
On Routing with Guaranteed Delivery in
Three-Dimensional Ad Hoc Wireless Networks

Stephane Durocher1,�, David Kirkpatrick2, and Lata Narayanan3

1 School of Computer Science, McGill University, Montréal, Canada
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lata@cse.concordia.ca

Abstract. We study routing algorithms for three-dimensional ad hoc
networks that guarantee delivery and are k-local, i.e., each intermediate
node v’s routing decision only depends on knowledge of the labels of the
source and destination nodes, of the subgraph induced by nodes within
distance k of v, and of the neighbour of v from which the message was
received. We model a three-dimensional ad hoc network by a unit ball
graph, where nodes are points in R

3, and nodes u and v are joined by
an edge if and only if the distance between u and v is at most one.

The question of whether there is a simple local routing algorithm that
guarantees delivery in unit ball graphs has been open for some time. In
this paper, we answer this question in the negative: we show that for any
fixed k, there can be no k-local routing algorithm that guarantees delivery
on all unit ball graphs. This result is in contrast with the two-dimensional
case, where 1-local routing algorithms that guarantee delivery are known.
Specifically, we show that guaranteed delivery is possible if the nodes of
the unit ball graph are contained in a slab of thickness 1/

√
2. However,

there is no k-local routing algorithm that guarantees delivery for the
class of unit ball graphs contained in thicker slabs, i.e., slabs of thickness
1/

√
2 + ε for some ε > 0. The algorithm for routing in thin slabs derives

from a transformation of unit ball graphs contained in thin slabs into
quasi unit disc graphs, which yields a 2-local routing algorithm. We also
show several results that further elaborate on the relationship between
these two classes of graphs.

1 Introduction

Mobile ad hoc networks (MANETs) have been the subject of intensive study
over the last decade. Communication between different nodes in a MANET is
achieved by means of a multi-hop routing protocol, which dictates how a packet
from a source node should be forwarded along the edges of the network to a given
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destination node. Many routing algorithms for MANETs model the network as
a two-dimensional geometric graph [12,19,20,25]. This captures a large number
of possible application scenarios for ad hoc networks, where nodes might be
vehicles moving through city streets or some other terrain. However, there is
increasing interest in applications where ad hoc and sensor networks may be
deployed in three-dimensional space, such as in an ocean, the atmosphere, or in
a building [5,13]. For example, underwater networks that perform ocean column
monitoring would require nodes to be placed at different depths in the water,
creating a three-dimensional network [4]. In this paper, we study the problem of
routing in three-dimensional ad hoc networks, and the extent to which they differ
from two-dimensional ad hoc networks from the perspective of routing protocols.
In brief, our results show that the two settings are indeed quite different.

Two-dimensional ad hoc networks are usually modelled as unit disc graphs
(UDG). Every node in a UDG can be mapped to a point on the plane, in such
a way that any two nodes at distance at most one are connected by an edge. In
other words, a node v is connected to every node u occurring within the disc of
radius one centred at v. The unit disc centred at a point represents the transmis-
sion range of the corresponding host. In reality however, the transmission range
of a wireless node is affected by many unpredictable factors, and is unlikely to
be a perfect disc. In [6], the notion of a quasi unit disc graph (QUDG) was intro-
duced to address the issue of unstable transmission ranges. Roughly, a d-QUDG
is a geometric graph in which any two nodes at distance at most d are always
connected, nodes at distance greater than one cannot be connected, and nodes
at distance between d and one may or may not be connected.

The ad hoc nature of the networks under consideration, and the mobility of
the nodes implies that the topology of the network is arbitrary, and moreover, it
changes over time. In the absence of any information about the location of nodes,
routing protocols are obliged to flood control packets through the network in
order to obtain information about the topology of the network [24]. However, in
many cases, it is reasonable to assume that nodes do have access to information
about not only their own locations, but also the location of their immediate
neighbours, and correspondent nodes, via GPS and location servers. There is
a large body of work on routing protocols that utilize position information in
order to achieve efficiency in routing (see the surveys [12,25]). Most of these are
heuristics, and there may be graph instances on which the routing algorithm fails
to deliver the packet. In greedy routing, for example, a node transmits the packet
to its neighbour that minimizes the Euclidean distance to the destination [21].
In compass routing, the next node is chosen to the neighbour that minimizes
the angle between itself, the current node, and the destination node [16]. In
both these algorithms, the packet can get stuck in a loop, resulting in a routing
failure. The only class of algorithms that is guaranteed to deliver the packet
is based on face routing, in which a planar subgraph of the unit disc graph is
extracted locally, and then routing proceeds by traversing the faces of this planar
graph that intersect the line segment between the source and destination [16].
Face routing can be combined with greedy routing [9,15], and can be limited in
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space [17] to achieve faster delivery times. Face routing can also be simulated
on d-QUDGs where d ≥ 1/

√
2, as shown in [6,18].

A unit ball graph (UBG) is the natural generalization of a UDG to three
dimensions, where nodes correspond to points in R

3. A node v is accordingly
connected to every node within the unit-radius ball centred at v. Similarly, the
quasi unit disc graph model can be extended to a quasi unit ball graph model.
All the algorithms that have been proposed so far for routing in UBGs are based
on heuristics [1,2,3,11,14]. As yet, there is no known algorithm for routing that
guarantees delivery in such networks. In this paper, we address the question of
what kind of UBGs admit a routing algorithm that guarantees delivery.

The answer to this question depends on the kind of information that is avail-
able to a routing algorithm in deciding where next to forward a packet. At one
end of the spectrum are algorithms that have complete information about the
entire graph, and that can store routing tables that contain next-hop informa-
tion along shortest paths for every possible destination. At the other end are
the so-called online and memoryless algorithms [8], where a node makes its for-
warding decision based only on the labels1 of itself, the destination node, and
its neighbours. Bose et al. show that there is no deterministic memoryless al-
gorithm that is guaranteed to succeed even if the graphs are limited to convex
subdivisions [7].

Routing algorithms with complete information are entirely unsuitable for the
application domain of mobile ad hoc networks, with their changing topologies,
autonomous nodes, and low-bandwidth wireless links. On the other hand, mem-
oryless algorithms are far too restrictive. For example, in practice, when a node
receives a message, it knows which of its neighbours sent it. Yet, it is precisely
the lack of this information that makes it impossible for a memoryless algorithm
to route on all convex subdivisions; the only information outside the memoryless
model available to face routing, which does succeed on all convex subdivisions,
is knowledge of the previous node. Similarly, it would be reasonable to allow a
node knowledge of the topology of its k-hop neighbourhood for small and fixed
values of k. We say an algorithm is k-local if a node has access to the topology
of its k-hop neighbourhood, as well as the previous node on the path, in making
its forwarding decision. There has been increased recent interest in distributed
algorithms that are sensitive to locality; see for example the book by Peleg [23].
Routing algorithms with information about O(1) other nodes in the graph are
related to k-local algorithms and have been studied in [16,17]. In this paper, we
restrict ourselves to routing algorithms that are k-local. While our algorithm for
a restricted class of unit ball graphs is 2-local, the impossibility results apply to
k-local algorithms for any fixed k.

Our Results

In essence, we show that routing in three-dimensions is harder than routing in
two dimensions. As far as routing is concerned, it is possible to “lift off” the

1 In a geometric graph, a node is labelled by its coordinates.
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plane to a certain extent, but not beyond. We consider unit ball graphs where
nodes are contained in a slab of fixed thickness. We show that if the thickness
of a slab is less than 1/

√
2 times the transmission radius of nodes, then there is

a 2-local algorithm that guarantees delivery in the graph. Conversely, for unit
ball graphs in thicker slabs, we show that if a k-local routing algorithm were
to exist, then a k-local algorithm for routing would also exist for an arbitrary
graph, which we show is impossible.

The algorithm for UBGs contained in thin slabs derives from the fact that
such a UBG can be transformed via projection into a d-QUDG with d ≥ 1/

√
2,

for which a 2-local algorithm with guaranteed delivery was outlined in [18]. We
explore the relationship between UBGs and QUDGs further in Section 4. We
show that neither the class of all UBGs nor the class of d-QUDGs is contained
in the other, for fixed values of d. In particular, for every d <

√
3/2, we exhibit

a d-QUDG that cannot be embedded as a UBG. While it is straightforward to
see that any graph can be embedded as a d-QUDG for small enough d, we show
that for any fixed d, there are UBGs that cannot be embedded as a d-QUDG.
Finally, our negative results on routing in UBGs contained in slabs of large
enough thickness imply the non-existence of a k-local algorithm for d-QUDGs
with d < 1/

√
2. This shows that the results of Barrière et al. [6] and Kuhn et al.

[18] on routing in QUDGs are tight.

2 Definitions

Given a labelled, connected, undirected graph, G = (V, E), and two vertices, s
and t in V , the problem of routing is to send a packet from s to t using the edges in
G. To this end, an algorithm for routing is implemented in a distributed manner
at every node in the graph, in such a way that when the packet arrives at a
particular node u, the routing algorithm implemented at u must deterministically
choose a unique neighbour of u to which the packet should be forwarded. An
algorithm halts once the message is forwarded to the destination vertex t. In
this case, we say the algorithm delivers the message. We say routing algorithm
A succeeds for a class of graphs G if, for all G ∈ G, A delivers a message from
any origin s to any destination t in G. Otherwise, we say A is defeated by some
G ∈ G.

Let the k-neighbourhood of a vertex v, denoted Gk(v), be the subgraph of G
induced by vertices within graph distance k from v (including the corresponding
vertex labels). The vertex labelling scheme should be independent of the graph;
in particular, the labelling should not encode additional information about the
topology of the graph or the neighbourhood of a vertex. For example, in a geo-
metric graph, each vertex is labelled by its coordinates.

Let Σ denote the set of possible vertex labels for a given class of graphs and let
P(A) denote the power set of set A. Given a fixed k, we say a routing algorithm
is k-local if it can be defined by a routing function f : Σ4 × P(Σ2) → Σ with
the following interpretation: f(s, t, v, u, Gk(u)) specifies the neighbour to which
node u should forward the packet, provided (a) the packet was received from its



550 S. Durocher, D. Kirkpatrick, and L. Narayanan

neighbour v, (b) the source and destination of the packet are s and t respectively,
and (c) Gk(u) is the k-neighbourhood of u.

A k-local algorithm must therefore make the forwarding decision at a node u
based only on the source and destination nodes, its k-neighbourhood, and the
previous node on the path. It has no additional information about the route. In
particular, no memory or state information may be stored in the message other
than s, t, and v, nor may the state of a vertex be modified after forwarding a
message.

Given a set of points P in R
2, the unit disc graph induced by P , denoted

UDG(P ), is an embedded graph whose vertices correspond to P and for which
edge (u, v) exists if and only if ||u − v|| ≤ 1. Given a set of points P in R

3, the
unit ball graph induced by P , denoted UBG(P ), is defined analogously.

Given d ∈ [0, 1], graph G = (V, E) can be realized as a d-quasi unit disc graph,
denoted d-QUDG, if there exists an embedding of G, f : V → R

2, such that for
all u, v ∈ V ,

1. ||f(u) − f(v)|| ≤ d ⇒ (u, v) ∈ E, and
2. ||f(u) − f(v)|| > 1 ⇒ (u, v) �∈ E.

If ||f(u)−f(v)|| ∈ (d, 1], then no conclusion may be drawn about the membership
of edge (u, v) in E: both (u, v) ∈ E and (u, v) �∈ E are possible. Observe that
a 1-QUDG is a UDG and any graph is a 0-QUDG. See Barrière et al. [6] and
Kuhn et al. [18] for a discussion of quasi unit disc graphs.

Given a fixed d, let UDG, UBG, and d-UBG denote the classes of graphs that
can be realized as a UDG, a UBG, or a d-QUDG, respectively.

Finally, if P1 and P2 denote parallel planes in R
3, we refer to the closed region

between P1 and P2 as a slab and to the minimum distance between P1 and P2
as its thickness.

3 Routing in Unit Ball Graphs

In this section we present our main results on routing in unit ball graphs in
Theorems 1 and 2. Together, these two results characterize the class of UBGs
for which a k-local routing algorithm is possible. Our first observation, stated
formally in the following lemma, is that any UBG contained in a slab of thickness
λ < 1 can be transformed into a QUDG by projecting the points in the UBG to
a plane parallel to the slab.

Lemma 1. Choose any λ ≤ 1 and let P denote a set of points in R
3 contained

in a slab of thickness λ. Let f : R
3 → R

2 denote the projection onto a plane
parallel to the slab. Let G = (V, E) denote the embedded graph such that V =
{f(v) | v ∈ P} and E = {(f(u), f(v)) | ||u − v|| ≤ 1, u, v ∈ P} (V and E may
be multisets). G is a (

√
1 − λ2)-QUDG.

Proof. Choose any two points u, v ∈ P . If ||f(u) − f(v)|| > 1 then ||u − v|| > 1
and (f(u), f(v)) �∈ E. Similarly, if ||f(u) − f(v)|| ≤

√
1 − λ2 then ||u − v|| ≤ 1

and (f(u), f(v)) ∈ E. Therefore, the projected graph G is a (
√

1 − λ2)-quasi unit
disc graph. 	
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Kuhn et al. [18] propose a 2-local routing algorithm for d-quasi unit disc graphs
that succeeds for any d ≥ 1/

√
2. The following theorem is an immediate conse-

quence of Lemma 1.

Theorem 1. For every finite set of points P in R
3 contained within a slab

of thickness 1/
√

2, there exists a 2-local routing algorithm that succeeds for
UBG(P ).

Proof. By Lemma 1, the projection of UBG(P ) onto a plane parallel to the slab
is a 1/

√
2-QUDG, G. Since UBG(P ) and G are isomorphic, the k-neighbourhood

of a vertex v in UBG(P ) determines the k-neighbourhood of the corresponding
vertex in G. Therefore, a 2-local routing algorithm in UBG(P ) can be achieved
by projecting the 2-neighbourhood of the current vertex v and simulating a 2-
local routing algorithm such as the one in [18] on the corresponding QUDG. 	


Note that Theorem 1 requires knowledge of a normal to the plane since, in
general, this cannot be determined from the 2-neighbourhood of a vertex.

In the remainder of this section, we show that the result in Theorem 1 is tight:
there is no k-local routing that can guarantee delivery on all UBGs contained in
slabs thicker than 1/

√
2. To prove this, we first show that any such algorithm

would imply the existence of a 1-local routing algorithm for arbitrary graphs
(Lemma 2). Next we show the impossibility of a 1-local routing algorithm for
arbitrary labelled graphs (Lemma 3).

Lemma 2. If there exists some ε > 0, some k ≥ 1, and a k-local routing algo-
rithm that succeeds for UBG(P ), for every finite set of points P in R

3 contained
within a slab of thickness 1/

√
2 + ε, then there exists a 1-local routing algorithm

that succeeds for any connected, labelled graph G.

Proof. Suppose for some ε > 0, there exists a k-local algorithm A that succeeds
in routing on every UBG contained in a slab of thickness at most 1/

√
2 + ε.

For any arbitrary graph G, we show how to construct a UBG G′ such that
routing on G can be accomplished by simulating A on G′. Let G = (V, E) be
an arbitrary connected labelled graph. Let n = |V |. Without loss of generality,
assume the vertices are labelled 0, . . . , n − 1; that is, V = {0, . . . , n − 1}. The
proof holds regardless of whether the set of vertex labels is a contiguous subset
of the integers.

We define a transformation from G to a set of points P (G) in R
3. Let ε′ =

min{ε,
√

3 − 1/2}. For each vertex v ∈ V , create two sets Cv = {(2vk, y ±
1/2, 0) | y ∈ {2k · min(N(v)) − (k − 1), . . . , 2k · max(N(v)) + (k − 1)}} and
Rv = {(x ± 1/2, 2vk, 1/

√
2 + ε′) | x ∈ {2k · min(N(v)) − (k − 1), . . . , 2k ·

max(N(v)) + (k − 1)}}, where N(v) denotes the set of labels of neighbours
of v and v itself. That is, Cv is a column of points in the xy-plane starting at
(2vk, 2k min(N(v))− k + 1/2, 0) and Rv is a row of points in the xy-plane start-
ing at (2k min(N(v)) − k + 1/2, 2vk, 1/

√
2 + ε′). For each edge (u, v) ∈ E, add

a point pu,v = (2uk, 2vk, (1/
√

2 + ε′)/2). Finally, for each v ∈ V , add the point
pv,v = (2vk, 2vk, (1/

√
2 + ε′)/2). The graph UBG(P (G)) is defined in the usual
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way; every pair of points within distance one of each other is connected by an
edge. Figure 1 shows a graph G and the corresponding graph UBG(P (G)) for
k = 1.

0

1

3 42

p
u,v

Rv

Cvvertex in column

for some u, v

vertex in row

for some v

for some v

0 1 2 3 4

4

3

2

0

1

Fig. 1. A graph G and the corresponding graph UBG(P (G)) for k = 1

For each v ∈ V , the set Cv (similarly, Rv) is a sequence of points, each at
distance one from the previous point, and therefore, Cv (Rv) corresponds to
a path in UBG(P (G)). For any u �= v, columns Cu and Cv are at distance
at least two apart and rows Ru and Rv are at distance at least two apart. If
edge (u, v) �∈ E, where u �= v, then the distance between any point i ∈ Cu

and any point j ∈ Rv is greater than one; therefore, i and j are not adjacent
in UBG(P (G)). Since ε′ ≤

√
3 − 1/

√
2, if edge (u, v) ∈ E, then the distance

between some point i ∈ Ru and pu,v is at most one and the distance between
some point j ∈ Cv and pu,v is at most one; therefore, i and pi,j are adjacent in
UBG(P (G)), as are j and pi,j . See Figure 2.

Fig. 2. The region [2ik ± 1/2] × [2jk ± 1/2] × [0, 1/
√

2 + ε′] in UBG(P (G)) if i and j
are not adjacent in G and the same region if i and j are adjacent in G

It is straightforward to see that UBG(P (G)) is contained within a slab of
thickness 1/

√
2 + ε′ ≤ 1/

√
2 + ε and therefore algorithm A should succeed on it.

We claim that a straightforward simulation of A in UBG(P (G)) constitutes a 1-
local routing algorithm for G. That is, upon reaching a vertex v ∈ V , it suffices
to simulate A on the subgraph of UBG(P (G)) that corresponds to vertex v
and its 1-neighbourhood in G. The simulation begins at point pv,v with the
goal of reaching the destination vertex pt,t. When the simulation moves to a
point outside Cv ∪ Rv ∪ {pv,v} in UBG(P (G)), it must reach a point pv,u or
pu,v for some u �= v. This corresponds to forwarding the message to vertex u,
which must be a neighbour of v in G. The computation of the k-local subgraph of
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UBG(P (G)) around any vertex in Cv∪Rv∪{pv,v}, and hence the simulation, can
be performed completely locally for any vertex v, given the the 1-neighbourhood
of v in G. Furthermore, knowledge of the number of vertices in G is not required
to simulate the local neighbourhood of v in UBG(P (G)). Since the simulation
results in a 1-local routing algorithm guaranteed to succeed on an arbitrary
graph G, the lemma follows. 	


We proceed to show the non-existence of a 1-local routing algorithm for an
arbitrary labelled graph G.

Lemma 3. For any 1-local routing algorithm A, there exists a labelled graph for
which A is defeated.

Proof. A 1-local routing function f must be defined for all valid combinations
of input. In particular, f(s, t, vi, u, {(u, v1), . . . , (u, vk)}) must be defined for all
i ∈ {1, . . . , k}, where s denotes the origin, t denotes the destination, vi denotes
the last vertex visited, u denotes the current vertex, and {v1, . . . , vk} denotes
the set of neighbours of u. Let f ′

u(vi) = f(s, t, vi, u, {(u, v1), . . . , (u, vk)}) for a
given s, t, u, and its set of neighbours. We refer to f ′

u as a local routing function.
Function f ′

u : {v1, . . . , vk} → {v1, . . . , vk} is one of kk possible functions.
Function f ′

u must be bijective. Assume otherwise. Without loss of generality,
say f ′

u(vi) �= v1 for all i ∈ {1, . . . , k}. Function f ′
u is defeated by a tree with t

in the subtree of u rooted at v1 and s in any other subtree of u. Furthermore,
if k > 1 then f ′

u must be a derangement. Assume instead that f ′
u(vi) = vi for

some i ∈ {1, . . . , k}. Function f ′
u is defeated by a tree with s in the subtree of

u rooted at vi and t in any other subtree of u. Therefore, it suffices to consider
local routing functions f ′

u that are derangements.

ts d a

b

e h

c

g

f

ts d a

b f

e h

c g G1 G2

Fig. 3. Any routing algorithm is defeated by G1 or G2 if all local routing functions are
derangements

A set of cardinality two has a unique derangement. Therefore, f ′
u is uniquely

defined when u has degree two. A set of cardinality three has two possible de-
rangements. Therefore, f ′

u is one of two functions when u has degree two. Observe
that f ′

u is also uniquely defined when u has degree one.
Let G1 and G2 denote the graphs illustrated in Figure 3. Graphs G1 are G2 are

automorphic upon permuting vertices f and g. As discussed, the local routing
function is uniquely defined for all vertices of degree two or less. There are two
vertices of degree three: a and e. Let f ′

a(v) = f(s, t, v, a, {(a, b), (a, c), (a, d)})
and f ′

e(v) = f(s, t, v, e, {(e, f), (e, g), (e, h)}) denote the local routing functions
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Table 1. The four combinations of derangements for local routing functions f ′
a and f ′

e

routing function 1 routing function 2 routing function 3 routing function 4
u f ′

a(u) u f ′
e(u) u f ′

a(u) u f ′
e(u) u f ′

a(u) u f ′
e(u) u f ′

a(u) u f ′
e(u)

b c f g b d f g b c f h b d f h
c d g h c b g h c d g f c b g f
d b h f d c h f d b h g d c h g

G1

ts

g

d a e h

fb

c G1

ts

g

d a e h

fb

c G1

ts

g

d a e h

fb

c G1

ts

g

d a e h

fb

c

G2

ts
d a e h

b g

fc
G2

ts
d a e h

b g

fc
G2

ts
d a e h

b g

fc
G2

ts
d a e h

b g

fc

routing function 1 routing function 2 routing function 3 routing function 4

Fig. 4. Four routing functions are possible for graphs G1 and G2 such that each local
routing function is a derangement. Each routing function is defeated by G1 or G2 when
delivering a message from s to t. A defeat is denoted by X.

for vertices a and e, respectively. Each of f ′
a and f ′

e may be defined by one of
two derangements, resulting in four possible routing functions for graphs G1 and
G2, given in Table 1. As shown in Figure 4, each of the four routing functions is
defeated by either G1 or G2. 	

Remark: It is straightforward to show the non-existence of a k-local routing
algorithm for any fixed k by replacing the edges in graphs G1 and G2 by paths
of length k.

The following theorem is an immediate consequence of Lemmas 2 and 3.

Theorem 2. For every ε > 0, every k ≥ 1, and every k-local routing algorithm
A, there exists a finite set of points P in R

3 contained within a slab of thickness
1/

√
2 + ε such that A is defeated by UBG(P ).

Theorem 2 and Lemma 1 also give the following corollary:

Corollary 1. For every ε ∈ (0, 1/
√

2], every k ≥ 1, and every k-local routing
algorithm A, there exists a (1/

√
2 − ε)-QUDG, G, such that A is defeated by G.

In [6] and [18], algorithms for routing in d-QUDGs for d ≥ 1/
√

2 are given.
Corollary 1 implies that these results are tight: it is impossible to extend the
range of d for which the class of d-QUDGs would admit a k-local algorithm.

4 Unit Ball Graphs and Quasi Unit Disc Graphs

In Section 3 we showed that any UBG contained within a slab of thickness λ ≤ 1
is isomorphic to some (

√
1 − λ2)-QUDG. In this section we present additional
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observations on unit ball graphs and their relationship to quasi unit disc graphs
and more general graphs. We show the following general result which follows
from Lemmas 4 and 5.

Theorem 3. (1) Given any fixed d, UBG �⊆ d-QUDG. (2) Given any fixed d′ <√
3/2, d′-QUDG �⊆ UBG.

We first show that the class UBG is not contained within the class d-QUBG for
any fixed d:

Lemma 4. For every d, there exists a finite set of points P in R
3 such that

UBG(P ) is not isomorphic to any d-QUDG.

The proof of Lemma 4 was omitted due to space limitations. If d is not fixed,
then any graph can be realized as a d-QUDG for some d:

Proposition 1. For every finite labelled graph G, there exists a d and a d-
QUDG, G′ such that G is isomorphic to G′.

Proof. Choose any graph G. Embed all vertices of G at distinct points contained
within a disc of radius 1/2 in the plane. Add the edges of G. Choose d > 0 such
that d is less than the minimum distance between any two points. The resulting
graph is a d-QUDG since all edges have lengths in the range [d, 1]. 	


By Lemma 1, any UBG contained in a slab of thickness λ < 1 is isomorphic to
some quasi unit disc graph. The converse is not true; as we show in Lemma 5,
there exist quasi unit disc graphs that are not isomorphic to any UBG.

Lemma 5. K3,3 is forbidden as an induced subgraph of a UBG but can be real-
ized as a (

√
3/2 − ε)-QUDG for any ε > 0.

The proof of Lemma 5 was omitted due to space limitations. It follows that
d-QUDG ⊆ UBG when d = 1 but d-QUDG �⊆ UBG when d ≤

√
3/2. It remains

open to determine for which range of values of d ∈ (
√

3/2, 1) the predicate
d-QUDG ⊆ UBG remains true.

The definition of a d-quasi unit disc graph has a natural generalization to
three dimensions as a d-quasi unit ball graph, denoted d-QUBG. We note the
following straightforward relationship between d-QUBG and d-QUDG:

Proposition 2. For every d ≤ 1, every λ < d, and every d-QUBG, G, contained
in a slab of thickness λ, there exists a (

√
d2 − λ2)-QUDG G′ such that G is

isomorphic to G′.

Proof. The proof is analogous to the proof of Lemma 1. 	


Proposition 2 and the 2-local routing algorithm of Kuhn et al. [18] give:

Corollary 2. There exists a 2-local routing algorithm that succeeds for any
d-QUBG, G, such that d ≥

√
λ2 + 1/2 and G is contained in a slab of

thickness λ.
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5 Discussion

We have shown the impossibility of routing algorithms that guarantee delivery
in three-dimensional ad hoc networks, modelled by unit ball graphs, when nodes
are constrained to have information only about their k-hop neighborhood. This
result is in direct contrast to the two-dimensional case, where a 1-local algorithm
such as face routing guarantees delivery on all unit disc graphs.

The results from the planar case do “lift off” the plane to a limited extent.
We showed that unit ball graphs for which the nodes are contained in a slab
of thickness 1/

√
2 admit a 2-local routing algorithm that guarantees delivery.

On the other hand, we also showed that for any fixed k, there is no k-local
routing algorithm that is guaranteed to succeed on all unit ball graphs, even if
the nodes are contained in a slab of thickness of 1/

√
2 + ε for arbitrarily small

ε > 0. An interesting question would be to characterize precisely the class of unit
ball graphs in thicker slabs that do have routing algorithms. Since distributed
algorithms for routing in unit ball graphs remain an urgent necessity, the question
of the kind of information with which a routing algorithm might be augmented,
in order to circumvent the negative results in this paper would be useful to
answer.

In this paper, we have begun an exploration of the relationship between unit
ball graphs, quasi unit disc graphs, and quasi unit ball graphs. Many questions
remain open. For example: does there exist a δ > 0 such that any (1 − δ)-
QUDG is isomorphic to some UBG? If so, what is the supremum of all such
δ? By Lemma 5, δ < 1 −

√
3/2. Several graph problems that are NP-complete

are efficiently approximable (e.g., maximum independent set, graph coloring,
and minimum dominating set [22]) or tractable (e.g., max-clique [10]) on unit
disc graphs. A similar investigation of which graph problems are tractable or
approximable on unit ball graphs and the other classes of graphs studied here
might be a fruitful avenue of research.
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