] where 1 ≤ i ≤ j ≤ n,
return the α-majorities of the subarray A[i..j] if they exist, and ∞ otherwise. A
range α-majority query becomes a range majority query when α = 1

2 .
For the case of range majority, we describe a linear space data structure that

answers queries in constant time. We generalize this data structure to the case of
range α-majority, yielding an O(n lg( 1

α +1)) space1 data structure that answers
queries in O( 1

α ) time, for any fixed α ∈ (0, 1). Similar range query problems
based on frequency are the range mode and k-frequency problems [8]. A range
mode query for range [i..j] returns an element in A[i..j] that occurs at least as
frequently as any other element. A k-frequency query for range [i..j] determines
whether any element in A[i..j] occurs with frequency exactly k. Both of these
problems have a lower bound that requires Ω( lg n

lg lg n ) query time for any linear
space data structure [8]. In light of this lower bound, it is interesting that a linear
space data structure can answer range α-majority queries in constant time for
fixed constant values of α.

1.1 Related Work

Computing the Mode, Majority, and Plurality of a Multiset. The mode of a
multiset S of n items can be found in O(n lg n) time by sorting S and counting
the frequency of each element. The decision problem of determining whether
the frequency m of the mode exceeds one reduces to the element uniqueness
problem, resulting in a lower bound of Ω(n lg n) time [16]. Better bounds are
obtained by parameterizing in terms of m: Munro and Spira [13] and Dobkin
and Munro [6] describe O(n lg( n

m )) time algorithms and corresponding lower
bounds of Ω(n lg( n

m )) time. Misra and Gries [12] give O(n) and O(n lg( 1
α )) time

algorithms for computing an α-majority when α ≥ 1
2 and α < 1

2 , respectively.
The problem of computing α-majorities has also recently been studied in the
approximate setting, using the term heavy hitters instead of α-majorities [5].

The plurality of a multiset S is a unique mode of S. That is, every multiset
has a mode, but it might not have a plurality. The mode algorithms mentioned
above can verify the uniqueness of the mode without any asymptotic increase in
time. Numerous results establish bounds on the number of comparisons required
for computing a majority, α-majority, mode, or plurality (e.g., [1,2,6,13]).

Range Mode, Frequency, and Majority Queries. Krizanc et al. [11] describe data
structures that provide constant time range mode queries using O(n2 lg lg n

lg n ) space
and O(nε lg n) time queries using O(n2−2ε) space, for any fixed ε ∈ (0, 1

2 ].
Petersen and Grabowski [15] improve the first bound to constant time and
O(n2 lg lg n

lg2 n
) space. Petersen [14] and Durocher and Morrison [7] improve the sec-

ond bound to O(nε) time and O(n2−2ε) space, for any fixed ε ∈ [0, 1
2 ). Durocher

and Morrison [7] describe four O(n) space data structures that return the mode

1 In this paper lg n denotes log2 n.
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of a query range [i..j] in O(
√

n), O(k), O(m), and O(|j − i|) time, respectively,
where k denotes the number of distinct elements. Greve et al. [8] prove a lower
bound of Ω( lg n

lg( sw
n ) ) query time for any range mode query data structure that

uses s memory cells of w bits. Finally, various data structures support approxi-
mate range mode queries, in which the objective is to return an element whose
frequency is at least ε times the frequency of the mode, for a fixed ε ∈ (0, 1)
(e.g., [3,8]).

Greve et al. [8] examine the range k-frequency problem, in which the objective
is to determine whether any element in the query range has frequency exactly
k, where k is either fixed or given at query time. They note that when k is fixed
a straightforward linear space data structure exists for determining whether any
element has frequency at least k in constant time; determining whether any
element has frequency exactly k requires a different approach. For any fixed
k > 1, they describe how to support range k-frequency queries in O( lg n

lg lg n )
optimal time. When k is given at query time, Greve et al. show their lower
bound of Ω( lg n

lg lg n ) time applies to either query: exactly k or at least k.
The best result applicable to the range α-majority problem is that of Karpinski

and Nekrich [10]. They study the problem in a geometric setting, in which points
on the real line are assigned colors, and the goal is to find τ-dominating colors :
given a range Q, return all the colors that are assigned to at least a τ fraction
of the points in Q. If we treat each entry of an array A[1..n] as a point in a
bounded universe [1, n], their data structure can be used to represent A in O(n

α )

space to support range α-majority queries in O( (lg lg n)2

α ) time.

1.2 Our Results

Our results can be summarized as follows:

– In Section 2 we present a data structure for answering range majority queries
in the word-RAM model with word size Ω(lg n). It uses O(n) words and
answers range majority queries in constant time. The data structure is con-
ceptually simple and based on the idea that, for query ranges above a certain
size threshold, only a small set of candidate elements need be considered in
order to determine the majority. In order to verify the frequency of these
elements efficiently we present a novel decomposition technique that uses
wavelet trees [9].

– In Section 3 we generalize our data structure to answer range α-majority
queries, for any fixed α ∈ (0, 1). Note that although α is fixed, it is not nec-
essarily a constant. For example, setting α = 1

lg n is permitted. Our structure
uses O(n lg( 1

α + 1)) words and answers range α-majority queries in O( 1
α )

time. The first part of the section proves an upper bound on the number
of potential range α-majority values that need be stored by our data struc-
ture. These bounds are of independent interest, and are tight for the case of
α = 1

2 . In order to generalize our data structure when 1
α is large, i.e., when

1
α = ω(1), we make use of batched queries over wavelet trees.



Range Majority in Constant Time and Linear Space 247

2 Range Majority Data Structure

In this section we describe a linear space data structure that supports range
majority queries in constant time. To provide some intuition, suppose we parti-
tion the input array A[1..n] into four contiguous equally sized blocks. If we are
given a query range that contains one of these four blocks, then it is clear that a
majority element for this query must have frequency greater than n

8 times in A.
Thus, at most seven elements need be considered when computing the majority
for queries that contain an entire block.

Of course, not all queries contain one of these four blocks. Therefore, we
decompose the array into multiple levels in order to support arbitrary queries
(Sections 2.1 and 2.2). Using this decomposition in conjunction with succinct
data structures, we design a linear space data structure that answers range
majority queries in constant time (Section 2.3). The data structure works by
counting the frequency of a constant number of candidate elements in order to
determine the majority element for a given query. While a loose bound on the
number of candidates that need be considered suffices to show that our data
structures occupy linear space, it is more challenging to prove a tighter bound,
such as that of Section 3.

2.1 Quadruple Decomposition

The first stage of our decomposition is to construct a notional complete binary
tree T over the range [1..n], in which each node represents a subrange of [1..n]. Let
the root of T represent the entire range [1..n]. For a node corresponding to range
[a..b], its left child represent the left half of its range, i.e., the range [a..� (a+b)

2 �],
and its right child represents the right half, i.e., the range [� (a+b)

2 � + 1..b]. For
simplicity, we assume that n is a power of 2. Each leaf of the tree represents
a range of size 1, which corresponds to a single index of the array A. We refer
to ranges represented by the nodes of T as blocks. Note that the tree T is for
illustrative purposes only, so we need not store it explicitly.

The tree T has lg n + 1 levels, which are numbered 0 through lg n from top
to bottom. For each level �, T partitions A into 2� blocks of size n

2� . Let T (�)
denote the set of blocks at level � in T .

The second stage of our decomposition consists of arranging adjacent blocks
within each level T (�), 2 ≤ � ≤ lg n, into groups. Each group consists of four
blocks and is called a quadruple. Formally, we define a quadruple Uq to be a
range [a..b] at level � ≥ 2 of size 4n

2� , where a = 2(q−1)n
2� +1 and b = 2(q−1)n

2� + 4n
2� ,

for 1 ≤ q ≤ 2�−1 − 1. In other words, each quadruple at level � contains exactly
4 consecutive blocks, and its starting position is separated from the starting
position of the previous quadruple by 2 blocks. To handle border cases, we also
define an extra quadruple U2�−1 which contains both the first two and last two
blocks in T (�). Thus, at level � there are 2�−1 quadruples, and each block in T (�)
is contained in two quadruples. These definitions are summarized in Figure 1.
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A[1..16]

T (3)

Quadruples U1

U2

U3

U4U4

Q1 Q2

for T (3)

Fig. 1. An example where n = 16. Blocks in T (3) have size 2, and each of the 4
quadruples contain 4 blocks. Query ranges Q1 and Q2 are associated with quadruples
U1 and U3 respectively.

2.2 Candidates

Based on the decomposition from the previous section, we observe the following:

Observation 1. For every query range Q there exists a unique level � such that
Q contains at least one and at most two consecutive blocks in T (�), and, if Q
contains two blocks, then the nodes representing these blocks are not siblings in
the tree T .

Let U be a quadruple consisting of four consecutive blocks, B1 through B4 from
T (�), where � is the level referred to in the previous observation. We associate Q
with U if Q contains B2 or B3; for convenience we also say that Q is associated
with level �. Note that Q may contain both B2 and B3; see Q1 in Figure 1. The
following lemma can be proved by an argument analogous to that described at
the beginning of Section 2:

Lemma 1. There exists a set C of at most 7 elements such that, for any query
range Q associated with quadruple U , the majority element for Q is in C.

For a quadruple U , we define the set of candidates for U to be the elements in
C. In Section 3.2 we improve the upper bound on |C| from 7 to 5, which, as
illustrated by the following example, is tight.

Example 1. Let U be a quadruple containing 4 blocks, each of size 32, and (e)y

denote a sequence of y occurrences of the element e. In ascending order of starting
position, the first block begins with an arbitrary element and is followed by (e1)28

and (e2)3. The second block contains (e2)15, and (e3)17. The third block contains
(e1)8, (e4)17, and (e5)7. The final block contains (e5)19, followed by any arbitrary
sequence of elements. Assume the range contained by the quadruple is [1..128].
The queries [2..72], [30..64], [33..64], [65..96] and [65..115] are all associated with
U , and have e1 through e5 as majority elements respectively.

The elements in C can be found in O(|U |) time; complete details will appear in
a later version of this paper. This implies that the sets of candidates for all the
quadruples in all of the lg n + 1 levels can be found in O(n lg n) time.
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2.3 Data Structures for Counting

We now describe the data structures for each level � of the tree T , for 2 ≤ � ≤ lg n.
Given a quadruple Uq in level �, for 1 ≤ q ≤ 2�−1 we store the set of candidates
for Uq in an array Fq. Let Yq be a string of length |Uq|, where the i-th symbol
in Yq is f if the i-th symbol in Uq is Fq[f ], and a unique symbol otherwise. Let
Y be the concatenation of the strings Y1 through Y2�−1 . We use the wavelet tree
data structure [9] to represent Y , which has alphabet size σ′ = |Fq|+1 ≤ 6. This
representation uses O(n) bits to provide constant time support for the operation
rankc(Y, i), which returns the number of occurrences of the character c in Y [1..i].

Theorem 1. Given an array A[1..n], there exists an O(n) word data structure
that supports range majority queries on A in O(1) time, and can be constructed
in O(n lg n) time.

Proof. Given a query Q = [a..b], we first want to find the level � and the index q
of the quadruple Uq with which Q is associated. This can be reduced to finding
the length of the longest common prefix of the (lg n)-bit binary representations
of a and b, which can be done in constant time using a lookup table of o(n) bits.
We only show how to answer queries associated with a quadruple at levels �, for
2 ≤ � ≤ lg n; the case in which 0 ≤ � ≤ 1 can be handled similarly.

The representation of quadruple Uq in Y begins at s = 4(q−1)n
2� + 1. Let

t = 2(q−1)n
2� + 1. For each f in [1..|Fq|], we count the frequency of Fq[f ] in [a..b]

using rankf (Y, s + b − t) − rankf (Y, s + a − 1 − t), and report Fq[f ] if it is a
majority. Since Y has a constant sized alphabet, this process takes O(1) time.

In addition to the input array, we must store the arrays Fq for each of the
O(n) quadruples, and each array requires a constant number of words. For each
of the lg n + 1 levels in T we store a wavelet tree on an alphabet of size σ′ ≤ 6,
requiring O(n lg n) bits. To answer queries in constant time, we require o(n) bits
of additional space for a lookup table to determine � and q. Thus, the additional
space requirements beyond the input array are O(n) words. 	


3 Generalization to Range α-Majority Queries

In this section we provide an upper bound on the number of candidates we
need from each quadruple to support α-majority queries (Section 3.2). Using
this upper bound, we are able to generalize Theorem 1 to the case of α-majority
queries (Section 3.3).

3.1 Definitions

We refer to the range [a..b′], where a ≤ b′ ≤ b, as a prefix of the range [a..b].
Similarly, the range [a′..b], where a ≤ a′ ≤ b, is a suffix of [a..b]. For a block
L ∈ T (�), we refer to the successor of L, which is the block Ls ∈ T (�) such that
the range represented by Ls immediately follows the range represented by L.
The predecessor is defined analogously.
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Consider a query [a..b′] that contains block L = [a..b] ∈ T (�), b ≤ b′ < b+ |L|.
Thus, [a..b′] contains L and a prefix of the successor of L. We refer to a query of
this form as a prefix query. We refer to the symmetric case, where a query [a′..b]
contains L and a − |L| < a′ ≤ a as a suffix query. Finally, let |A[i..j]|t denote
the frequency of an element t in A[i...j].

3.2 Relaxed Triples

Suppose we are given a block L, where Lp and Ls are the predecessor and
successor of L respectively; we call Lp ∪L∪Ls a triple. We relax the restriction
that blocks in the triple have equal size, and only require that |Lp| + |Ls| ≤
2|L|. Furthermore, we also relax the restriction that blocks and occurrences of
elements are of integer size; i.e., the ranges described in this section may start
and end at arbitrary real numbers. Although the ranges are real-valued, we still
refer to “occurrences” of elements. Thus, in the continuous setting described in
this section, an occurrence of an element may contain an arbitrary fraction of a
block; for example, inside a block there may be a contiguous range of occurrences
of element e that has length 5.22. We refer to these generalized triples as relaxed
triples.

Let e1, ..., em denote the m distinct α-majorities that exist for a query Q
where L ⊆ Q ⊂ (Lp ∪ L ∪ Ls); i.e. Q is a query contained in the relaxed triple
and Q contains L. For brevity, whenever we refer to a query in the context of a
relaxed triple, it is assumed to have this form. Let Q = {Q1, ..., Qm} be a set of
queries within a relaxed triple such that Qi is the smallest query for which ei is
an α-majority, breaking ties by taking the query with smallest starting position.
We refer to Q as the canonical query set for the relaxed triple. If query Qi is a
prefix query or a suffix query we refer to it as one-sided. If Qi is not one-sided,
then it is two-sided. Note that the query Qi = L is one-sided, since it is both a
suffix and a prefix query.

For two-sided canonical queries Qi ∈ Q, the element at both the starting
position and ending position of Qi must be ei; otherwise we could reduce the
size of Qi. Thus, for all two-sided canonical queries Qi ∈ Q, no Qj ∈ Q (j �= i)
exists having the same starting or ending position as Qi. However, there may
be several occurrences of the query L in Q, since many elements can share that
particular range as a canonical query. From this point on we only consider relaxed
triples where element ei occurs only within the range Qi for 1 ≤ i ≤ m. Since
the goal of this section is to find an upper bound on m, occurrences of ei outside
range Qi can be removed without decreasing m.

Lemma 2. Given a relaxed triple and its canonical query set Q = {Q1, ..., Qm},
the elements {e1, ..., em} associated with Q can be rearranged such that they each
appear in at most two contiguous ranges in the relaxed triple. This reordering
induces a new canonical query set Q′ = {Q′

1, ..., Q
′
m}, such that |Q′

j | ≤ |Qj| for
all 1 ≤ j ≤ m.

Proof. First, we describe a procedure for reordering the elements in Lp. Let
L′

p = Lp, Q′ = Q, and Qb ∈ Q′ be the query with the smallest starting position
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in L′
p. Then Qb contains a non-empty suffix of L′

p; if no such query exists, then
L′

p is empty and we are done. Let eb be the element associated with Qb. We
swap the positions of all the occurrences of eb in L′

p such that they occupy a
prefix P of Qb. All elements that were in P are shifted toward L. Thus, it may
be possible to reduce the size of a query Qi ∈ Q′ that originally had a starting
position in P , and we recompute Q′. Let L′

p be the largest suffix of Lp that does
not contain any occurrences of eb. At this point we recurse and compute the
next Qb.

After we have finished moving eb, at no point later in the procedure will an
occurrence of eb in Lp be touched. At the end of the procedure each element
in Lp that is associated with a canonical query will occupy a contiguous block.
Furthermore, |Q′| = |Q|, since moving elements in P closer to the ending position
of Lp will not decrease the ratio of their frequency to canonical query size.
The procedure for reordering Ls is identical, though we process the elements in
decreasing order by ending position.

After executing the procedure on Lp and Ls, consider an element ei associated
with Qi. We can delete all k occurrences of ei in L and insert k copies of ei

immediately before the first occurrence of ei in Ls. This does not change the
relative order of any other elements in the relaxed triple, and shifts all other
elements in Ls in positions before the new first occurrence of ei closer to L.
Thus, each element appears in at most two contiguous ranges. 	


Lp LsL

P S

Qi
|P |ei occurrences of ei

Fig. 2. Illustration of the relaxed triple using notation from Step 1 in Lemma 3

Lemma 3. Given a relaxed triple and its canonical query set Q = {Q1, ..., Qm},
we can rearrange its elements, creating a new relaxed triple that has a canonical
query set Q′ = {Q′

1, ..., Q
′
m} such that Q′

i is one-sided for 1 ≤ i ≤ m.

Proof. We describe a procedure for rearranging the elements in the relaxed triple.

Step 1: Choose an arbitrary two-sided query, Qi ∈ Q. We apply Lemma 2 to the
triple, such that all occurrences of ei appear in the prefix and suffix of Qi. Let
P represent the prefix of Qi contained in Lp and S the suffix of Qi contained in
Ls. P is contained in c ≥ 0 queries in Q, distinct from Qi, and S is contained in
d ≥ 0 queries in Q, distinct from Qi. Without loss of generality, assume c ≥ d.
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Note that |L|ei = α|L| − ΔL for ΔL ≥ 0; otherwise L would be the canonical
query for ei. Since |Qi|ei > α(|L| + |P | + |S|), we have |P |ei = α|P | + ΔP , and
|S|ei = α|S| + ΔS , where ΔP + ΔS > ΔL. Note that ΔP > 0 and ΔS > 0; if
ΔP ≤ 0, then S∪L would be the canonical query for ei, and the same argument
applies to ΔS . This implies that |P | ≥ ΔP

1−α and |S| ≥ ΔS

1−α . See Figure 2.

Step 2: We remove all |P |ei = α|P |+ΔP ≥ ΔP

1−α occurrences of ei from Lp. This
shifts the starting position of c queries in Q closer to L. Let Qj be the innermost
of the c queries, i.e., Qj has the largest starting position of the c queries. Since
there were no occurrences of ej in the removed block, in order for ej to be an α-
majority for Qj , there must have been at least f occurrences of ej to pay for the
removed block, where f = α(|P |ei +f). This implies f = |P |ei

α
1−α . Generalizing

this formula to consider the number of occurrences of the c different elements
required to pay for the removed block, as well as the payments made by the
innermost queries, we get a recurrence relation. Let fi be the savings of the i-th
innermost of the c queries. It follows that fi = α

1−α (δp +
∑i−1

j=1 fj), for 1 ≤ i ≤ c.
Thus, we have reduced the size of Lp by the total sum δp +

∑c
i=1 fc.

Step 3: We insert ΔP

1−α ≤ |P |ei elements immediately after the last occurrence of
ei in S. After this, there exists a prefix query on the relaxed triple which returns
ei as a majority. This insertion causes the ending positions of d queries in Q to
be shifted farther from L. By the same argument as before, we must insert at
most

∑d
i=1 fd elements in order to correct for this shift. Since c ≥ d, our new

arrangement satisfies the constraint |Lp|+ |Ls| ≤ 2|L|, and is therefore a relaxed
triple.

Step 4: We reorder the elements according to Lemma 2 and recompute the
canonical query set. The procedure described in the proof of Lemma 2 does not
increase the number of two-sided queries. If any two-sided queries remain, then
go to step 1.

After rearranging element ei, Qi will remain one-sided in any future iteration
of the procedure; no occurrence of ei will subsequently be moved back to Lp.
Each iteration guarantees that ei will be an α-majority for a one-sided query,
and that the size of the canonical set remains unchanged. 	

Remark 1. We note that Lemma 3 only holds in the continuous setting where we
can manipulate fractional parts of elements. For an example where Lemma 3 does
not hold in the discrete setting, consider the case where |L| = |Lp| = |Ls| = 3,
and Lp = {e5, e5, e4}, L = {e1, e2, e3}, Ls = {e4, e6, e6}, and 2

7 < α < 1
3 . In

this example, we cannot rearrange the triple such that Q4 is one-sided, without
decreasing the size of the canonical query set.

We have shown that to give an upper bound on the number of candidates in
a relaxed triple, it suffices to examine the worst case restricted to prefix and
suffix queries in the successor and predecessor of L, respectively. Without loss
of generality, we consider the successor, then prove an upper bound on the size
of the canonical query set in a relaxed triple. First, we require the following
recurrence relation; the proof will appear in a later version of this paper:
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Lemma 4. If dj = α
1−α (1 +

∑j−1
i=1 (1 + di)) for j ≥ 1, then dj = 1

(1−α)j − 1.

Next, we bound the number of candidates for prefix queries over a relaxed triple.

Lemma 5. Let L be a block and Ls its successor in a relaxed triple. There exists
a set of elements C, of size less than

⌈
1
α

⌉
+

lg(1 + |Ls|
|L| )

lg 1
1−α

,

such that for all prefix queries Q containing L, all α-majorities for Q are con-
tained in C.

Proof. We keep the set F = {f1, ..., fh} of the h = � 1
α� most frequently occurring

elements from the block L = [a..b]. Let prefix query Q1 = [a..b1], where b1 = b
initially, and increase b1 until a new element e1 �∈ F becomes an α-majority for
Q1. We continue this process k times, where k is a value determined later: for
1 ≤ i ≤ k, define Qi = [a..bi], where bi = bi−1 initially, and bi is increased until a
new element ei �∈ F ∪{e1, ..., ei−1} becomes an α-majority. Let Ri be the largest
prefix of Ls contained in Qi, and di = |Ri| = bi−b

|L| for 1 ≤ i ≤ k. In order for

Qi to be a prefix query, 0 < di < |Ls|
|L| must hold for each 1 ≤ i ≤ k. We want

to determine the maximum value of k for which dk < |Ls|
|L| for the specific value

of α. The value h + k provides an upper bound on the number of elements we
need examine to determine the α-majorities for any prefix query.

To maximize k, assume that all elements in F are α-majorities for the query
Q′ = L. Applying Lemma 2, each element fi appears in a contiguous block within
L. Note that any extra occurrences of fi can be removed without decreasing k.

With the exception of at most one element ek+1, we can assume L ∪ Ls only
contains elements e′ for which there exists some prefix query that returns e′ as
an α-majority; otherwise, we could replace all occurrences of these elements with
ek+1. We have filled L entirely with elements in F , and each element ei can only
occur in a single contiguous block in Ls, for 1 ≤ i ≤ k, by Lemmas 2 and 3.
Thus, each ei appears in a contiguous block immediately following ei−1.

Now we have an upper bound, |Rj |ej ≤ dj |L| −
∑j−1

i=1 |Ri|ei , and a lower
bound, |Rj |ej > α(1 + dj)|L| − |L|ej , for 1 ≤ j ≤ k. By our construction,
|L|ej = 0 for all 1 ≤ j ≤ k. Rearranging the upper and lower bounds, we get

that dk > α
1−α +

∑k−1
i=1

|Ri|ei

|L|(1−α) , which implies that dk > α
1−α +

∑k−1
i=1

α(1+di)
(1−α) . By

Lemma 4, dk > 1
(1−α)k − 1. Since |Ls|

|L| > dk, this is equivalent to the statement

1 + |Ls|
|L| > 1

(1−α)k . After isolating k we get that k <
(
lg

(
1 + |Ls|

|L|
))/ (

lg 1
1−α

)
.
	


Extending the above lemma to arbitrary queries on relaxed triples yields the
following lemma:
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Lemma 6. The canonical query set Q of any relaxed triple has size less than⌈
1
α

⌉
+

2
lg 1

1−α

.

Proof. We consider the worst case in both predecessor and successor of L, noting
that the contents of L are shared. We apply Lemmas 3 and 5 to Lp and Ls.
Recall the constraint |Lp| + |Ls| ≤ 2|L|, and note that the expression

⌈
1
α

⌉
+(

lg
(
1 + |Ls|

|L|
)

+ lg
(
1 + |Lp|

|L|
))/ (

lg 1
1−α

)
is maximized when |Ls| = |Lp| = |L|.

	

We extend Lemma 6 to the case of quadruples. The complete details of the proof
will appear in a later version of this paper.

Theorem 2. For any quadruple U there exists a set C such that

|C| < 2
⌈

1
α

⌉
+

2
lg 1

1−α

,

and for any Q associated with U , all α-majorities for Q are in C.

3.3 Handling Large Alphabets

Now that we have an upper bound on the number of candidates required to
answer α-majority queries, we can generalize Theorem 1. For a given α, if the
number of candidates, |C|, required by Theorem 2 is ω(1), then we use the
following observation about executing batched rank queries on a wavelet tree.

Observation 2. A string S[1..n] over alphabet [σ], where σ ≤ n, can be repre-
sented using a wavelet tree such that given an index i, the results of rankf (S, i)
for all f = 1, 2, · · · , σ can be computed in O(σ) time.

With the above observation we present the following theorem:

Theorem 3. Given an array A[1..n] and any fixed α ∈ (0, 1), there exists an
O(n lg( 1

α + 1)) word data structure that supports range α-majority queries on A

in O( 1
α ) time, and can be constructed in O(n lg n

α ) time.

Proof. Based on Theorems 1, 2 and Observation 2 the query time follows, so
we focus on analyzing the space. We observe that if α < 1

4 , then we need not
keep data structures at level lg n in T , since every distinct element contained
in a query range, Q, associated with this level is a (1

4 − ε)-majority for Q, for
0 < ε < 1

4 . Instead, we perform a linear scan of the query range in O( 1
α ) time,

returning all the distinct elements. Continuing this argument, we observe that
we only require the array Fq, for quadruple q, if q is in the top O(lg n − lg 1

α )
levels in T . Since there are O(nα) quadruples in these levels, the arrays require
O(nα× 1

α lg n) = O(n lg n) bits in total. The overall space required for the wavelet
tree data structures is O(n lg( 1

α + 1) × lg n) bits, and this term dominates the
overall space requirements. We defer the details of the construction time to a
later version of this paper. 	




Range Majority in Constant Time and Linear Space 255

4 Concluding Remarks

We have presented an O(n) word data structure that answers range majority
queries in constant time, and an O(n lg( 1

α +1)) word data structure that answers
range α-majority queries in O( 1

α ) time, for any fixed α ∈ (0, 1). It would be
interesting to determine if the space bound of O(n lg( 1

α + 1)) words can be
improved, while maintaining the O( 1

α ) query time.
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