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In this paper we present a novel nonparametric method for simplifying piecewise linear

curves and we apply this method as a statistical approximation of structure within se-

quential data in the plane. Specifically, given a sequence P of n points in the plane that
determine a simple polygonal chain consisting of n− 1 segments, we describe algorithms

for selecting a subsequence Q ⊂ P (including the first and last points of P ) that deter-

mines a second polygonal chain to approximate P , such that the number of crossings
between the two polygonal chains is maximized, and the cardinality of Q is minimized

among all such maximizing subsets of P . Our algorithms have respective running times
O(n2 logn) (respectively, O(n2

√
logn)) when P is monotonic and O(n2 log2 n) (respec-

tively, O(n2 log4/3 n)) when P is any simple polygonal chain in the Real RAM model

(respectively, in the Word RAM model).

Keywords: polygonal line approximation; robust simplification; nonparametric methods

1. Introduction

Given a simple polygonal chain P (a simple polyline) defined by a sequence of points

(p1, p2, . . . , pn) in the plane, the polyline approximation problem is to produce a

simplified polyline Q = (q1, q2, . . . , qk), where k < n. The polyline Q represents an

approximation of P that optimizes one or more functions of P and Q. For P to be

simple, the points p1, . . . , pn must be distinct and P cannot intersect itself.

Motivation for studying polyline approximation comes from the fields of com-

puter graphics and cartography, where approximations are used to render vector-

based features such as streets, rivers, or coastlines onto a screen or a map at appro-

priate resolution with acceptable error,1 as well as in problems involving computer

animation, pattern matching and geometric hashing (see Alt and Guibas’ survey for
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details.3) Our present work removes the arbitrary parameters previously required to

describe acceptable error between P and Q, and provides an approximation method

that is robust to some forms of noise. While our analysis follows the conventions

of previous work in primarily using the Real RAM model, we also include running

times in the Word RAM model as these are relevant to discussions of lower bounds

on time complexity. We further note that the Word RAM model requires that non-

integer coordinates (floating point and rational) be stored using a constant number

of words and that any two coordinates be comparable in constant time. See the

work of Han and Thorup10 and of Chan and Pǎtraşcu5 for further discussion.

Typical polyline approximation algorithms require that distance between two

polylines be measured using a function denoted here by ζ(P,Q). The specific mea-

sure of interest differs depending on the focus of the particular problem or article;

however, three measures are popular: Chebyshev distance ζC , Hausdorff distance

ζH , and Fréchet distance ζF . In informal terms, the Chebyshev distance is the max-

imum absolute difference between y-coordinates of P and Q (maximum residual);

the symmetric Hausdorff distance is the distance between the most isolated point

of P or Q and the other polyline; and the Fréchet distance is more complicated,

being the shortest possible maximum distance between two particles each moving

forward along P and Q. Alt and Guibas3 give more formal definitions. We define

a new measure of quality or similarity, to be maximized, rather than an error to

be minimized. Our crossing measure is a combinatorial description of how well Q

approximates P . It is invariant under a variety of geometric transformations of the

polylines, and is often robust to uncertainty in the locations of individual points.

Specifically, given P we consider the problem of selecting a subset Q ⊆ P such that

the number of crossings between the respective polylines determined by P and Q is

maximized. Equivalently, Q is selected to minimize the average length of sequences

of consecutive points in P that lie on any one side of the polyline determined by

Q. Given a sequence P of n points in the plane that determine a simple polyline

consisting of n − 1 segments, we describe algorithms for selecting a subsequence

Q ⊂ P (including the first and last points of P ) that determines a second polyline

to approximate P , such that the number of crossings between the two polylines

is maximized, and the cardinality of Q is minimized among all such maximizing

subsets of P .

Our algorithm for minimizing |Q|, while optimizing our nonparametric quality

measure, runs in O(n2 log n) time when P is monotonic in x, or O(n2 log2 n) time

when P is a non-monotonic simple polyline on the plane, using only O(n) space in

either case. The near-quadratic times are slightly smaller in their polylog exponents

for the Word RAM model (O(n2
√

log n) and O(n2 log4/3 n), respectively), and are

remarkably similar to the optimal times achieved in the parametric version of the

problem using Hausdorff distance,1,6 suggesting the possibility that the problems

may have similar complexities.

The remainder of this paper is organized as follows. In Section 2, we start by
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briefly discussing other relevant literature. In Section 3, we define the crossing mea-

sure χ(Q,P ) and relate the concepts and properties of χ(Q,P ) to previous work in

both polygonal curve simplification and robust approximation. In Section 4, we de-

scribe our algorithms to compute approximations of monotonic and non-monotonic

simple polylines that maximize χ(Q,P ).

2. Related Work

Previous work on polyline approximation is generally divided into four categories

depending on what property is being optimized and what restrictions3 are placed

on Q. Problems can be classified as requiring an approximating polyline Q having

the minimum number of segments (minimizing |Q|) for a given acceptable error

ζ(P,Q) ≤ ε, or a Q with minimum error ζ(P,Q) for a given value of |Q|. These

are called min-# problems and min-ε problems respectively. These two types of

problems are each further divided into “restricted” problems, where the points of

Q are required to be a subset of those in P and to include the first and last points

of P (q1 = p1 and qk = pn), and “unrestricted” problems, where the points of

Q may be selected arbitrarily on the plane. Under this classification, the polyline

approximation Q we examine is a restricted min-# problem for which a subset

of points of P is selected (including p1 and pn) where the objective measure is the

number of crossings between P and Q and an optimal approximation first maximizes

the crossing number (rather than minimizing it), and then has a minimum |Q| given

the maximum crossing number.

While the restricted min-# problems find the smallest sized approximation

within a given error ε, an earlier approach was to find any approximation within

the given error. The cartographers Douglas and Peucker8 developed a heuristic al-

gorithm where an initial (single segment) approximation was evaluated and the

furthest point was then added to the approximation. This technique remained

inefficient until Hershberger and Snoeyink11 showed that it could be applied in

O(n log∗ n) time and linear space.

The most relevant previous literature is on restricted min-# problems. Imai and

Iri12 presented an early solution to the restricted polyline approximation problem

using O(n3) time and O(n) space. The version they study optimizes |Q| while main-

taining that the Hausdorff metric between Q and P is less than the tuning param-

eter ε. Their algorithm was subsequently improved by Melkman and O’Rourke13

to O(n2 log n) time and then by Chan and Chin6 to O(n2) time. Subsequently,

Agarwal and Varadarajan2 changed the approach from finding a shortest path in

an explicitly constructed graph to an implicit method that runs in O(f(δ)n4/3+δ)

time, where δ is an abritrarily chosen constant. Agarwal and Varadarajan used the

L1 Manhattan and L∞ Chebyshev metrics instead of the previous works’ Hausdorff

metric. Finally, Agarwal et al.1 study a variety of metrics and give approximations

of the min-# problem in O(n) or O(n log n) time.
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3. A Crossing Measure and its Computation

3.1. Crossing Measure

The crossing measure χ(Q,P ) is defined for a sequence of n distinct points P =

(p1, p2, . . . , pn) and a subsequence of k distinct points Q ⊂ P,Q = (q1, q2, . . . , qk)

with common first and last values: q1 = p1 and qk = pn. For each pi let (xi, yi) =

pi ∈ R2. To understand the crossing measure, it is necessary to make use of the idea

of left and right sidedness of a point relative to a directed line segment. A point pj
is on the left side of a segment Si,i+1 = [pi, pi+1] if the signed area of the triangle

formed by the points pi, pi+1, pj is positive. Correspondingly, pj is on the right side

of the segment if the signed area is negative. The three points are collinear if the

area is zero.

For any endpoint qj of a segment in Q it is possible to determine the side of P

on which qj lies. Since Q is a polyline using a subset of the points defining P , for

every segment Si,i+1 there exists a corresponding segment of Sπ(j),π(j+1) such that

1 ≤ π(j) ≤ i < i + 1 ≤ π(j + 1) ≤ n. The function π : {1, . . . , k} → {1, . . . , n}
maps a point qj ∈ Q to its corresponding point pπ(j) ∈ P such that pπ(j) = qj .

The endpoints of Sπ(j),π(j+1) are given a side based on Si,i+1 and vice versa. Two

segments intersect if they share a point. Such a point is interior to both segments if

and only if the segments change sides with respect to each other. The intersection

is at an endpoint if at least one endpoint is collinear to the other segment.14 The

crossing measure χ(Q,P ) is the number of times that Q changes sides from properly

left to properly right of P due to an intersection between the polylines, as shown

in Figure 1. A single crossing can be generated by any of five cases (see Figure 2):

(1) A segment of Q intersects P at a point distinct from any endpoints;

(2) two consecutive segments of P meet and cross Q at a point interior to a segment

of Q;

(3) one or more consecutive segments of P are collinear to the interior of a segment

of Q with the previous and following segments of P on opposite sides of that

segment of Q;

(4) two consecutive segments of P share their common point with two consecutive

segments of Q and form a crossing; or

(5) in a generalization of the previous case, instead of being a single point, the

intersection comprises one or more sequential segments of P and possibly Q

that are collinear or identical.

In Section 3.2, we discuss how to compute the crossings for Cases 1–3, which

are all cases where crossings involve only one segment of Q. Cases 4 and 5 involve

more than one segment of Q, because an endpoint of one segment of Q or even some

entire segments of Q are coincident with one or more segments of P ; those cases

are discussed in Section 3.3.

In the case where the x-coordinates of P are monotonic, P describes a function

Y of x and Q is an approximation Ŷ of that function. The signs of the residuals



January 17, 2014 20:21 WSPC/Guidelines linearInterpolationIJCGA2013

Robust Nonparametric Data Approximation of Point Sets via Data Reduction 5

pi pj pi pj q1

q2
q3

q4

Fig. 1: Crossings are indicated with a square and false crossings are marked with

a +. Crossings are only counted when the simplifying segment intersects the chain

that begins and ends with its own endpoints.
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Fig. 2: Examples of the five cases generating a single crossing.

r = (r1, r2, . . . , rn) = Y − Ŷ are computed at the x-coordinates of P and are

equivalent to the sidedness described above. The crossing number is the number

of proper sign changes in the sequence of residuals. The resulting approximation

maximizes the likelihood that adjacent residuals would have different signs, while

minimizing the number of original data points retained conditional on that number

of sign changes. Note that if r was independently and identically selected at random

from a distribution with median zero, then any adjacent residuals in the sequence

r would have different signs with probability 1/2.

3.2. Counting Crossings with a Segment

To compute an approximation Q with optimal crossing number for a given P , we

consider the optimal number of crossings for segments of P and combine them in

a dynamic programming algorithm. Starting from a point pi we compute optimal

crossing numbers for each of the n − i segments that start at point pi and end at

some pj with i < j ≤ n. Computing all n− i optimal crossing numbers for a given

pi simultaneously in a single pass is more efficient than computing them for each

(pi, pj) pair separately. These batched computations are performed for each pi and

the results used to find Q.
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To compute a single batch, we will consider the angular order of points in

Pi+1,n = {pi+1, . . . , pn} with respect to pi. Let ρi(j) be a function on the indices

representing the angular order of segments (pi, pj) within this set with respect to

vertical, such that ρi(j) = 1 for all pj that are closest to the vertical line passing

through pi, and ρi(j) ≤ ρi(k) if and only if the clockwise angle for pj from the

vertical is less than or equal to the corresponding angle for pk. Note that within

axis-aligned quadrants that are centered on pi, a larger angle corresponds to a

smaller slope. This confirms that angular order comparisons are computable in con-

stant time using basic arithmetic. See Figure 3(a). Using this angular ordering we

partition Pi+1,n into chains and process the batch of crossing number problems as

discussed below.

We define a chain with respect to pi to be a consecutive sequence P`,`′ ⊂ Pi+1,n

with non-decreasing angular order. That is, either ρi(`
′) ≥ ρi(j + 1) ≥ · · · ≥ ρi(`)

or ρi(`) ≤ ρi(j + 1) ≤ · · · ≤ ρi(`
′), with the added constraint that chains cannot

cross the vertical ray above pi. Each segment that does cross is split into two pieces

using two artificial points on the ray per crossing segment. The points on the low

segment portions have rank ρi = 1 and the identically placed other points have rank

ρi = n+ 1. These points do not increase the complexities by more than a constant

factor and are not mentioned further. Processing Pi+1,n into its chains is done by

first computing the slope and quadrant for each point and storing that information

with the points. Then the points are sorted by angular order around pi and ρi(j) is

computed as the rank of pj in the sorted list. This step requires O(n log n) time and

linear space, with linear extra space to store the slopes, quadrants and ranks (in the

Word RAM model the time for this step is reduced9 to O(n log log n)). Creating a

list of chains is then feasible in O(n) time and space by storing the indices of the

beginning and end of each chain encountered while checking points pj in increasing

order from j = i + 1 to j = n. Identifying all chains involves two steps. First, all

segments are checked to determine whether they intersect the vertical ray, each in

O(1) time. Such an intersection implies that the previous chain should end and

the segment that crosses the ray should be a new chain (note that an artificial

index of i + 1/2 can denote the point that crosses the vertical). The second check

is to determine whether the most recent pair of points has a different angular rank

ordering from the previous pair. If so, the previous chain ended with the previous

point and the new chain begins with the current segment. Each chain is oriented

from lowest angular index to highest angular index.

Lemma 1.

Consider any chain P`,`′ (w.l.o.g. assume ` < `′). With respect to pi the segment

Si,j : (i < j ≤ n) can have at most one crossing strictly interior to P`,`′ .

Proof. Case 1. Suppose ρi(`) = ρi(j) or ρi(j) = ρi(`
′). If ` = n then no crossing

can exist because at least one end (or all) of Pk,` is collinear with Si,j and no proper

change in sidedness can occur in this chain to generate a crossing.
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Case 2. Suppose ρi(j) /∈ [ρi(`), ρi(`
′)]. These cases have no crossings with the chain

because Pk,` is entirely on one side of Si,j . A ray exists between either ρi(j) < ρi(`)

or ρi(`
′) < ρi(j) that separates Pk,l from Si,j and thus no crossings can occur

between the segment and the chain.

Case 3. Suppose ρi(j) ∈ (ρi(`), ρi(`
′)). Assume that the chain causes at least two

crossings. Pick the lowest index segment for each of the two crossings that are

the fewest segments away from pi. By definition there are no crossings of segments

between these two segments. Label the point with lowest index of these two segments

pλ and the point with greatest index pλ′ . Define a possibly degenerate cone Φ with

a base pi and rays through pλ and pλ′ . This cone, by definition, separates the

segments from pλ+1 to pλ′−1 from the remainder of the chain. Since this sub-chain

cannot circle pi entirely there must exist one or more points that have a maximum

(or minimum) angular order, which contradicts the definition of the chain. Hence

there cannot be more than one crossing.

The algorithm for computing the crossing measure on a batch of segments de-

pends on the nature of P . If P is x-monotone, then the chains can be ordered by

increasing x-coordinates or equivalently by the greatest index among the points that

define them. In this case, a segment Si,j intersects any chain P`,`′ exactly once if its

x-coordinates are less than pj and ρi(j) ∈ (ρi(`), ρi(`
′)) (i.e., Case 3 of Lemma 1).

The algorithm represents each of the O(n) segments Si,j as a blue point (j, ρi(j))

and each chain P`,`′ as two red points: the start (max(`, `′),min(ρi(`), ρi(`
′))) and

the end (max(`, `′),max(ρi(`), ρi(`
′))). For every starting red point that is domi-

nated (strictly greater than in both coordinates) by a single blue point a crossing

is generated only if the corresponding red point is not dominated. The count of red

start points dominated by each blue point is an offline counting query solvable in

O(n log n) time and linear space using a modified segment tree4 or in O(n
√

log n)

time in the Word RAM model.5 The count of red end points dominated by each

blue point must then be subtracted from the start domination counts using the

same method. Correctness of the result follows from x-monotonicity and the proof

of Lemma 1.

The problem becomes more difficult if we assume that P is simple but not neces-

sarily monotonic in x. While chains describe angular order nicely, a non-monotonic

P does not imply a consistent ordering of chain boundaries. Thus, queries will be

of a specific nature: for a given point pj , we must determine how many chains are

closer to i, have a lower maximum index than j, and are within the angular order

(as with the monotonic example). We use the same strategy of two sets of domi-

nance queries as in the monotonic case. The difference is that, instead of using the

maximum index on a chain both for the chain’s location within the polyline and

its distance from pi, we precompute a distance ranking of chains from pi as well

as the maximum index. Then, the start and end of each chain is represented as a

three-dimensional red point.

Chains do not cross, and can only intersect at their endpoints, due to the non-



January 17, 2014 20:21 WSPC/Guidelines linearInterpolationIJCGA2013

8 Durocher, Leblanc, Morrison, Skala

pn = p25

ρi(13.5) = 1

ρi(13) = 25

pi = p1

(a) An example of the rays’ angular order of

vertices in Pi+1,n and the resulting chains

pi = qj

pi+1

I

II

III
IV

pi−1

(b) Regions around pj that determine a cross-

ing at pj

Fig. 3: Angular ordering with chains around pi and regions local to pi

overlapping definition of chains and the simplicity of P . Therefore, to compute

the closeness of chains, we sweep a ray from pi, initially vertical, in increasing ρi
order (increasing angle). This defines a partial order on chains with respect to their

distance from pi. Using a topological sweep14 it is possible to determine a unique

order that preserves this partial ordering of chains. Since there are O(n) chains

and changes in neighbours defining the partial order occur only at chain endpoints,

there are O(n) edges in the partial order. This further implies that O(n log n) time

is required to determine the events in a sweep and O(n) time to compute the

topological ordering. Without loss of generality assume that the chains closest to

pi have a lower topological index. This is a traditional Real RAM approach, and

while a more efficient Word RAM approach could be found, it would be unnecessary

given that this is a preprocessing step. Computing each batch of domination queries

requires O(n log2 n) time using Chazelle’s result on elementary pointer machines7

(or in O(n log4/3 n) time and linear space using a result of Chan and Pǎtraşcu5 in

the Word RAM model).

3.3. Counting Crossings Due to Neighbouring Approximation

Segments

Suppose that pi = qj . Then there is an intersection between P and Q at this point,

and we must detect whether a change in sidedness accompanies this intersection.

Assume initially that P does not contain any consecutively collinear segments; we

will consider the other case later.

We begin with the non-degenerate case where (pi−1, pi+1, qj−1, qj+1) are all dis-

tinct points (i.e., Case 4 in Figure 2). Each of the points qj−1 and qj+1 can be

in one of four locations: in the cone left of (pi−1, pi, pi+1); in the cone right of
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Categorization Conditions for End of Sπ(j−1),i Conditions for Beginning of Si,π(j+1)

collinear (1)
qj−1 = pi−1 qj−1 = pi−1
qj+1 = pi+1 qj+1 = pi+1

left (2)

qj−1 ∈ I qj+1 ∈ I
(qj−1 ∈ III) ∧ (pi−2 ∈ II) (qj+1 ∈ III) ∧ (pi−2 ∈ II)

(qj−1 ∈ IV ) ∧ (pi+2 ∈ II) (qj+1 ∈ IV ) ∧ (pi+2 ∈ II)

right (3)

qj−1 ∈ II qj+1 ∈ II
(qj−1 ∈ III) ∧ (pi−2 ∈ I) (qj+1 ∈ III) ∧ (pi−2 ∈ I)

(qj−1 ∈ IV ) ∧ (pi+2 ∈ I) (qj+1 ∈ IV ) ∧ (pi+2 ∈ I)

Table 1: Left, right, and collinear labels applied to beginning or end of a segment

at pj

(pi−1, pi, pi+1); on the ray defined by Si,i−1; or on the ray defined by Si,i+1. These

are labelled in Figure 3(b) as regions I through IV , respectively. In Cases III and

IV it may also be necessary to consider the location of qj−1 or qj+1 with respect

to Si−2,i−1 or Si+1,i+2.

For the degenerate case where the points may not be unique, if pi = qj and

pi+1 6= qj+1, then any change in sidedness is handled at pi and can be detected by

verifying the previous side from the polyline. If, however, pi+1 = qj+1, then any

change in sidedness will be counted further along in the approximation.

By examining these points it is possible to assign a sidedness to the end of

Sπ(j−1),π(j) and the beginning of Sπ(j),π(j+1). Note that the sidedness of a point

qj−1 with respect to Si−2,i−1 can be inferred from the sidedness of pi−2 with respect

to Sπ(j−1),i−1, and that property is used in the case of regions III and IV . The

assumed lack of consecutive collinear segments requires that {pi−2, pi+2} ∈ I ∪ II
and thus Table 1 is a complete list of the possible cases when |P | ≥ 5. Cases involving

III or IV where i /∈ [3, n − 2] are labelled collinear. We discuss the consequences

of this choice later.

A single crossing occurs if and only if the end of Sπ(j−1),i is on the left or

right of P , while the beginning of Si,π(j+1) is on the opposite side. Furthermore,

the end of any approximation Q1,j of P1,i that ends in Sπ(j−1),i inherits the same

labelling as the end of Sπ(j−1),i. This labelling is consistent with the statement

that the approximation last approached the polyline P from the side indicated by

the labelling. To maintain this invariant in the labelling of the end of polylines, if

Sπ(j−1),i is labelled as collinear then the approximation Q1,j needs to have the same

labelling as Q1,j−1. As a base case, the approximations of P1,2 and P1,1 are the result

of the identity operation so they must be collinear. Note that an approximation

labelled collinear has no crossings.

The constant number of cases in Table 1 and the constant complexity of the

sidedness test imply that we can compute the number of crossings between a
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segment and a chain, and therefore the labelling for the segment, in constant

time. Let η(Q1,j , Sπ(j−1),i) represent the number of extra crossings (necessarily

0 or 1) introduced at pj by joining Q1,j and Sπ(j−1),i. We have χ(Q1,j , P1,i) =

χ(Q1,j−1, P1,π(j−1)) + χ(Sπ(j−1),i, Pπ(j−1),i) + η(Q1,j , Sπ(j−1),i), which lends itself

to computing the optimal approximation incrementally using dynamic program-

ming.

It remains to consider the case of sequential collinear segments (i.e., Case 5 in

Figure 2). The polyline P ′ can be simplified into P by merging sequential collinear

segments, effectively removing points of P ′ without changing its shape. When join-

ing two segments where p′i = qj , p
′
i−1 and p′i+1 define the regions as before but there

is no longer a guarantee regarding non-collinearity of p′i−2 or p′i+2 with respect to

the other points. The points qj−1 and qj−2 are now collinear if and only if either of

them are entirely collinear to the relevant segments of P . Our check for equality is

changed to a check for equality or collinearity. We examine the previous and next

points of P ′ that are not collinear to the two segments [p′i−1, p
′
i] and [p′i, p

′
i+1]. We

find such points for every p′i in a preprocessing step requiring linear time and space,

by scanning the polyline for turns and keeping two queues of previous and current

collinear points.

4. Finding a Polyline that Maximizes the Crossing Measure

This section describes our dynamic programming approach to computing a polyline

Q that is a subset of P that maximizes the crossing measure χ(Q,P ). Our algorithm

returns a subset of minimum cardinality k among all such maximizing subsets. We

compute χ(Si,j , Pi,j) in batches, as described in the previous section. Our algorithm

maintains the best known approximations of P1,i for all i ∈ [1, n] and each of

the three possible labellings of the ends. We refer to these paths as Qσ,i where σ

describes the labelling at i: σ = 1 for collinear, σ = 2 for left, or σ = 3 for right.

To reduce the space complexity we do not explicitly maintain the (potentially

exponential-size) set of all approximations Qσ,i. Instead, for each approximation

corresponding to (σ, i) we maintain: χ(Qσ,i, P1,i) (initially zero); the size of the

approximation found, |Qσ,i| (initially n+ 1); the starting index of the last segment

added, βσ,i (initially zero); and the end labelling of the best approximation to which

the last segment was connected, τσ,i (initially zero). The initial values described

represent the fact that no approximation is yet known. The algorithm begins by

setting the values for the optimal identity approximation for P1,1 to the following

values (note σ = 1):

χ(Q1,1, P1,1) = 0, |Q1,1| = 1, β1,1 = 1, τ1,1 = 1.

A total of n − 1 iterations are performed, one for each i ∈ [1, n − 1], where for

each of a batch of segments Si,j : i < j ≤ n the algorithm considers a possible

approximation ending in that segment. Each iteration begins with the set of ap-

proximations {∀σ,Qσ,` : ` ≤ i} being optimal, with maximal values of χ(Qσ,`, P1,`)
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and minimum size |Qσ,`| for each of the specified σ and ` combinations. The iter-

ation proceeds to calculate the crossing numbers of all segments starting at i and

ending at a later index, {χ(Si,j , Pi,j)|j ∈ (i, n]}, using the method from Section 3.

For each of the segments Si,j we compute the sidedness of both the end at j (σ′j)

and the start at i (υ′j). Using υ′j and all values of {σ : βσ,i ≥ 0} it is possible to

compute η(Qσ,i, Si,j) using just the labellings of the two inputs (see Table 2). It

is also possible to determine the labelling of the end of the concatenated polyline

ψ(σ, σ′j) using the labelling of the end of the previous polyline σ and the end of the

additional segment σ′j (also shown in Table 2).

η(βσ,i, υ
′
j) βσ,i 1 2 3

υ′j

1 0 0 0

2 0 0 1

3 0 1 0

ψ(σ, σ′j) σ 1 2 3

σ′j

1 1 2 3

2 2 2 2

3 3 3 3

Table 2: Crossings η(βσ,i, υ
′
j) due to concatenation, and the end labelling ψ(σ, σ′j)

of the polyline

With these values computed, the current value of χ(Qψ(σ,σ′
j),j

, P1,j) is compared

to χ(Qσ,i, P1,j)+χ(Si,j , Pi,j)+η(βσ,i, υ
′
j) and if the new approximation has a greater

or equal number of crossings, then we compute:

χ(Qψ(σ,σ′
j),j

, P1,j) = χ(Qσ,i) + χ(Si,j , Pi,j) + η(βσ,i, υ
′
j),

|Qψ(σ,σ′
j),j
| = |Qσ,i|+ 1, βψ(σ,σ′

j),j
= i, τψ(σ,σ′

j),j
= σ.

Correctness of this algorithm follows from the fact that each possible segment

ending at i + 1 is considered before the (i + 1)-st iteration. For each segment and

each labelling, at least one optimal polyline with that labelling and leading to the

beginning of that segment must have been considered, by the inductive assumption.

Since the number of crossings in a polyline depends only on the crossings within the

segments and the labelings where the segments meet, the inductive hypothesis is

maintained through the (i+1)-st iteration. It is also trivially true in the base case i =

1. With the exception of computing the crossing number for all of the segments, the

algorithm requires O(n) time and space to update the remaining information in each

iteration. The final post-processing step is to determine σmax = arg maxσ χ(Qσ,n),

finding the approximation that has the best crossing number. We use the β and τ

information to reconstruct Qσmax,n in O(k) time.

The algorithm requires O(n) space in each iteration and O(n log2 n) time per

iteration to compute crossings of each batch of segments dominates the remaining

time per iteration. Thus for simple polylines, Qσmax,n is computable in O(n2 log2 n)

time and O(n) space, and for monotonic polylines it is computable in O(n2 log n)

time and O(n) space. Similarly, in the Word RAM model the corresponding running

times decrease to O(n2 log4/3 n) and O(n2
√

log n), respectively.
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5. Results

Here we present results of applying our method to approximate x-monotonic data

with and without noise in a parameter-free fashion.

Our first point set is given by p = (x, x2 + 10 · sinx) for 101 equally spaced

points x ∈ [−10, 10] (see Figure 4(a)). The maximal-crossing approximation for this

point set has 5 points and 7 crossings (see Figure 4(d)). We generated a second

point set by adding standard normal noise generated in Matlab with randn to

the first point set. The maximal-crossing approximation of the data with standard

normal noise (see Figure 4(b)) has 21 points and a crossing number of 62 (see Fig-

ure 4(e)). We generated a third point set from the first by adding heavy-tailed noise

consisting of standard normal noise for 91 data points and standard normal noise

multiplied by ten for ten points selected uniformly at random without replacement

(see Figure 4(c)). The maximal-crossing approximation of the signal contaminated

by heavy-tailed noise (see Figure 4(f)) has 21 points and a crossing number of 57,

which is quite comparable to the results obtained with the uncontaminated normal

noise (see Figure 4(e)).

Figures 4(a) to 4(f) illustrate the application of our method to approximate ar-

tificially generated data. Figures 4(g) and 4(h) illustrate an example of applying our

method to recorded experimental data, displaying the crossing-maximized simplifi-

cation of an infrared spectrum. The data has 1610 points (see Figure 4(g)) while the

optimized approximation Q has 221 points and a crossing number of 767 (see Fig-

ure 4(h)). The spectrum analyzed here was collected on an Agilent 670/620 Fourier

Transformed Infrared (FTIR) Spectral Microscope collecting a single 64× 64 pixel

data set with 1610 wavebands per spectrum. The sample is from a triple transgenic

(3xTg) mouse brain (subiculum), which models familial Alzheimer disease, carrying

the KM670/671NL mutation in APP, the presenilin 1 (PS1) mutation (M146V) and

the human four-repeat Tau harboring the P301L mutation. The spectrum analyzed

here was selected at a random location among the spectra collected after storage.

Details on this microscope and the data source are available in the work of Stitt et

al.15

6. Discussion and Conclusions

The maximal-crossing approximation is robust to small changes of x- or y-

coordinates of any pi when the points are in general position. This robustness can

be seen by considering that the crossing number of every approximation depends on

the arrangement of lines induced by the line segments, and any point in general po-

sition can be moved some distance ε without affecting the combinatorial structure of

the arrangement. The approximation is also invariant under affine transformations

because these too do not modify the combinatorial structure of the arrangement.

For x-monotonic polylines, the approximation possesses another useful property:

the more a point is an outlier, the less likely it is to be included in the approxi-

mation. To see this, consider increasing the y-coordinate of any point pi to infinity
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(a) p = f(x) = (x, x2+10·sinx)
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(b) p = f(x) + standard gaus-

sian noise
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(c) p = f(x) + heavy-tailed

noise
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(d) Optimal q for f(x)
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(e) Optimal q for f(x) + stan-

dard gaussian noise
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(f) Optimal q for f(x) + heavy-

tailed noise
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(g) Infrared Spectrum
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(h) Optimal q for Infrared Spectrum

Fig. 4: The optimal crossing paths (red) of original ploylines (black).
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while x-monotonicity remains unchanged. In the limit, this will remove pi from the

approximation. That is, if pi is initially in the approximation, then once pi moves

sufficiently upward, the two segments of the approximation adjacent to pi cease to

cross any segments of P .

An additional improvement in speed is achievable by bounding sequence lengths.

If a parameter m is chosen in advance such that we require that the longest segment

considered can span at most m − 2 vertices, with the appropriate changes, the al-

gorithm can then find the minimum sized approximation conditional on maximum

crossing number and having a longest segment of length at most m in O(nm log2m)

time for simple polylines or O(nm logm) time for monotonic polylines, both with

linear space. As it seems natural for long segments to be rare in good approxima-

tions, setting m to a relatively small value should still lead to good approximations

while significantly improving speed.
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